Math 131, Fall 18 Discussion Section Worksheet 6

Let V,W be vector spaces over $\mathbb F$ and let $T:V\to W$ be a linear map. Recall:

$$\operatorname{null}(T) = \{ v \in V : T(v) = 0 \} \subset V$$
$$\operatorname{range}(T) = \{ T(v) : v \in V \} \subset W$$

We proved that $\operatorname{null}(T)$ is a subspace of V and $\operatorname{range}(T)$ is a subspace of W.

We also showed that T is injective if and only if $\operatorname{null}(T) = \{0\}$.

Our big result (The Fundamental Theorem of Linear Maps) says that if V is finite dimensional, then so is range(T) and there is an equality:

 $\dim V = \dim \operatorname{null}(T) + \dim \operatorname{range}(T).$

1. Give an example of a linear map T such that $\dim \operatorname{range}(T) = 3$ and $\dim \operatorname{null}(T) = 2$.

2. Suppose that $T: \mathbb{F}^4 \to \mathbb{F}^2$ is a linear map such that

$$\operatorname{null}(T) = \{ (x_1, x_2, x_3, x_4) \in \mathbb{F}^4 \mid x_1 = 3x_2, \ x_3 = 7x_4 \}.$$

Prove that T is surjective. (Hint: Can you find a basis of $\operatorname{null}(T)$? What is the dim $\operatorname{null}(T)$? dim $\operatorname{range}(T)$?)

3. Suppose V and W are finite-dimensional and dim $V > \dim W$. Show that NO linear map $T: V \to W$ is injective. (Hint: Use the results above and the fact that dim $\{0\} = 0$.)

4. Suppose V and W are finite-dimensional and dim $W > \dim V$. Show that NO linear map $T : V \to W$ is surjective. (Hint: Use the results above and the fact that if dim range $(T) < \dim W$, then range $(T) \neq W$.)