Math 131, Fall 18 Discussion Section Worksheet 9

Suppose that V and W are finite dimensional with bases $\beta = (v_1, \ldots, v_n)$ and $\gamma = (w_1, \ldots, w_m)$ respectively. Recall that this gives us a linear map

$$\mathcal{M}: \mathcal{L}(V, W) \to \operatorname{Mat}_{m,n}(\mathbb{F}),$$

defined by $\mathcal{M}(T) = [T]^{\gamma}_{\beta}$.

- 1. We will prove that \mathcal{M} is an isomorphism!
 - (a) Prove that \mathcal{M} is injective. (Hint: Suppose that $\mathcal{M}(T)$ is the zero matrix. What does this tell you about $T(v_k)$? What about T(v) for a general vector $v \in V$?)

(b) Prove that \mathcal{M} is surjective. (Hint: given a matrix $A \in \operatorname{Mat}_{m,n}(\mathbb{F})$, what does it mean for $\mathcal{M}(T)$ to equal A? Can you find such an linear map T?)

2. Let $e_{i,j}$ be the $m \times n$ -matrix whose only non-zero entry is a 1 in the *i*-th row and *j*-th column. Prove that the set of all $e_{i,j}$ for $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n\}$ forms a basis of $\operatorname{Mat}_{m,n}(\mathbb{F})$.

3. Use the previous results to find the dimension of $\mathcal{L}(V, W)$.

4. Suppose X, Y and W are subspaces of a vectors space V. Prove or give a counterexample: If $V = X \oplus W$ and $V = Y \oplus W$, then X = Y.