Let V be a finite dimensional inner product space and T a linear operator on V.

(a) Prove that null(T^*T) = null(T).

(b) Prove that dim null(T^*) = dim null(T).

(c) Prove or give a counterexample: null(T^*) = null(T).

(d) Use part (b) to show that $\lambda \in \mathbb{F}$ is an eigenvalue of T if and only if $\bar{\lambda}$ is an eigenvalue of T^*.