FACTORIZATION IN GENERALIZED ARITHMETIC
PROGRESSIONS AND APPLICATION TO THE
ERDOS-SZEMEREDI SUM-PRODUCT PROBLEMS

M. CHANG

1. Introduction and Statements

Given integers cg, ¢1,- -+ ,cqg and Jy, ..., JJg > 1, a (generalized) d-dimensional arith-

metic progression P is

d
P= P(co;cl,.. . ,Cd;Jl, . ,Jd) = {Co +Zkzcz‘kz € Z,O S I{LL S Jz} (1.1)

i=1
A progression is called proper provided all expressions in (1.1) represent different num-

bers.
The importance of this notion appears for instance in the context of Freiman’s

theorem on sumsets.

Theorem 0. Let A be a sufficiently large finite set of integers such that
A+ Al < ChlA] (1.2)

for some constant C.

Then A is contained in a proper d-dimensional arithmetic progression P satisfying
d<[C;—1] (1.3)
|P| < Cq|A], (1.4)
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where Cy = C9(C1) is a constant depending on C1.

This result has been the focus of research and improvements over recent years. See
for instance [B-L], [Bi], [Chl], [C-Z], [E], [E-S], [Fr], [F-H-R], [G1], [G2], [He], [K-L-T],
[K-T], [Na], [N-T], [Rul], [Ru2], [Ru3], [S-T], and [T].. It is shown in particular in
[Ch1] that one may take in (1.4)

logCy < C’f(logCl)S. (1.5)

In [E-S], it is conjectured that either the sumset A + A or the product set A.A, A
being an arbitrary finite set of integers, needs to have essentially extremal size, in the

following sense

max(|A + A|,|A.A|) > c|A[*7¢ for all € > 0, (1.6)

and, more generally for all A > 2

max(|A +---+ A|, |A.--.A]) > c.p]|A|"7¢ for all C; > 0. (1.7)
h h
These problems are still open. Concerning (1.6), best result to date is due to Elekes
[E]
max(|A + A|, |A.A]) > |A]>/*. (1.8)

The proof makes essential use of the geometric Szemerédi-Trotter theorem [S-T|, which
has shown itself a rather powerful tool in this type of questions. There are a few special
instances where (1.6), (1.7) may be established. First, it is shown in [Ch2] (among
other things) that if A satisfies

|A.A| < C|A]|, (1.9)
then for all h
A+ + A C)|A". 1.10
A4+ Al > cn(C)]A| (1.10)
h
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(the argument uses a weak form of Freiman’s theorem and methods from Harmonic
Analysis).
In another recent paper [E-R], the general inequality
A+ Al*.|A.Al.log|A| > |A|°® (1.11)
is obtained (again based on the Szemerédi-Trotter theorem). As a consequence,
|A+ Al < C|A| (1.12)
implies that AP

log |A|
The purpose of this paper is to prove the following facts.

|A.Al > C™* (1.13)

Theorem 1. Let A be a finite set of integers satisfying (1.12) for some constant C,
and let r,(n; A) be the number of representations of n as a product of h elements in

A. Then there is a uniform estimate for alln € 7Z

log |A|

ra(n; A) < ¢ () toglog ra (1.14)

More generally, for h > 2

log |A|
Cn(O) eilily

r(n; A) < glog [A] | (1.15)

An immediate corollary of Theorem 1 is the following extension of the Erdds-

Szemerédi theorem to multiple factors.

Theorem 2. If A satisfies (1.12), then for all h > 2

A LA| > cen|AI"E for all € > 0. (1.16)

h fold
The starting point is Freiman’s theorem and our assumption (1.12) permits us to
replace A by a proper generalized d-dimensional arithmetic progression. Thus Theorem

1 is a consequence of Theorem 0 and



Proposition 3. Let P be as in (1.1) and J = max; J;. Then, for all n € Z
ra(n; P) < C4mstosT (1.17)

and similarly, for arbitrary h > 2

log J

r(n; P) < eCd-h ToglogT | (1.18)

Thus estimates (1.17), (1.18) are uniform: they only depend on d, J, but not on the

generators cg,c1,...,cq of P and n.

Remark 1. In Proposition 3, we do not use the fact that P is proper. Moreover, the
statement remains true for arbitrary real or complex generators cg, c1,...,cq € C and

n € C. In fact, the proof will be given in this generality (see section 3).

Remark 2. The proof of Proposition 3 presented below uses essentially the theory of
algebraic number fields, hence methods very different from those mentioned earlier.
We give the argument for h = 2. The general case can be gotten by induction. (Note

that the progression does not need to be proper.)

In the next section, we present some algebraic number theory facts that are then

used in Section 3 to prove Proposition 3.

In Section 4, we give another application of Theorem 1 to the Erdds -Szemerédi

sum-product problem along graphs (see Proposition 4.4).

Section 5 contains further applications of Proposition 3 (together with Remark 1)

to problems considered in [E-S], [E-N-R] and [E2] (see Section 2.1.1).

We show in particular the following facts.

Proposition 5. Let A be an arbitrary finite set of complex numbers, |A| = N, such
that

A+ Al < C|A| (1.19)
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for some constant C. Then

1 _log N

1 1
‘ ‘ > e ¢ mElogn N2, (1.20)

A4
Proposition 6. Let A C C be as in Proposition 5 satisfying (1.19). Let p(X) € C[X]

be a polynomial of degree r > 2. Then

log N

Ip(A) + p(A)| > e ¢ oglog N N2, (1.21)

where C' = C'(C, ).

We denoted here
1

5=
p(4) = {p(z)|z € A}.

1
{E|a: € A} and

Remark 3. It was shown in [E-N-R] that if A C R is a finite set with |[A| = N and

f a strictly convex (or concave) function defined on an interval containing A, then
|A+ Al|f(A) £ f(A)| > eN*/2, (1.22)

where ¢ is an absolute constant.

Their proof uses extensions of the Szemerédi-Trotter result to so-called ‘pseudo-line

systems’, but seem so far only established in the real case.

An immediate consequence of (1.22) ([E-N-R)) is
1 1 5/2
A+ A 1t al> cN (1.23)

for ACR |A] = N.

The ‘natural’ conjecture is again the validity of (1.22) and (1.23) with lower bound

ceN37¢ for all ¢ > 0. Thus Proposition 5 establishes this fact for (1.23), in the
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extremal case when |A + A| < CN for some constant C. Moreover both Proposition

5 and 6 remain valid in the complex case.

Acknowledgement. The author would like to thanks J. Bourgain and P. Sarnak for

helpful communication.

2. Some Algebraic Preliminaries
We first specify certain terminology, in order to ease the exposition.
Let us fix a large integer J.

Definition. A polynomial p(X) € Z[X4,...,X,] is a good polynomial, provided its
degree is bounded and all its coefficients are integers bounded by some power J¢ of
J, where C stands for an unspecified constant, understood to remain bounded when

J — oo.

In the sequel, the number of variables  and the degree of p(X) will always remain

bounded.

Let us also agree to use in the above definition the letter “C” for possibly different
constants. Thus with this convention the class of good polynomials is clearly closed
under addition and multiplication. Furthermore, if p,q are good, so will be the re-
sultant Res (p, ¢; X;) of p, ¢ with respect to one of the variables X; (it is given by the

Sylvester determinant, which is a fixed polynomial expression in the coefficients).
Definition. An algebraic number is good, if it is a root of a good polynomial.

Thus, the set of good algebraic numbers is closed under addition, multiplication
and division. Moreover, the root of a polynomial of bounded degree whose coefficients

are good algebraic numbers is a good algebraic number.

A good algebraic integer is an algebraic integer, which is a good algebraic number.

Clearly, good algebraic integers form a ring.
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Definition. Let R be an integral domain, and let p(X) and ¢(X) € R[X] be polyno-
mials. We call (X)) a good remainder of p(X) divided by ¢(X), if 7(X) is the remainder

(in the usual sense) multiplied by common denominators of all its coefficients, such

that r(X) € R[X].

Clearly, we have

_ rX)
p(X) = ¢(X)h(X) + (@)™

where gq4 is the leading coefficient of ¢(X), and M < deg(q(X)).

Also, if p and ¢ are good polynomials, then so is the good remainder of p divided

by gq.

Lemma 2.1. Let a € C be a good algebraic number. Then

JC < |a| < JC.
Proof. 1t suffices to show the upper bound.

Let Z?:O a;XJ € Z[X] be a good polynomial of degree d satisfied by . Therefore,

we have
d

Zajaj = 0 with d < C, and |a;| < JY, for all j.
i=0
We may assume that o] > 1.

Then clearly

o <laal [0 < > laj] [af < Tl
j<d—1

Lemma 2.2. Letp € Z[X] be a good polynomial and q € Z[X] divide p in Z[X]. Then

q 1s a good polynomial.

Proof. Let p = Z?:o a;X7,q = Z?’:o b;X?. Thus d' < d is bounded and bg|aq,
hence |by| < JC. If we factor ¢ in C[X] as ¢(X) = by Hflzl(X — o), then for all
i=1,...,d, p(a;) =0, hence |o;| < J by (2.1). Expressing the coefficients b; in by

and the {;}, obviously we have [b;| < JC.
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Lemma 2.3. For an algebraic integer o of bounded degree, the following properties

are equivalent
(1) « is a good algebraic integer.
(2) The minimum polynomial of « is a good polynomial.

(3) All conjugates o;(c) satisfy

J7C < oi(a)| < JC. (2.4)

We denote here by o4,...,0, the n Q-isomorphisms of Q(«) into the field C of

complex numbers, where n = [Q(«) : Q| is assumed bounded.
Proof.

(1) implies (2): The minimum polynomial of « divides in Z[X] a good polynomial

and hence is good by Lemma 2.2.
(2) implies (3): By Lemma 2.1.
(3) implies (1): « is root of the minimal polynomial [}, (X — o;(c)) whose coeffi-

cients are integers bounded by J€.

Lemma 2.4. Let a be a good algebraic integer and let Q(a)) C K be a finite extension
with [K : Q] bounded. Then the norm N q() is a rational integer bounded by JC.
(the constant C depends on « and [K : Q)).

Proof. Let d = [K : Q] and vy,...,v4 be the d Q-isomorphisms of K into C. Then
the characteristic polynomial H;l:l (X —vj()) of a relative to the extension K/Q is

a power of the minimum polynomial of a. Lemma 2.3 implies

Nk ola) = Hyj (@) is bounded by JC.

The following fact is the key result for what follows
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Proposition 2.5. Let K be an extension of Q with [K : Q] bounded. Let o € K\{0}

be a good algebraic integer. Then the number of factorizations in K
o= .09 (2.6)
with aq, ag good algebraic integers, is at most

eC’ lolgolgo; J . (2.7)

Proof. Denote d = [K : Q] and vy, ... ,vq the d Q-isomorphisms of K into C. Accord-
ing to Lemma 2.4,

0 # [N(a)| = [Ng/g(a)] < JC. (2.8)

If (2.6) holds, then N(a)|N(«) and hence we are bounding the following

Z {a1]as is a good algebraic integer and N(a;) = a}. (2.9)

a€EZ
a|N(a)

First, fixing a, we consider the number w(a) of non-associate elements /3 of K for which
N(B) = a. Recall that elements 3,y € K are associate if = &, where £ is a unit.
This problem is discussed in [B-S| (see Chapter 3, Section 7) and one has the estimate

w(a) < 7(a)?, (2.10)

where 7(a) is the divisor function of a (see [B-S], p. 220).

In order to solve our problem, it remains to determine the number of units £ in

!
@y

ny

K which are good. Indeed, we only need to consider units £ that appear as § = _
1

where o, o are associated good algebraic integers in K.

Let U be the group of units of K and consider the logarithmic homomorphism

L:U =R ¢ = (log|va(Q)],-..,log|va(O)]) (2.11)
9



It is well known that £(U) is a lattice £ of dimension < d — 1. (In what follows, we

will not treat the roots of unity separately).

Let & be a good unit. From Lemma 2.3
IO <|y(©l< I (1<j<d)
hence
|log v;(€)|| < ClogJ. (1< j<d). (2.12)

Hence, for such units &, £(¢) lies within a cube in R?, centered at 0 and of size
(2Clog J)4.
We claim that
1 ; <1 2.1
{€ € Ul max [log|;(¢)]]| < 1} < Ca, (2.13)

where Cy is a constant depending on d.

Indeed, an element in the set (2.13) has characteristic polynomial H;.l:l (X —v;(0))
with (integer) coefficients bounded by H;l:l(l + |7;(Q)]) < (1 + €)?. Therefore, the
boundedness of the number of the roots of such polynomials implies the boundedness

of the number of all such ¢ in (2.13).

Dividing the cube into unit cubes and using translation, we see that there are at

most Cy(2C log J)? good units & in U.

Summarizing, taking (2.8), (2.9), (2.10) into account, it follows that the number of

factorizations in (2.6) is at most

Z C4(2Clog J)%r(a)?
a|N(a)

< J°C4(2C log J)° (ecd )

c! log J
<e dloglog J |
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(the constant C; depends only on d = [K : Q] and the constant C involved in the

assumption on ay, s in factorization (2.6).)

The main idea, explained in the next section, is to replace the factorization problem
in an arithmetic progression by one in an algebraic number field to which Proposition

2.5 may be applied.

We will need one more algebraic fact.

Lemma 2.14. Let V' be a nonempty affine variety in C" defined as
V= () [p=0
j=1,...s
where p;j(X1,...,X;) € Z[X4,...,X,] are good polynomials in the sense defined in

the beginning of this section (r, and s are assumed bounded).

Then V contains an element 8 = (B1, ..., Br) whose coordinates are good algebraic

numbers.

Proof. We will prove the following stronger statement by induction on the number r

of variables.

Let p;(1 < j <s) and p be good polynomials in Z[X},..., X,] such that the set
A= ] =0nlp#0]#¢. (2.15)
j=1,...,s

Then A contains an element 8 = (f1,...,[S,) whose coordinates are good algebraic

numbers.

Of course, the case r = 1 is trivial. If not all p; vanish identically, then all elements

of A are good. If pj =0forall j=1,...,s,let 0 <3 <degp be an integer such that
p(B) # 0.

Next, we show how to reduce the number of variables.
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Assume b = (bq,...,b,) € A.

Expand

and denote

d. =

J

{ —1, if pj(by, ..., bp1) =0 for all 0 <k < d (2.16)

max{k|p;i(b1,...,br—1) # 0}, otherwise.
Thus d;- =—1or d;- > 1. If d; > 1, define

Pi(X)= > pi(Xy,...,X,_1)X].
0<k<d;

Let further

A= (] Wyj=0np#0nB
Jj=1,...,s
d;>1

B — ﬂ ( ﬂ [pjk:O]ﬂ[pj,d;. # 0])
§=1,...,s  d}<k<d,

where B’ depends only on Xq,...,X,_1.

Clearly
be A’ C A.

If d; = —1 for all j, then
A'=[p#0](B.

If p(X) = YockcaPr(X1,... ,X,_1)XE, the assumption p(b) # 0 implies
pr(b1,...,b._1) # 0 for some k. Thus B’ N [px # 0] # ¢ and, by the induction
hypothesis, contains a good point (f1,...,8r—1). Since p(B1,...,Br—1,Xr) # 0,
there is a bounded rational integer £, such that p(Bi,...,Br—1,8r) # 0. Hence

B=(B,...,8) €A CA.
12



Next, we assume d;- > 1 for some j. We may then define d as the smallest integer

> 1 for which there is a good polynomial

AX)= D (X1, X)) XD €Z[X,. .., X,

0<k<a
satisfying
p(b) =0 and py(b1,... ,br_1) #0. (2.17)
Thus
be Ay =A'N[p=0N[p, # 0] (2.18)

Using the Euclidean division algorithm with respect to X,., we may clearly replace each
polynomial p;- with d;. >d > 1 by a good polynomial, namely, the good remainder of
p; divided by p,

p;I(X) = Z p;'/,k:(X]-’ e ,X,,-_]_)Xf
0<k<d!

of degree 0 < d;-’ < d — 1 such that

[p=0]Np, #0]N[p; =0]=[p=0]N[p, #0]N[pj = 0]

In particular p7(b) = 0. By definition of d , it follows that p}”k(bl, cevybp_q) =0 for
allk=0,... ,d;.’. Therefore

with
By =B'N[p, #01n[ [P} = 0]. (2.20)
7,k

Also, p(X) may be replaced by a good polynomial p(X) = > gcrc 4Pk (X1, ... , Xp1) XF
where d < d and

5= 0] N[5, 01N [p#0] =[5 =01 N[5, # 01N [p # 0].
13



Thus p(b) # 0. Denote
dl = max{k S d|]§k(b1, NP ,b,-_l) 7é 0}
and replace By by

beBs=Byn () [px=0N[pa #0]-
dy<k<d
If d; =0, then
bEAgE[ﬁZO]ﬂBg C A,. (221)
Thus B3 # ¢ contains a good point (81, ... ,Br_1) and solving p(B1, ... ,Br_1,Xy) =0
provides a good point 8 = (B1,...,Br—1,5,) € Az C A.

Assume now d; > 1.

Denoting
p(X) = Z Pe(X1,. .., Xpo1) XF
0<k<dy
we have
beAs=[p=0]N[p #0]N B3 C A,. (2.22)

Let R(X4q,...,X,—1) = Res(p,p,X,) be the resultant of p, p with respect to the
variable X,. Assume R(by,...,b,_1) = 0.

We may then write (see [C-S-L])
Py(X,)p(b1, .- ybp1, Xp) + PL( X )D (b1, -+ ybr—1, X)) =0 (2.23)
where

deg Py < dy,deg P, < d, and

Py(X,), Pi(X,) are not both identically zero.
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The coefficients of Py, P; are expressed by (universal) integer polynomials in the coeffi-
cients pg(b1, ... ,b.—1) and pg(by,...,b._1) of p, p. Hence, there are good polynomials
Q07 Ql € Z[Xh s 7X’r‘] s.t.

P()(XT) = Q()(bl, ce ,b,-_l, XT) and Pl(XT) = Ql(bla ‘e ;br—la XT) (224)
Substituting X, = b, in (2.23), we get

Q1(b) = Py(by) = 0.

Since degy Q1 < d , it follows again from definition of d that if Q1 = ), Q1 x(X1, ... , Xp_1)XE,
necessarily Qq,x(b1,...,br—1) = 0 for all k, hence P, = 0. Thus Py # 0 and (2.23)

implies p(b1, ... ,b-_1,X,) = 0, a contradiction.

Consequently, R(by,...,br—1) # 0 and B3N [R # 0] # ¢. Let (B1,...,0r—1)
be a good point in By N [R # 0] and B, satisfy p(B1,...,06r-1,8-) = 0. Since
R(B1y... Br_1) #0, (81, .., Br_1,X;) and p (B4, ..., Br_1, X;) do not have a com-
mon root. In particular, p(8) # 0 and g € Az C A. This completes the proof.

Remark. The above argument is elementary and self contained. We may alternatively
proceed by describing the elimination ideals of I = I(p;;1 < j < s) using Groeb-
ner basis theory (cf. [C-L-S]). Construction of a Groebner basis starting from the
polynomials p;(1 < j < s) may be performed following Buchberger’s algorithm and
the resulting polynomials remain good polynomials (since this property is obviously

preserved by the operation of taking S-polynomials).
3. Proof of Proposition 3
We prove (1.17) (the argument for (1.18) is similar).

Thus we need to bound the number of factorizations

d d
n= (Co -+ Z kici)(co + Zk:cz) with 0 < k;, k; < J; <J (31)
=1 =1
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by an expression
log J

eC loglog J | (3.2)
This bound is uniform in n and the generators ¢; (only depends on d and J).

We prove in fact a stronger statement.

Let n and ¢;(0 < i < d), c,(0 < i < d') be arbitrary complex numbers. Then the

number of factorizations
d
n=(co+ Y kici)(co+ D kic}) with k;, k] € Zs k|, [kj| < J (3.3)

is bounded by (3.2).

Let us emphasize that only the number of factorizations is estimated, not the num-

ber of (k, k')-solutions of equation (3.3). We don’t assume the progression proper.
This statement is proven by induction on d 4+ d’. Thus we may assume
c1 = Cll = ]_7 (34)

n
cicg”

by working on

Let S denote the set of all solutions % = (k, k') = (k1,...,kq,k7,-..,k}) of (3.3)
with |k;|, |ki| < J. We fix a solution I = (I,1') = (l1,. .. ,la,l},... ,1’) in S. Let

dl

= [( X0+k1+z ki X:) (Yo+k, +Z kLY;) X0+£1+Z£ X)) (Yotly+>_ 11Y3)]
k,e$S 1=2 =2 =2
(3.5)
be the variety defined as common zero set of quadratic polynomials in (X, Xs, ..., X4, Yy, Yo, ...

Obviously, the number of defining polynomials may be reduced to (d+1)(d’+1) and
their coefficients are integers bounded by 2J2. From (3.3), (co, ¢, - -. ,C4,C}, Ch,-..Cly) €

V # ¢. Applying Lemma 2.14, we obtain a point (Bo, B2, --- , B4, Bo, Bas--- ,Bp) €V
16
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whose coordinates are good algebraic numbers. Thus, from definition of V', there is

some A\ such that
d d'
(Bo+kr+ > kiBi)(By+ K+ Y ki) =Aforall keS. (3.6)
i=2 i=2

Multiplying an appropriate rational integer (bounded by J€) to (3.6) permits us to
obtain good algebraic integers (Yo, Y1,---»Yds Y0, V1s--- > V) With y1,77 # 0 and p
such that

(o + Z kivi)(vo + Z kivi) = p for all k € S. (3.7)

Assume p # 0.

Consider the finite extension K = Q(v; (0 <i < d),v/(0 <i < d')), thus [K : Q] <
d+d + 2. According to Proposition 2.5, the number of factorizations of y in (3.7) is

lo
at most eC Ttz 7 . Thus we may specify %k € § by imposing

d
{ O+Ez1i’)’i:a€K (38)
70+ZZ kvi=d e K
for some fixed «, o/ (taken in a set of size at most eCritogT ).
Thus, since 71, 7] # 0, we obtain the relations
k — =% __ Zd i k
1 ’Yl i=2 o V2
kl _ a' _'Yo d ’Y, k:/ (39)
fyl - ZZ 2 ’71
Substituting (3.9) in (3.3) implies the following representation of the factors
d _
Co+ X i—1 kici = co "‘Cla - "‘Z? g kilci —e1y)
(3.10)

Co+zz 1 kici = o+ = 70"‘2@ 2 ki(c _0117,1)

reducing the dimensions d, d’ of the respective progressions to d — 1,d’ — 1.
g g
17



If in (3.7) p = 0, then either vy + ZZ Lkivi = 0 or o) + ZZ vk = 0. If
Yo + Z?:l k;vi = 0. Then

o Z Yig (3.11)
1=2 71

and the first factor in (3.3) becomes

d
co-}—Zkici:co—cl—-}—Zk cl— (3.12)
=1
which reduces the dimension d of the first progression to d — 1.

Thus, writing B(d + d’, J) for a uniform bound on the number of factorizations in

(3.3), we proved that
B(d+d,J) < eCara mstsss B(d + d' — 1, J). (3.13)

Consequently

J

B(d+d,J) < eCirawgtogy (3.14)

proving in particular Proposition 3.

4. Sums and Products along Graphs
In [E-S], the following generalization of the sum-product problem is considered. Let
A be a finite set of integers, |A| = N and G C A x A an undirected graph. We write
a ~ a' provided (a,a’) € G and define the following restricted sum and product set
G
A+ A={a+d|(a,d) e G} (4.1)
G
A x A={ad'|(a,a’) € G}. (4.2)
G G
We consider then again the question how large |A+A|+|A x A has to be. In particular,
the question was raised wether for alle >0 and 0 < ) < 1

G G l—e 1446
AL A+ A% Al > ces|GF2 i |G| > NIH. (4.3)

One may prove the following particular case
18



G
Proposition 4.4. (4.3) holds if we assume |G| > §N? and |[A + A| < CN, for
arbitrary (fized) constants § > 0,C < oo.

The proof uses the following result of Laczkovich and Rusza [L-R] (related to the

Balog-Szemerédi theorem and Gower’s improvement [G1]).

G
Proposition 4.5. [L-R]: Assume G C A x A satisfiers |G| > N2, |A+ A| < CN.
Then there is a subset A’ C A such that

A"+ A'| < C'(5,C)N (4.6)
(A" x A'YnG| > §(5,C)N? (4.7)

Proof of Proposition 4.4. Take A’ as in Proposition 4.5. Then, applying Theorem 1

log N

" G
F(O,C)N? < |(A' x ANNG|< > ra(m; A) < e mslos™ [A' x Al

G
neA’'x A’
and hence (4.3). (Note that |G| < N?).)

Remark. Using the result from [Ch1], it can also be shown that if |G| > dN? and
G G
|A % A| < CN, then |A £ A| > §(5,C)N2.

5. Proof of Propositions 5 and 6

First, since Freiman’s theorem remains valid in the generality of torsion-free Abelian

groups (cf. [Nal), the assumption (1.19) permit us to assume A C P where P is a

generalized d-dimensional arithmetic progression with cg, ¢y, ... ,cq € C and satisfying
d
[[7<cN. (5.1)
=1

Using the following (for Proposition 6)
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Fact. Let d(m) = |[{n1,nz) € S><S|n1—n2 =m}|. If d(m) < |S|¢ forallm € S C C,
then |S + S| > [S]?~<.

To obtain (1.20), (1.21), it therefore suffices to prove the following facts

1 1 o
{(e,y) € Px Plg+ o =} < eomifis (5:2)
and
log J
{z,y) € P x Plp(z) — ply) = €}| < e“tr ety (5:3)

where J = maxJ; and £ € C\{0} is arbitrary (the constants in (5.2), (5.3) depend
only on d and the degree r > 2 of the polynomial p).

Proof of (5.2).

Writing £, = = — %, Y1 =19y — %, the equation 1 + % = ¢ becomes

1
r1Yy1 = 5—2 (54)
where
1 < 1
.’131,y1E{CO—E+ZkiCi|kiEZ,|ki| SJZ}ZP—E (55)
=1

Thus, according to Proposition 3 and Remark 1, (5.4) has at most eclog)lgoél solutions.
Proof of (5.3).
Write
p(X):ZaSXS (as € C,a, # 0,7 > 2)
s=1
(we may clearly assume ag = 0).
Then

§=p(z)-ply) =(z—-y) [Z as(z® 2y 4+ )| =@ —y)z. (5.6)
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Thus
d
x—yEP—PC{ZkiCi|ki€Zand |kz|§2Jl} (57)

=1

and z € @), where () is the generalized arithmetic progression defined as follows

Q - { Z ks)t()a"' )tdgs7t07"' ytd ksat_ € Z’ and |ksaf| < (r + 1)T+1J’r}

where s,tg,...,tq are integers s.t.

and generators

Thus @ has at most r%+2 generators. Again from Proposition 3 and Remark 1, the

number of factorizations in (5.6) is at most

log
ecdﬂ' loglog J |

If we specify
r—y=w (5.8)

log J
where thus w is taken in a set of size < ¢ Tslos7 | we obtain the equation in X
p(X) —p(X —w) =¢&. (5.9)

Since degp > 2, p(X) — p(X —w) is not constant and there are at most 7 — 1 solutions

in z.
This proves (5.3).
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[B-L]

ool
8 & E e

[C-S-L.

[E2].
[E-N-R].

[E-R].
[E-S].

[F-H-R].

[G1].

[G2].
[He].

[K-L-T].
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