Math 131, Fall 18 Discussion Section Worksheet 5

1. For the following functions $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, explain why T is NOT a linear map.
(a) $T(x, y)=(1, y)$
(b) $T(x, y)=\left(x, x^{2}\right)$
(c) $T(x, y)=(\sin x, 0)$
(d) $T(x, y)=(|x|, y)$
(e) $T(x, y)=(x+1, y)$
2. (a) Prove that there exists a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that

$$
T(1,1)=(1,0,2) \text { and } T(2,3)=(1,-1,4) .
$$

What is $T(8,11)$?
(b) Is there a linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $T(1,0,3)=(1,1)$ and $T(-2,0,6)=$ $(2,1)$?
3. Let V and W be vector spaces. Show that if $T: V \rightarrow W$ is linear map, then $T(0)=0$ (i.e., T send the zero vector in V to the zero vector in W.)
4. (If you have extra time...) Suppose that $T \in \mathcal{L}\left(\mathbb{F}^{n}, \mathbb{F}^{m}\right)$. Show that there is a matrix $A=\left(A_{i, j}\right)$ where $A_{i, j} \in \mathbb{F}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$ such that for every $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$,

$$
T\left(x_{1}, \ldots, x_{n}\right)=\left(A_{1,1} x_{1}+\ldots+A_{1, n} x_{n}, \ldots, A_{m, 1} x_{1}+\ldots+A_{m, n} x_{n}\right) .
$$

(Hint: You need to find the matrix A. Consider the standard basis e_{1}, \ldots, e_{n} of \mathbb{F}^{n}. What does T do to this basis?)

