Math 131, Fall 18 Discussion Section Worksheet 5

- 1. For the following functions $T: \mathbb{R}^2 \to \mathbb{R}^2$, explain why T is NOT a linear map. (a) T(x,y) = (1,y)
 - (b) $T(x,y) = (x,x^2)$
 - (c) $T(x,y) = (\sin x, 0)$
 - (d) T(x,y) = (|x|,y)
 - (e) T(x,y) = (x+1,y)

2. (a) Prove that there exists a linear map $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that T(1,1) = (1,0,2) and T(2,3) = (1,-1,4). What is T(8,11)?

(b) Is there a linear map $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,0,3) = (1,1) and T(-2,0,6) = (2,1)?

3. Let V and W be vector spaces. Show that if $T: V \to W$ is linear map, then T(0) = 0 (i.e., T send the zero vector in V to the zero vector in W.)

4. (If you have extra time...) Suppose that $T \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$. Show that there is a matrix $A = (A_{i,j})$ where $A_{i,j} \in \mathbb{F}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, n$ such that for every $(x_1, \ldots, x_n) \in \mathbb{F}^n$,

 $T(x_1, \dots, x_n) = (A_{1,1}x_1 + \dots + A_{1,n}x_n, \dots, A_{m,1}x_1 + \dots + A_{m,n}x_n).$

(Hint: You need to find the matrix A. Consider the standard basis e_1, \ldots, e_n of \mathbb{F}^n . What does T do to this basis?)