Math 131, Fall 18 Discussion Section Worksheet 7

- 1. Let $\beta = (e_1, \ldots, e_n)$ be the standard basis of \mathbb{R}^n . For the following linear maps $T : \mathbb{R}^n \to \mathbb{R}^n$, compute the matrix $[T]^{\beta}_{\beta}$.
 - (a) $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(a_1, a_2, \ldots) = (a_1, 2a_2, \ldots, na_n).$

(b)
$$T : \mathbb{R}^n \to \mathbb{R}^n$$
 defined by $T(a_1, a_2, \ldots) = (a_n, a_{n-1}, \ldots, a_1).$

2. Recall the set of $(m \times n)$ -matrices $\operatorname{Mat}_{m,n}(\mathbb{F})$ is a vector space under entry-wise addition and scalar multiplication. Consider the basis α of $\operatorname{Mat}_{2,2}(\mathbb{R})$:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

and the basis $\beta = (1, x, x^2)$ of $\mathcal{P}_2(\mathbb{R})$. Define $T : \mathcal{P}_2(\mathbb{R}) \to \operatorname{Mat}_{2,2}(\mathbb{R})$ by

$$T(p) = \begin{bmatrix} p'(0) & 2p(1) \\ 0 & p''(3) \end{bmatrix}$$

Compute $[T]^{\alpha}_{\beta}$.

3. Suppose V is n-dimensional, W is m-dimensional and $T: V \to W$ is a linear map. Let $\beta = (v_1, \ldots, v_n)$ be a basis of V. Show that if T is injective, then there is a basis γ of W such that $[T]_{\beta}^{\gamma}$ is the $m \times n$ -matrix of the form:

[1	0		0	
0	1		÷	
:		·	0	
0		0	1	
0		0	0	
:			:	
0		0	0	

4. Consider the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ given in the standard basis by the matrix

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \in \operatorname{Mat}_{2,3}(\mathbb{R})$$

Find a basis $\beta = (v_1, v_2, v_3)$ of \mathbb{R}^3 such that with respect to the basis β of \mathbb{R}^3 and the standard basis $\gamma = ((1, 0), (0, 1))$ of \mathbb{R}^2 , the matrix of T takes the form

$$[T]^{\gamma}_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$