Math 131, Fall 18 Discussion Section Worksheet 7

1. Let $\beta=\left(e_{1}, \ldots, e_{n}\right)$ be the standard basis of \mathbb{R}^{n}. For the following linear maps $T: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n}, compute the matrix $[T]_{\beta}^{\beta}$.
(a) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1}, 2 a_{2}, \ldots, n a_{n}\right)$.
(b) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T\left(a_{1}, a_{2}, \ldots\right)=\left(a_{n}, a_{n-1}, \ldots, a_{1}\right)$.
2. Recall the set of $(m \times n)$-matrices $\operatorname{Mat}_{m, n}(\mathbb{F})$ is a vector space under entry-wise addition and scalar multiplication. Consider the basis α of $\operatorname{Mat}_{2,2}(\mathbb{R})$:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

and the basis $\beta=\left(1, x, x^{2}\right)$ of $\mathcal{P}_{2}(\mathbb{R})$. Define $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2,2}(\mathbb{R})$ by

$$
T(p)=\left[\begin{array}{cc}
p^{\prime}(0) & 2 p(1) \\
0 & p^{\prime \prime}(3)
\end{array}\right]
$$

Compute $[T]_{\beta}^{\alpha}$.
3. Suppose V is n-dimensional, W is m-dimensional and $T: V \rightarrow W$ is a linear map. Let $\beta=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V. Show that if T is injective, then there is a basis γ of W such that $[T]_{\beta}^{\gamma}$ is the $m \times n$-matrix of the form:

$$
\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & 1 \\
0 & \ldots & 0 & 0 \\
\vdots & & & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right] .
$$

4. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given in the standard basis by the matrix

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \in \operatorname{Mat}_{2,3}(\mathbb{R})
$$

Find a basis $\beta=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3} such that with respect to the basis β of \mathbb{R}^{3} and the standard basis $\gamma=((1,0),(0,1))$ of \mathbb{R}^{2}, the matrix of T takes the form

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

