Math 131, Fall 18 Discussion Section Worksheet 9

Suppose that V and W are finite dimensional with bases $\beta=\left(v_{1}, \ldots, v_{n}\right)$ and $\gamma=$ $\left(w_{1}, \ldots, w_{m}\right)$ respectively. Recall that this gives us a linear map

$$
\mathcal{M}: \mathcal{L}(V, W) \rightarrow \operatorname{Mat}_{m, n}(\mathbb{F})
$$

defined by $\mathcal{M}(T)=[T]_{\beta}^{\gamma}$.

1. We will prove that \mathcal{M} is an isomorphism!
(a) Prove that \mathcal{M} is injective. (Hint: Suppose that $\mathcal{M}(T)$ is the zero matrix. What does this tell you about $T\left(v_{k}\right)$? What about $T(v)$ for a general vector $v \in V$?)
(b) Prove that \mathcal{M} is surjective. (Hint: given a matrix $A \in \operatorname{Mat}_{m, n}(\mathbb{F})$, what does it mean for $\mathcal{M}(T)$ to equal A ? Can you find such an linear map T ?)
2. Let $e_{i, j}$ be the $m \times n$-matrix whose only non-zero entry is a 1 in the i-th row and j-th column. Prove that the set of all $e_{i, j}$ for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$ forms a basis of $\operatorname{Mat}_{m, n}(\mathbb{F})$.
3. Use the previous results to find the dimension of $\mathcal{L}(V, W)$.
4. Suppose X, Y and W are subspaces of a vectors space V. Prove or give a counterexample: If $V=X \oplus W$ and $V=Y \oplus W$, then $X=Y$.
