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Abstract. In this paper the following improvement on Freiman’s theorem on set
addition is obtained. (Theorem 1 and Theorem 2 in Section 1.)

Let A ⊂ Z be a finite set such that |A + A| < α|A|. Then A is contained in a

proper d-dimensional progression P , where d ≤ [α− 1] and log
|P |
|A| < Cα2(log α)3.

Earlier bounds involved exponential dependence in α in the second estimate. Our
argument combines Ruzsa’s method, which we improve in several places, as well as
Bilu’s proof of Freiman’s theorem.

A fundamental result in the theory of set addition is Freiman’s theorem. Let

A ⊂ Z be a finite set of integers with small sumset, thus assume

|A + A| < α|A| (0.1)

where

A + A = {x + y| x, y ∈ A} (0.2)

and | · | denotes the cardinality. The factor α should be thought of as a (pos-

sibly large) constant. Then Freiman’s theorem states that A is contained in a

d-dimensional progression P , where

d ≤ d(α) (0.3)

and
|P |
|A| ≤ C(α). (0.4)
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(Precise definitions will be given in the next section.) Although this statement is

very intuitive, there is no simple proof so far and it is one of the deep results in

additive number theory.

Freiman’s book [Fr] on the subject is not easy to read, which perhaps explains

why in earlier years the result did not get its deserved publicity. More recently,

two detailed proofs were given. One, due to Y. Bilu [Bi], is close to Freiman’s and

very geometric in spirit. The other, due to I. Ruzsa [Ru2], is less geometric and is

based also on results in graph theory, such as Plünnecke’s theorem. More details

of Ruzsa’s proof will be given later.

In (0.3), (0.4), we denoted by d(α) and C(α) constants that depend on α. In

most applications of Freiman’s theorem, it also matters to have some quantitative

understanding of this dependence. An optimal result would be to show linear

dependence of d(α) in α and exponential dependence of C(α) (trivial examples

mentioned in [Ru2] show that this would be optimal). This paper addresses that

issue and provides a substantial improvement of what was gotten so far from either

Bilu’s or Ruzsa’s approach.

But before getting into details, we mention very briefly some results and prob-

lems, subject of current research, that are intimately related to quantitative versions

of Freiman’s theorem.

(i) T. Gowers’ work on arithmetic progressions. [G1], [G2]

A celebrated theorem of Szemerédi [Sz], solving an old conjecture of Erdős and

Turán, roughly asserts that if S ⊂ Z+ is a set of positive upper density, i.e.

lim
N→∞

sup
|S ∩ [1, N ]|

N
> 0 (0.5)

then S contains arbitrarily long arithmetic progressions

a, a + b, a + 2b, . . . , a + jb. (0.6)

More precisely, there is a function δ(N, j) such that if T ⊂ [1, N ] and

|T | > δ(N, j)N (0.7)
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then T contains a progression (0.6) of size j. Moreover, for fixed j,

δ(N, j) → 0,when N →∞. (0.8)

Szemerédi’s proof was a tour de force in combinatorics, which only few people tried

to read and, certainly, extracting any quantitative information about the function

δ(N, j) from it looks hopeless.

Later a more conceptual approach based on ergodic theory was developed by

H. Furstenberg and his collaborators (see [Fu], [F-K-O], ...). This method applies

also in greater generality (see for instance [B-L] on polynomial versions of Sze-

merédi’s theorem) but has the drawback of providing no quantitative information

at all.

In recent work [G1], [G2], T. Gowers established a lower bound

δ(N, j) <
1

(log log N)c(j)
. (0.9)

Notice that already for j = 4, absolutely no estimate was known (the case j = 3 goes

back to K. Roth [Ro]). In fact, even for van der Waerden’s theorem on progression

[VdW], published in 1927, bounds expressed by primitively recursive functions were

only given a few years ago (see [Sh]). Gowers’ estimate (0.9) is therefore certainly

most spectacular. The key ingredient in this approach is a quantitative version

of Ruzsa’s proof of Freiman’s theorem. Further progress on this issue is therefore

of primary importance to the problematic of progressions in ‘thin’ sets of integers

(most notoriously, the set of prime numbers).

(ii) The dimension of measurable rings of real numbers.

Let S ⊂ R be a measurable set and a ring in the algebraic sense, i.e. S + S ⊂
S, S.S ⊂ S. An old conjecture of Erdős states that the Hausdorff-dimension of S

is either 0 or 1. It is known that if 1
2 < dim S ≤ 1, then dim S = 1 (see [Fal]). The

problem for 0 ≤ dim S ≤ 1
2 turns out to be much harder and is closely related to

the following conjecture of Erdős and Szemerédi [E-S].
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Conjecture. If A is a finite set of integers, then

|E2(A)| = |A|2−ε for all ε > 0 (0.10)

where

E2(A) = (A + A) ∪A.A. (0.11)

In [N-T], it is shown that if A1, A2 ⊂ Z are finite sets and

|A1| = |A2| = k ≥ 2, |A1 + A2| ≤ 3k − 4 (0.12)

then

|A1.A2| =
(

k

log k

)2

. (0.13)

Here one uses the fact that if (0.12) holds, then A1 and A2 are contained in a

1-dimensional arithmetic progression. This is a special case of Freiman’s general

theorem, where a strong conclusion holds.

Related to the general conjecture, the record at this point is (see [El])

|E2(A)| > c|A|5/4 (0.14)

obtained from the Szemerédi-Trotter theorem on line-incidences in the plane (see

[S-T]).

(iii) Relation of Freiman’s theorem on set-addition to the problem of the dimen-

sion of Besicovitch sets in Rd.

Recall that a measurable subset A ⊂ Rd, d = 2 is a Besicovitch set if it contains

a line segment in every direction. Such sets may be of zero-measure but it is likely

that always dim A = d (the maximal dimension). For d = 2, this is a known result,

but the question for d > 2 appears to be very hard (for d = 3, best result so far is

Hausdorff-dim A ≥ 5
2 , for Minkowski-dim A ≥ 5

2 + ε [K-L-T]). This is a problem

in geometric measure theory with major implications to Fourier Analysis in several

variables. It has been subject to intensive research during the last decade, a survey
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of which the reader may find in [W], [T] (relations of this problem and a number

of other conjectures to the Erdős ring problem are discussed in [K-T], [T]).

For application in other subjects such as group theory, coding theory and integer

programming, see [He], [Ru3], [C-Z], [Ch].

We now return to the content of the paper.

We will mostly follow Ruzsa’s method (providing the best bounds so far) and

improve several places in his argument. Basically there are two stages in Ruzsa’s

method. First, one generates a large progression P0 ⊂ 2A − 2A by embedding a

subset of A in ZN , finding a large progression in this image, then pushing it back

to Z. Next, enlarges P0 to get a progression P1 ⊃ A. The progression P0 is of

dimension

d0 ≤ d0(α) (0.15)

and
|A|
|P0| < C0(α). (0.16)

Rusza obtains d0(α) < α4 and log C0(α) bounded by some power of α. We improve

this here to

d0(α) . α log α (0.17)

log C0(α) . α(log α)2 (0.17′)

by refining the harmonic analysis part related to the circle method. We do feel

however that this statement is not optimal and it does not seem unreasonable to

conjecture bounds αε or even C log α in (0.17) (if true, this last statement would

have substantial new applications). Notice that the construction of the progression

P0 inside A is the hard part of the argument. Once P0 is obtained, one considers a

maximal set of elements a1, · · · , as ∈ A s.t. the sets ai + P0 are naturally disjoint.

Then

A ⊂ {a1, . . . , as}+ P0 − P0 (0.18)
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and we use {a1, . . . , as} as additional generators for a progression P ⊃ A, whose

dimension may be bounded by

d(α) ≤ s + dim P0 ≤ C0(α) + d0(α). (0.19)

This procedure introduces thus an exponential dependence of d(α) on α in (0.3)

because of the C0(α)-dependence. We present here a more economical procedure,

replacing (0.19) by

d(α) . α log C0(α) + d0(α) . α2(log α)2. (0.20)

As mentioned earlier

d(α) . α (0.21)

would be the optimal result here.

The progression P obtained is not necessarily proper (see next section for defini-

tion). In [Bi], it is shown how starting from Ruzsa’s result one may replace P by a

proper progression still satisfying (0.3), (0.4). Based on a variant of this argument,

we obtain Theorem 2 below (cf. Section 1) , where P ⊃ A is a proper progression

of dimension d ≤ [α− 1] and log |P |
|A| < Cα2(log α)3.

In this paper, ZN always denote Z/NZ.

The paper is organized as following,

In Section 1, we give preliminaries, and the precise statement of our theorems.

Also we summarize Ruzsa’s method.

In Section 2, we improve step 4 in Ruzsa’s method.

In Section 3, we prove a technical proposition which is used for the improvement

of step 4 in Ruzsa’s method.

In Section 4, we prove Theorem 2.

Acknowledgement The author would like to thank J. Bourgain for helpful

discussions, particularly for explaining Ruzsa’s method and various mathematics
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(in fact, most of the introduction) related to Freiman’s Theorem. The author would

also like to thank T. Gowers for pointing out some errors in an earlier version of

the paper.

SECTION 1. Preliminary and Ruzsa’s method.

We begin this section with recalling some definitions. For the readers’ conve-

nience, we write here various theorems from [Na] in the form we need. For proofs,

please see [Na].

A d-dimensional (generalized) arithmetic progression is a set of the form

P = P (q1, . . . , qd; `1, . . . , `d; a)

= {a + x1q1 + · · ·+ xdqd

∣∣ 0 ≤ xi < `i, i = 1, ..., d} (1.1)

The length of P is

`(P ) =
d∏

i=1

`i. (1.2)

Clearly |P | ≤ `(P ) (Here |P | is the cardinality of P.)

If |P | = `(P ), the progression is called proper.

Denote

A + B = {a + b| a ∈ A, b ∈ B} (1.3)

hA = A + · · ·+ A (h fold). (1.4)

Observe that if P in (1.1) is proper, then

|2P | ≤ 2d|P |. (1.5)

The above makes sense in any Abelian group but we restrict ourselves to Z in this

paper.

The following result is a structural theorem for subset of Z with “small” doubling

set.
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Freiman’s theorem. Let A ⊂ Z be a finite set and

|2A| ≤ α|A|. (1.6)

Then A is contained in a d-dimensional generalized arithmetic progression P, where

d ≤ d(α) (1.7)

`(P ) ≤ C(α)|A|. (1.8)

Our interest here goes to the quantitative aspects. Known bounds (obtained in

[Ru]) for d(α) in (1.7) (respectively, C(α) in (1.8)) are exponential (resp. double

exponential) in α. The role of α here is a possibly large constant. In this paper,

the following improvement will be obtained.

Theorem 1. Freiman’s theorem holds with d(α) and log C(α) bounded by Cα2(log α)2

(the letter C will stand for various absolute constants).

Theorem 2. Assume A ⊂ Z a finite set satisfying (1.6). Then A ⊂ P , where P

is a proper d-dimensional arithmetic progression, with

d ≤ [α− 1] (1.9)

log
|P |
|A| ≤ Cα2(log α)3. (1.10)

Remark 2.1. Compared with Theorem 1, (1,9) is an improvement of (1.7). More-

over, P is proper in Theorem 2.

Theorem 2 will be deduced from Theorem 1 using an additional argument from

[Bi].

These statements answer to a satisfactory extent the question raised at the end

of [Ru] (where it is conjectured that one may take d(α), log C(α) . α) and also in

[Na].
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To prove Theorem 1, we basically follow Ruzsa’s proof in its consecutive steps

and will bring an improvement in two of them. Notice that, although simpler than

Freiman’s, Ruzsa’s argument remains fairly nontrivial and combines techniques

and results from at least 3 different fields, graph theory (Plünnecke’s inequalities),

geometry of numbers (Minkowski’s second theorem) and harmonic analysis (Bo-

golyubov’s method).

Now, some preliminaries.

Recall that a “Freiman homomorphism of order h” (h ≥ 2) is a map

φ : A → B (A,B ⊂ Z)

such that

φ(a1) + · · ·+ φ(ah) = φ(a′1) + · · ·+ φ(a′h) (1.11)

if a1, · · · , ah, a′1, · · · , a′h ∈ A and a1 + · · ·+ ah = a′1 + · · · a′h.

If φ : A → B is a one-to-one correspondence and satisfies that

a1 + · · ·+ ah = a′1 + · · ·+ a′h

if and only if

φ(a1) + · · ·+ φ(an) = φ(a′1) + · · ·+ φ(a′h) (1.12)

then φ is called a Freiman isomorphism of order h.

We begin with two easy lemmas. Their proofs can be found in Nathanson’s book.

([Na], Theorems 8.5 and 8.4)

Lemma 1.1. If h = h′(k + `) and A,B are Freiman isomorphic of order h, then

kA− `A and kB − `B are Freiman isomorphic of order h′.

Lemma 1.2. Let P be a d-dimensional arithmetical progression and φ : P → Z a

Freiman homomorphism of order h ≥ 2. Then φ(P ) is d-dimensional progression.

If P is proper and φ a Freiman isomorphism, then φ(P ) is also proper.

The following is an important inequality due to Plünnecke.
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Proposition 1.3. ([Na], Theorem 7.8) Let A be a finite subset of an Abelian group

such that

|2A| = |A + A| ≤ α|A|.

Then, for all k, ` > 1

|kA− `A| ≤ αk+`|A|.

Now, we summarize the main steps in Ruzsa’s proof.

Step 1. ([Na], Theorem 8.9) Fix h ≥ 2 and denote D = hA − hA. Let N be the

smallest number such that

N > 4h|D|. (1.13)

Then there is a subset A1 ⊂ A,

|A1| > |A|
h

(1.14)

which is Freiman isomorphic of order h to a subset of ZN .

Denote by

φ : A1 → A′1 ⊂ ZN (1.15)

this h-Freiman isomorphism.

From (1.13) and (1.14) and Proposition 1.3, we may thus ensure that

N < 8h|D| ≤ 8hα2h|A| < 8h2α2h|A′1|. (1.16)

Next, one invokes the following fact.

Step 2. (Bogolyubov, [Na], Theorem 8.6)

Let R ⊂ ZN , with |R| = λN. Then for some integer d ≤ λ−2, there exist pairwise

distinct elements r1, . . . , rd ∈ ZN s.t.

B

(
r1, · · · , rd;

1
4

)
⊂ 2R− 2R (1.17)
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where

B(r1, . . . , rd, ε) : = {g ∈ ZN | ‖gri

N
‖ < ε, for i = 1, . . . , d} (1.18)

denotes the “Bohr neighborhood”.

Also, for x ∈ R, ‖x‖ = dist (x,Z).

Remark. The proof of this is a discrete version of the usual circle method (cf. also

[F-H-R], [R2]).

Step 3. ([Na], Theorem 8.7) The Bohr set B(r1, . . . , rd; ε) defined in (1.18) con-

tains a (proper) arithmetic progression P ⊂ ZN , dimP = d and

|P | > N(
ε

d
)d. (1.19)

Remark. The main tool involved in the proof is Minkowski’s second theorem on

the consecutive minima.

Applying Step 2 with R = A′1, λ
−1 ≤ 8h2α2h (cf. (1.16)), yields thus a Bohr-set

B(r1, . . . , rd; 1
4 ) ⊂ 2A′1 − 2A′1 with

d ≤ 64 h4 α4h. (1.20)

Application of Step 3 gives a d-dim progression P ′ ⊂ 2A′1 − 2A′1

|P ′| > N

(4d)d
>

|A|
h(4d)d

. (1.21)

By Lemma 1.1, the map φ in (1.15) induces an h
4 -Freiman isomorphism

ψ : 2A1 − 2A1 → 2A′1 − 2A′1 (1.22)

and, assuming h
4 ≥ 2, it follows from Lemma 1.2 that P0 : = ψ−1(P ′) is a (proper)

d-dimensional progression in 2A1 − 2A1 ⊂ 2A− 2A. Moreover, by (1.21)

|P0| > |A|
h(4d)d

. (1.23)
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Step 4. This is the final step to conclude the proof. The argument is the same as

that in [Chan]. Simply consider a maximal collection {a1, · · · , as} ⊂ A for which

the sets ai + P0 ⊂ Z are mutually disjoint. Hence, for each a ∈ A, we get

a + P0 ∩ ai + P0 6= φ, for some i.

Therefore,

a ∈ ai + P0 − P0, for some i = 1, . . . , s,

i.e.

a ∈ {a1, . . . , as}+ P0 − P0. (1.24)

The set in (1.24) is clearly contained in a progression P1 of dimension

dim P1 = s + dim P0 = s + d (1.25)

and

`(P1) ≤ 2s2d`(P0) = 2s+d|P0| ≤ 2s+d|2A− 2A| ≤ 2s+dα4|A|. (1.26)

It remains to bound s. Clearly, from (1.23) and Proposition 1.3,

s

h(4d)d
|A| < s|P0| = |P0 + {a1, . . . , as}| ≤ |2A− 2A + A| ≤ α5|A|.

Hence,

s < h(4d)dα5. (1.27)

Observe that (1.20) and (1.27) lead to exponential dependence of s and dim P1 in

α.

SECTION 2. Some improvement of Step 4.

In this section, we will improve Step 4 in Ruzsa’s argument. The improvement

is a rather trivial one, but permits already to replace the exponential α-dependence

of d(α) = dim P1 by a powerlike bound d(α) < αC . This bound will mainly depend

on d = dim P0 for the progression P0, where P0 is obtained above from Steps 2 and

3.

This section concerns what can be deduced from the following proposition, which

will be prove in Section 3..
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Proposition 2.1. Let A ⊂ Z be a finite set such that |2A| ≤ α|A|. Then 2A− 2A

contains a (proper) progression P with

d = dim P < C(log α)α (2.1)

and

|P | > |A|
8(10d2)d

. (2.2)

To improve step 4, we apply Proposition 2.1. This provides an arithmetic pro-

gression

P ⊂ 2A− 2A (2.3)

such that, from (2.1) and (2.2), we have

d = dim P . α(log α) (2.4)

|P | > |A|
8(10d2)d

(2.5)

Assuming that there exists a set S1 ⊂ A

|S1| = 10α (2.6)

such that

(P + x) ∩ (P + y) = ∅ for x 6= y in S1, (2.7)

we define

P (1) = P + S1 ⊂ 2A− 2A + A. (2.8)

Then it follows from (2.6) and (2.7), we have

|P (1)| = 10α|P |. (2.9)

Next, we assume again that there is a subset S2 ⊂ A,

|S2| = 10α (2.10)
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such that

(P (1) + x) ∩ (P (1) + y) = ∅, for x 6= y ∈ S2. (2.11)

Thus

P (2) = P (1) + S2 ⊂ 2A− 2A + A + A = 2A− 2A + 2A, (2.12)

and

|P (2)| = (10α)2|P |. (2.13)

If the process may be iterated t times, we obtain

P (t) = P + S1 + · · ·+ St ⊂ 2A− 2A + tA, (2.14)

and

|P (t)| = (10α)t|P |. (2.15)

It follows from (2.5), (2.15), (2.14) and Proposition 1.3, we have

(10α)t |A|
8(10d2)d

≤ |(2 + t)A− 2A| ≤ α4+t|A|. (2.16)

Hence,

10t ≤ 8α4(10d2)d (2.17)

Now, (2.4) gives

t . log α + d log d . α(log α)2. (2.18)

Therefore, after t steps (note that t is bounded in (2.18)), the set St can not be

defined, i.e., there is a set S′t ⊂ A, |S′t| < 10α, such that for each x ∈ A, there is

a ∈ S′t with

(x + P (t−1)) ∩ (a + P (t−1)) 6= ∅

hence

x ∈ a + P (t−1) − P (t−1) ⊂ S′t + P (t−1) − P (t−1). (2.19)

It follows, recalling (2.14), that

A ⊂ (P − P ) + (S1 − S1) + · · ·+ (St−1 − St−1) + S′t. (2.20)
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If P = P (q1, . . . , qd; `1, . . . , `d), (cf. (1.1)), then (2.20) is clearly contained in a

translate of the progression

P̄ = P (q1, . . . , qd, ∪
r<t

Sr ∪ S′t; 2`1, . . . , 2`d, 3, . . . , 3, 2) (2.21)

of dimension

d̄ = dim P̄ = d +
∑
r<t

|Sr|+ |S′t| < d + 10αt (2.22)

and

`(P̄ ) ≤ 2d`(P ) · 310αt = 2d310αt|P | ≤ 2d310αtα4|A|. (2.23)

(The last inequality is by (2.3) and Proposition 1.3.) Together with (2.4), (2.18),

this yields Freiman’s theorem with a d̄-dimensional progression P̄ satisfying

d̄ . α2(log α)2, `(P̄ ) < Cd̄|A|. (2.24)

Remark. The progression P̄ need not be proper.

SECTION 3. Proof of Proposition 2.1.

By theorem 8.9 in [Na] (in our Step 1, take h = 8), there is a subset A1 ⊂ A,

|A1| > |A|
8

(3.1)

which is 8-isomorphic to a subset R of ZN , with N prime and

N < 40|8A− 8A| < 40α16|A|. (3.2)

Denote by φ : A1 → R this 8-isomorphism. To prove the Proposition, it clearly

suffices to produce a d-dimensional progression P in 2R−2R satisfying (2.1), (2.2).

We will begin with some definitions and standard facts.

Let f, g : ZN → R be functions. We define the following

1. f̂(m) : = 1
N

∑
0≤k<N f(k)e−2πi km

N
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2. f ∗ g(x) : = 1
N

∑
0≤y<N f(x− y)g(y)

3. f ′(x) : = f(−x)

Then the following facts are easy to verify.

a. f(x) =
∑

0≤m<N f̂(m)e2πi mx
N

b. f̂ ∗ g(m) = f̂(m)ĝ(m)

c. f ∗ f ′(x) =
∑

0≤m<N |f̂(m)|2e2πi mx
N

d.
∑

0≤m<N |f̂(m)|2 = 1
N

∑
0≤m<N |f(m)|2

Let f = χR be the indicator function of the set R, i.e.

χR = 1, if x ∈ R, 0 otherwise.

Then

e. Supp(f ∗ f ′) ⊂ R−R, and Supp(f ∗ f) ⊂ 2R

f. Supp(f ∗ f ′ ∗ f ∗ f ′) ⊂ 2R− 2R

g. f ∗ f ′ ∗ f ∗ f ′(x) =
∑

0≤m<N |f̂(m)|4e2πi mx
N

We also recall that the inner product of f and g is

4. 〈f, g〉 : = 1
N

∑
0≤x<N f(x)ḡ(x).

and we have the Lp-norm

5. ‖f‖p : = ( 1
N

∑
0≤x<N |f(x)|p) 1

p

We call a set D = {rj}j ⊂ ZN dissociated, if

∑
εjrj = 0 with εj ∈ {−1, 0, 1}, then εj = 0 for all j. (3.3)

h. (Rudin) If D is dissociated, then

‖
∑

n∈D

ane2πi nx
N ‖p ≤ C

√
p(

∑

n∈D

|an|2) 1
2 .
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Lemma 3.1. Let R ⊂ ZN with |R| = δN and let f = χR be the indicator function

of R. Let ρ be a constant. We define Γ: = {0 ≤ m < N
∣∣|f̂(m)| > ρδ} and let Λ

be a maximal dissociated subset of Γ. Then |Λ| < ρ−2 log 1
δ .

Proof. Let

g(x) =
∑

n∈Λ

ane2πi nx
N , (3.4)

where

an =
f̂(n)√∑

m∈Λ |f̂(m)|2
. (3.5)

Let

p′ =
p

p− 1
. (3.6)

Then Fact a, (3.4) and (3.5) give

‖f‖p′‖g‖p ≥ |〈f, g〉| = |
∑

n∈Λ

ānf̂(n)| =
∑

n∈Λ |f̂(n)|2√∑
m∈Λ |f̂(m)|2

=
√∑

n∈Λ

|f̂(n)|2 ≥ ρδ
√
|Λ|. (3.7)

The last inequality is from the definition of Γ which contains Λ.

On the other hand,

‖f‖ p
p−1

= (
1
N

∑

R

1)
p−1

p = δ
p−1

p (3.8)

and

‖g‖p ≤ C
√

p. (3.9)

The last inequality follows from Fact h (Rudin).

Putting these together, we have

ρδ
√
|Λ| ≤ C

√
pδ

p−1
p . (3.10)

Now, choosing p = log 1
δ , we have the bound claimed.
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Lemma 3.2. Let R ⊂ ZN with |R| = δN and f = χR, the indicator function of

R. Let ρ be a constant. We define Γ: = {0 ≤ m < N
∣∣|f̂(m)| > ρδ}. Denote

B = B(Γ, ε) = {x
∣∣‖mx

N ‖ < ε, for every m ∈ Γ}, where ε < 1
4 .

If ρ2δ3 < 1−2πε
2−2πε

∑
0≤m<N |f̂(m)|4, then B ⊂ 2R− 2R.

Proof. First, we note that from trignometry, for every x ∈ B, and for every m ∈ Γ

|1− e2πi mx
N | < 2πε. (3.11)

To show B ⊂ 2R− 2R, by Fact f, it suffices to show that

B ⊂ Supp(f ∗ f ′ ∗ f ∗ f ′). (3.12)

According to Fact g, it suffices to show
∑

0≤m<N

|f̂(m)|4e2πi mx
N 6= 0, for all x ∈ B. (3.13)

Write
∑
m

|f̂(m)|4e2πi mx
N =

∑

m∈Γ

|f̂(m)|4e2πi mx
N +

∑

m 6∈Γ

|f̂(m)|4e2πi mx
N , (3.14)

The idea is to show
∣∣ ∑

m∈Γ |f̂(m)|4e2πi mx
N

∣∣ is big, while
∣∣ ∑

m 6∈Γ |f̂(m)|4e2πi mx
N

∣∣
is small.

∣∣∣∣
∣∣ ∑

m∈Γ

|f̂(m)|4e2πi mx
N

∣∣−
∑

m∈Γ

|f̂(m)|4
∣∣∣∣ ≤

∣∣ ∑

m∈Γ

|f̂(m)|4e2πi mx
N −

∑

m∈Γ

|f̂(m)|4
∣∣

=
∣∣ ∑

m∈Γ

|f̂(m)|4(e2πi mx
N − 1)

∣∣

≤
∑

m∈Γ

|f̂(m)|4|e2πi mx
N − 1|

< 2πε
∑

m∈Γ

|f̂(m)|4. (3.15)

Therefore,

∣∣ ∑

m∈Γ

|f̂(m)|4e2πi mx
N

∣∣ > (1− 2πε)
∑

m∈Γ

|f̂(m)|4

= (1− 2πε)(
∑
m

|f̂(m)|4 −
∑

m 6∈Γ

|f̂(m)|4).
(3.16)

18



On the other hand,

∣∣ ∑

m 6∈Γ

|f̂(m)|4e2πi mx
N

∣∣ ≤
∑

m 6∈Γ

|f̂(m)|4. (3.17)

The definition of Γ and Fact d give

∑

m 6∈Γ

|f̂(m)|4 ≤ ρ2δ2
∑
m

|f̂(m)|2 = ρ2δ3. (3.18)

Putting (3.16), (3.17) and (3.18) together, we have

∣∣ ∑
m

|f̂(m)|4e2πi mx
N

∣∣ ≥
∣∣ ∑

m∈Γ

|f̂(m)|4e2πi mx
N

∣∣−
∣∣ ∑

m 6∈Γ

|f̂(m)|4e2πi mx
N

∣∣

> (1− 2πε)(
∑
m

|f̂(m)|4 −
∑

m 6∈Γ

|f̂(m)|4)−
∑

m 6∈Γ

|f̂(m)|4

= (1− 2πε)
∑
m

|f̂(m)|4 − (2− 2πε)
∑

m 6∈Γ

|f̂(m)|4

≥ (1− 2πε)
∑
m

|f̂(m)|4 − (2− 2πε)ρ2δ3. (3.19)

which is positive by our assumption.

Lemma 3.3. Let R ⊂ ZN with |R| = δN be as in inequalities (3.1) and (3.2), and

let f = χR be the indicator function of R. Then

∑

0≤m<N

|f̂(m)|4 >
δ3

8α
. (3.20)

Proof. We denote

f (2) : = f ∗ f, (3.21)

and

S : = Suppf (2). (3.22)

First, we note that Fact e, Proposition 1.3, and (3.1) give

|S| ≤ |2R| = |2A1| ≤ |2A| ≤ α|A| < 8α|R| = 8αδN. (3.23)
19



Next, Facts b and d give

∑

0≤m<N

|f̂(m)|4 =
∑

0≤m<N

|f̂ (2)(m)|2 =
1
N

∑

0≤m<N

|f (2)(m)|2 = ‖f (2)‖22.
(3.24)

Now, Hölder’s inequality and Definitions 2 and 4 give

δ2 = ‖f (2)‖1 ≤ ‖f (2)‖2‖χS‖2 = ‖f (2)‖2
√
|S|
N

. (3.25)

Putting (3.23), (3.24), (3.25) together, we have (3.20).

In the following Lemma, we use the notation defined in either (1.18) or Lemma

3.2 for the Bohr neighborhood.

Lemma 3.4. Let Γ be a subset of ZN , and let Λ ⊂ Γ be a maximal dissociated

subset with |Λ| = d. Then B(Λ, ε
d ) ⊂ B(Γ, ε).

Proof. First, we notice that every m ∈ Γ can be represented as

m =
∑

mj∈Λ

γjmj , where γj ∈ {0, 1,−1}. (3.26)

Let x ∈ B(Λ, ε
d ). Then

∥∥∥∥
mx

N

∥∥∥∥ ≤
∑

mj∈Λ

|γj |
∥∥∥∥

mjx

N

∥∥∥∥ ≤
∑

mj∈Λ

|γj | ε
d
≤ ε, (3.27)

i.e. x ∈ B(Γ, ε)

Proof of Proposition 2.1. To apply Lemma 3.2, we choose ρ such that

102α < ρ−2 < 103α, (3.28)

and we choose

ε =
1
10

. (3.29)

Now, (3.28) and (3.29) imply

ρ2 <
1

100α
< (

1− 2πε

2− 2πε
)

1
8α

. (3.30)
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Lemma 3.3, and (3.30) imply that the hypothesis of Lemma 3.2 holds.

Inequalities (3.1) and (3.2) give

δ >
1

320α16
. (3.31)

Lemma 3.1, (3.28), and (3.31) give the bound (2.1) on d.

Now use Lemma 3.4 and Step 3. Substitute (3.29) in (1.19), we have (2.2), the

bound on |P |.

Remark. Compared with the ‘usual’ argument presented in [Na] (Theorem 8.6),

the method used above give a significant improvement of the dimension bound, i.e.

d . α(log α). It is not unreasonable however to conjecture estimates in Proposition

2.1 of the form d < (log α)C (in this respect, compare with comments in [F-H-R]).

If true, one would obtain estimates

d(α), log C(α) < α(log α)C′

in Freiman’s theorem (which would be essentially optimal).

SECTION 4. Proof of Theorem 2.

Starting from Ruzsa’s result [Ru], it is indicated in [Bi] how to pass to a proper

progression of dimension ≤ [α − 1]. Following this and the estimates in [Bi], the

resulting estimate on |P | becomes

log
|P |
|A| < α3(log α). (4.1)

In order to preserve the bound (1.10), we will proceed a bit more carefully. Here, we

adopt terminology and notations from [Bi] and highlight a number of key estimates.

For further details, the reader will have to consult [Bi].

First, we redefine a ‘triple’ (m,B, ϕ). This means that

m ∈ Z+ (4.2)
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B ⊂ Rm is a convex symmetric body such that dim(SpanB ∩ Zm) = m (4.3)

ϕ : Zm → Z is a group homomorphism. (4.4)

A m-dimensional progression P is the image of a parallelepiped in Zm under the

obvious ϕ. The property that ϕ being one- to-one implies that P is proper. To

control the dimension of the progression, we use the argument in Section 9.3 of [Bi].

However, this argument only implies that A is in the image of a symmetric convex

body. We use the proof of Theorem 1.2 (Section 3) in [Bi] for the construction of

the parallelepiped.

We start with the progression

P1 = P (q1, . . . , qd; `1, . . . , `d)

obtained in Theorem 1. We let m1 = d and let ϕ1 : Zm1 → Z be the homomorphism

defined by ϕ(ei) = qi. Let B1 be the box
∏d

i=1[−`i + 1, `i − 1]. Thus

ϕ1(B1 ∩ Zm1) ⊃ A (4.5)

Volm1(B1) ≤ 2d`(P ) (4.6)

hence

m1 and log
Vol (B1)
|A| < Cα2(log α)2. (4.7)

First, we use the construction in the proof of Proposition 9.3 in Section 9.2 of [Bi]

by letting T = 2 and we obtain a triple (m2, B2, ϕ2) satisfying

m2 ≤ m1 (4.8)

ϕ2(B2 ∩ Zm2) ⊃ A. (4.9)

The restriction

ϕ2

∣∣
TB2∩Zm2

is one-to-one , (4.10)

and

Volm2(B2) ≤ (2m1T )m1−m2Volm1(B1). (4.11)
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Hence, from (4.7),

log
Vol (B2)
|A| ≤ Cd log α + log

Vol (B1)
|A| < Cα2(log α)3. (4.12)

Next, follow [Bi], Section 9.3 and replace (m2, B2, ϕ2) by (m′, B′, ϕ′) satisfying in

particular

m′ ≤ [α− 1] (4.13)

ϕ′(B′ ∩ Zm′
) ⊃ A (4.14)

Volm′(B′) ≤ m2!
(

m2

2

)m2

Volm2(B2). (4.15)

Hence, from (4.12),

log
Vol B′

|A| ≤ Cα2(log α)3. (4.16)

At this stage, what we gain is the estimate (4.13) on the dimension. Next, we need

to replace B2 by a parallelepiped. We first apply the proof of Proposition 9.3 in

[Bi] again with (m1, B1, ϕ1) replaced by (m′, B′, ϕ′) and taking

T = 2α([α]!)2. (4.17)

We get a triple (m′′, B′′, ϕ′′) such that

m′′ ≤ m′ ≤ [α− 1] (4.18)

ϕ′′(B′′ ∩ Zm′′
) ⊃ A. (4.19)

The restriction ϕ′′
∣∣
TB′′∩Zm′′ is one-to one (4.20)

Volm′′(B′′) ≤ (2m′T )m′−m′′
Volm′(B′). (4.21)

Hence, from (4.16), (4.17)

log
Vol B′′

|A| ≤ Cα2 log α + Cα2(log α)3 < Cα2(log α)3. (4.22)

To replace the body B by a parallelepiped, we use the argument in Section 3 of

[Bi]. This finally yields a proper m′′-dim progression A ⊂ P satisfying

|P | ≤ (m′′!)
(

3
2
21−m′′

(m′′!)2
)m′′

Vol B′′ (4.23)

thus

log
|P |
|A| ≤ Cα2(log α)3. (4.24)

This proves Theorem 2.
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