Math 131, Fall 18 Discussion Section Worksheet 8

Today we will discuss what it means for a linear map to be invertible.
Definition 1. Let $T: V \rightarrow W$ be a linear map. We say that T is invertible if there exists a linear map $S: W \rightarrow V$ such that the $S T=1_{V}$ and $T S=1_{W}$.

If such a linear map S exists, then we say that S is an inverse of T.

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map defined by $T(x, y)=(-y, x)$ and let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map defined by $S(x, y)=(y,-x)$. Show that S is an inverse of T.
2. Is the zero map $0: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(0,0)$ invertible? Why or why not?
3. Prove that if a linear map $T: V \rightarrow W$ is invertible, then it has a unique inverse. (Hint: suppose that S_{1} and S_{2} are both inverses of T, consider the composition $S_{1} T S_{2}$.)
4. By the previous question, if $T: V \rightarrow W$ is invertible, then we can talk about THE inverse of T and we will denote it by $T^{-1}: W \rightarrow V$. Today you will prove half of the following theorem (we'll do the rest on Tuesday):

Theorem 2. A linear map $T: V \rightarrow W$ is invertible if and only if T is both injective and surjective.

First we consider the 'forward' direction.
(a) Prove that if T is invertible, then T is injective. (Hint: Suppose that $u, v \in V$ and $T(u)=T(v)$. Apply $T^{-1} \ldots$ Alternatively, show that null $(T)=\{0\}$.)
(b) Prove that if T is invertible, then T is surjective. (Hint: Suppose $w \in W$. Use the fact that $w=T\left(T^{-1}(w)\right)$.)
5. Use the theorem above to prove that the derivative map $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ is not invertible.

