Math 131, Fall 18 Discussion Section Worksheet 6

Let V, W be vector spaces over \mathbb{F} and let $T: V \rightarrow W$ be a linear map.
Recall:

$$
\begin{gathered}
\operatorname{null}(T)=\{v \in V: T(v)=0\} \subset V \\
\quad \operatorname{range}(T)=\{T(v): v \in V\} \subset W
\end{gathered}
$$

We proved that null (T) is a subspace of V and range (T) is a subspace of W.
We also showed that T is injective if and only if $\operatorname{null}(T)=\{0\}$.
Our big result (The Fundamental Theorem of Linear Maps) says that if V is finite dimensional, then so is range (T) and there is an equality:

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{null}(T)+\operatorname{dim} \operatorname{range}(T)
$$

1. Give an example of a linear map T such that $\operatorname{dim} \operatorname{range}(T)=3$ and $\operatorname{dim} \operatorname{null}(T)=2$.
2. Suppose that $T: \mathbb{F}^{4} \rightarrow \mathbb{F}^{2}$ is a linear map such that

$$
\operatorname{null}(T)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{F}^{4} \mid x_{1}=3 x_{2}, x_{3}=7 x_{4}\right\}
$$

Prove that T is surjective. (Hint: Can you find a basis of $\operatorname{null}(T)$? What is the dim null((T) ? dim range (T) ?)
3. Suppose V and W are finite-dimensional and $\operatorname{dim} V>\operatorname{dim} W$. Show that NO linear map $T: V \rightarrow W$ is injective. (Hint: Use the results above and the fact that $\operatorname{dim}\{0\}=0$.)
4. Suppose V and W are finite-dimensional and $\operatorname{dim} W>\operatorname{dim} V$. Show that NO linear map $T: V \rightarrow W$ is surjective. (Hint: Use the results above and the fact that if $\operatorname{dim} \operatorname{range}(T)<\operatorname{dim} W$, then range $(T) \neq W$.)

