Math 131, Fall 18 Discussion Section Worksheet 8

Today we will discuss what it means for a linear map to be *invertible*.

Definition 1. Let $T: V \to W$ be a linear map. We say that T is *invertible* if there exists a linear map $S: W \to V$ such that the $ST = 1_V$ and $TS = 1_W$. If such a linear map S exists, then we say that S is an *inverse* of T.

1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map defined by T(x, y) = (-y, x) and let $S : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map defined by S(x, y) = (y, -x). Show that S is an inverse of T.

2. Is the zero map $0: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (0, 0) invertible? Why or why not?

3. Prove that if a linear map $T: V \to W$ is invertible, then it has a *unique* inverse. (Hint: suppose that S_1 and S_2 are both inverses of T, consider the composition S_1TS_2 .)

4. By the previous question, if $T: V \to W$ is invertible, then we can talk about THE inverse of T and we will denote it by $T^{-1}: W \to V$. Today you will prove half of the following theorem (we'll do the rest on Tuesday):

Theorem 2. A linear map $T: V \to W$ is invertible if and only if T is both injective and surjective.

First we consider the 'forward' direction.

(a) Prove that if T is invertible, then T is injective. (Hint: Suppose that $u, v \in V$ and T(u) = T(v). Apply T^{-1} ... Alternatively, show that $\operatorname{null}(T) = \{0\}$.)

(b) Prove that if T is invertible, then T is surjective. (Hint: Suppose $w \in W$. Use the fact that $w = T(T^{-1}(w))$.)

5. Use the theorem above to prove that the derivative map $D : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ is not invertible.