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Abstract. Let A be a set of N matrices. Let g(A): = |A + A| + |A · A|, where
A+A = {a1 +a2 | ai ∈ A} and A ·A = {a1a2 | ai ∈ A} are the sumset and productset.
We prove that if the determinant of the difference of any two distinct matrices in A is
nonzero, then g(A) cannot be bounded below by cN for any constant c. We also prove
that if A is a set of d× d symmetric matrices, then there exists ε = ε(d) > 0 such that
g(A) > N1+ε. For the first result, we use the bound on the number of factorizations
in a generalized progression. For the symmetric case, we use a technical proposition
which provides an affine space V containing a large subset E of A with the property
that if an algebraic property holds for a large subset of E, then it holds for V . Then
we show that the system {a2: a ∈ V } is commutative, allowing us to decompose Rd as
eigenspaces simultaneously, so we can finish the proof with induction and a variant of
Erdős-Szemerédi argument.

Introduction.

Let A be a finite subset of a ring, and let |A| denote the cardinality of the set A.
The sum set and the product set of A are

A + A : = {a1 + a2 | ai ∈ A},
A ·A : = {a1a2 | ai ∈ A}.

The study of the sizes of the sum and product sets started when Erdős and Szemerédi
[ES] made their well-known conjecture for A ⊂ Z that there exists ε > 0 such that for
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|A| sufficiently large,
|A + A|+ |A ·A| > |A|2−ε.

Recently a lot of work has been done in this subject. Cf [BC], [BKT], [C1]-[C5], [E],
[ER], [ES], [F], [N1], [N2], [NT], [S]. All of these papers are about A being a subset
of a division ring. In this paper we study the case when A is a set of matrices. The
interesting point about matrices is that one can easily construct an arbitrarily large
set with both sum set and product set ”small”. In fact, |A + A| = |A · A| = 2|A| − 1,
(see Remark 0.2.) We use the following

notations.

Mat(d)= {d× d matrices over R} and

Sym(d) = {d× d symmetric matrices over R}.

We prove the following two theorems.

Theorem A. Let A ⊂ Mat(d) and |A| = N . If

det(a− a′) 6= 0, ∀ a 6= a′ ∈ A, (0.1)

then
|A + A|+ |A ·A| > φ(N)N,

where φ(N) →∞ as N →∞.

Remark 0.1. Our hypothesis is vacuous for the case when A is contained in a division
ring, because in that case, a 6= a′ if and only if a− a′ is invertible.

Theorem B. For all d, there is ε = ε(d) > 0 such that if A ⊂ Sym(d) and |A| = N ,
then

|A + A|+ |A ·A| > N1+ε.

Remark 0.2. The following set gives a counterexample for the sum-product conjecture
for subsets of SL(d):= {a : det a = 1}. Let

A =
{ (

1 k
0 1

)
: k ∈ [1, N ]

}
.

It is easy to see that |A| = N , |A + A| = 2N − 1 and |A ·A| = 2N − 1.

Roughly speaking, we prove Theorem A by assuming both |A + A| and |A · A| are
bounded by K|A| with a bounded constant K. We use a bound (cf [C2]) on the number
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of factorizations in a generalized progression to show that there is a large subset A0

of A consisting of matrices with the same determinant. Then we use the fundamental
theorem of algebra (see Lemma 1.2 and Proposition 1.3.) to show that there is an
affine subspace V0 containing a large subset A1 of A0 and that all matrices in V0 have
the same determinant. Then it is easy to see that the differences of matrices in A1 all
have determinant 0, contradicting to our hypothesis.

To prove Theorem B, we use a technical proposition (cf Proposition 2.1) under the
assumption that the sumset of A ⊂ Rd×d (matrix multiplication is not involved here.)
is not big. The proposition provides an affine set V containing a subset E of A such
that if an algebraic set Γ has sufficiently small degree and sufficiently large intersection
with E, then V ⊂ Γ. Note that conditions on the rank of matrices and identities of
matrices are all algebraic properties. Proposition 2.1 says that if a large subset of A has
a certain algebraic property, then this affine subspace V has the same property. Using
Proposition 2.1, we prove that {a2: a ∈ V } forms a commutative multiplicative system.
Therefore, we use this system to decompose Rd as eigen-subspaces, use regularization
and use induction to finish the proof. For the initial step of the induction, we use a
variant of Erdős-Szemerédi argument ([C4]). We also construct an example of a linear
space Vj ⊂ Sym(d) with dim(Vj) = j, for any j and with a2 ∈ R1 for any a ∈ Vj . (See
Remark 5.2.)

The paper is organized as follows. In Section 1, we prove Theorem A. In Section
2, we prove Proposition 2.1 which allows us to find a large subset of A with nice
properties. In Section 3, we give the definition of a good pair (A, V ) and prove that
the cancellation law for multiplication holds for a good A. In Section 4, we show that
{a2: a ∈ V } is a commutative multiplicative system.

In section 5, we give the proof of Theorem B.

Notation.

det(A) = {det a : a ∈ A}, for A ⊂ Mat(d).

p(S) = {p(s1, · · · , sm): (s1, · · · , sm) ∈ S}, for S ⊂ Rm and polynomial p(x1, · · · , xm).

[1, J ] = {1, 2, · · · , J}
logk M = log log · · · log M, k-fold iterated logarithm function

d(x) ¿ f(x) means f(x) ≥ 0 and |d(x)| ≤ cf(x) for some constant c.

Section 1.

First, we will show that if a polynomial in m variables vanishes at a large subset
of a generalized progression in Rm, then it vanishes at an affine space of Rm. (See
Proposition 1.3.)
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We start with a lattice version of the fundamental theorem of algebra for multivari-
able polynomials.

Lemma 1.1. Let S ⊂ [1, J1]× · · · × [1, Jk], with

|S| > 1
c
J1 · · · Jk, (1.1)

and let p(x1, · · · , xk) be a polynomial of degree D, with

D <
Ji

4k−1c
,∀i. (1.2)

If p(S) = {0}, then p ≡ 0.

Proof. Let Sj1,··· ,jk−1 = {jk : (j1, · · · , jk) ∈ S} be the fiber of S over (j1, · · · , jk−1).

Define

T =
{

(j1, · · · , jk−1) : |Sj1,··· ,jk−1 | >
Jk

2c

}
. (1.3)

A straightforward averaging argument implies that

|T | > J1 · · · Jk−1

2c
.

We write

p(x1, · · · , xk) =
d∑

i=0

pi(x1, · · · , xk−1)xi
k.

For any (j1, · · · , jk−1) ∈ T , p(j1, · · · , jk−1, xk) is a polynomial in xk, of degree ≤ D,
vanishing at the set Sj1,··· ,jk−1 of size > Jk

2c > D. So its coefficients pi(j1, · · · , jk−1) = 0,
i.e. pi(T ) = {0}. Applying induction on

∑
p2

i (which has degree ≤ 2D < Ji

4k−22c
), we

have pi ≡ 0, ∀i. Hence p ≡ 0. ¤

The next lemma is the lattice version of Proposition 1.3, our main technical tool to
prove Theorem A.

Lemma 1.2. Let S ⊂ [1, J1]× · · · × [1, Jk], with

|S| > 1
cNε

J1 · · · Jk,
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and let p(x1, · · · , xk) be a polynomial of degree D, such that p(S) = {0}. Then there
is an affine space W ⊂ Rk such that p(W ) = {0} and

|W ∩ S| > J1 · · · Jk

(cNε)kDk−12k(k−1)
.

Proof. If 4k−1(cNε)D < Ji, for all i, then the lemma follows from Lemma 1.1. So we
may assume

4k−1(cNε)D ≥ Jk. (1.4)

Let Sjk
= {(j1, · · · , jk−1): (j1, · · · , jk) ∈ S}. We fix jk ∈ [1, Jk] such that

|Sjk
| ≥ |S|

Jk
>

1
cNε

J1 · · · Jk−1.

The polynomial p̃ = p(x1, · · · , xk−1, jk) vanishes at Sjk
. Induction implies that there

is an affine subspace W̃ ⊂ Rk−1 such that p̃(W̃ ) = {0} and

|W̃ ∩ Sjk
| > J1 · · · Jk−1

(cNε)k−1Dk−22(k−1)(k−2)
. (1.5)

Let W = W̃ × {jk}. Then

|W ∩ S| ≥ |W̃ ∩ Sjk
| > J1 · · · Jk−1

(cNε)k−1Dk−22(k−1)(k−2)

Jk

4k−1(cNε)D
.

The last inequality follows from (1.4) and (1.5). ¤

Let b1, · · · , bk ∈ Rm be independent vectors. We have the following

Proposition 1.3. Let A0 ⊂ P = {j1b1 + · · · jkbk : ji ∈ [1, Ji]}, where N ≤ ∏k
i=1 Ji ≤

c1N for some N ∈ N, and |A0| > 1
c2

N1−ε for some ε ≥ 0. Let F (x1, · · · , xm) ∈
R[x1, · · · , xm] be a polynomial of degree D and F (A0) = {0}. Then there is an affine
space V0 ⊂ Rm such that F (V0) = {0} and

|V0 ∩A0| > 1
(c1c2D2k−1)kD−1

N1−kε.

In particular, if ε = 0, then |V0 ∩A0| > 1
(c1c2D2k−1)kD−1 N.
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Proof. Let

S = {(j1, · · · , jk) ∈ [1, J1]× · · · × [1, Jk] : j1b1 + · · ·+ jkbk ∈ A0}.
Then

|S| = |A0|.
Applying Lemma 1.2, with c = c1c2 and p(j1, · · · , jk) = F (j1b1 + · · ·+ jkbk), we have
W ⊂ Rk, p(W ) = {0} and |W ∩ S| > J1···Jk

(cNε)kDk−12k(k−1) . Let V0 be the corresponding
set in Rm of W . Then V0 is affine, F (V0) = {0} and

|V0 ∩A0| = |W ∩ S| > N

(cNεD2k−1)kD−1
=

1
(c1c2D2k−1)kD−1

N1−kε. ¤

The next two theorems will be used in the proof of Proposition 1.5.

Freiman-Ruzsa Thoerem. [Bi], [R] Let A be a set of N elements contained in a
torsion-free abelian group G with |A+A| < KN . Then A is contained in a generalized
progression in G, i.e. there are b1, · · · , br ∈ G such that

A ⊂ P = {j1b1 + · · ·+ jrbr : ji ∈ [1, Ji]}, (1.6)

r ≤ K and
∏

Ji = |P | < c(K)N , where c(K) is a constant depending on K.

Factorization Theorem. [C2] Let P be a generalized progression as in (1.6), and
let J = max Ji. Then ∀n ∈ C \ {0}, the number of factorizations of n with factors in
P is < J

c
log2 J , where c = c(r, J) is a constant depending on r, J.

Lemma 1.4. Let A ⊂ Mat(d) with |A| = N .

If
|A + A| < KN,

then det(A) is contained in a generalized progression Q with dim Q ≤ (
d+K−1

d

)
and

|Q| ≤ Nd(d+K−1
d ).

Proof. Freiman-Ruzsa Theorem implies that there are b1, · · · , br ∈ Mat(d) such that
A is contained in a generalized progression P generated by b1, · · · , br, with r and |P |
bounded. Let bi[k,j] be the (k,j)-entry of matrix bi. Then

det
( r∑

i=1

jibi

)
=

∑

π∈Sd

(−1)σ(π)
d∏

k=1

( ∑

i

jibi

)
[k,π(k)]

=
∑

π∈Sd

(−1)σ(π)
d∏

k=1

( ∑

i

jibi[k,π(k)]

)
,
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where Sd is the symmetric group on d letters.

We view det(
∑r

i=1 jibi) as a homogeneous polynomial in j1 · · · jr,

det
( r∑

i=1

jibi

)
=

∑

α1+···+αr=d

jα1
1 · · · jαr

r γα,

where γα is a linear combination of the products of d of the entries bi[k,π(k)]. Therefore,
det(A) is contained in the progression Q generated by the γα’s, and dim Q ≤ (

d+K−1
d

)
,

|Q| ≤ Nd(d+K−1
d ) ¤

Proposition 1.5. Let A ⊂ GL(d) with |A| = N .

If
|A + A| < KN (1.7)

and
|A ·A| < KN, (1.8)

then there is β ∈ R and A0 ⊂ A with |A0| > 1
K N1− c

log2 N , such that det(A0) = {β}.

Proof. Inequality (1.8) implies that there is b ∈ A×A such that

|{(a1, a2) ∈ A×A : b = a1a2}| > N

K
.

We consider the composite map A × A → det(A) × det(A) → det(A) · det(A) given
by (a1, a2) → (det a1, det a2) → det a1 det a2, and look at the fiber at β: = det b ∈
det(A) · det(A) . The lemma follows from applying the Factorization Theorem on the
generalized progression Q gotten in Lemma 1.4 with n = det a for any a ∈ A.

Proposition 1.6. Let A0 ⊂ Mat(d). Suppose A0 is contained in a generalized pro-
gression as in (1.6) and |A0| > 1

c2
N1−ε for some ε ≥ 0. If det(A0) = {ρ}, then there is

a linear space V ⊂ Mat(d), and A1 ⊂ A0 with |A1| > 1
cN1−rε, such that det(V ) = {0}

and a− a′ ∈ V for a, a′ ∈ A1. Here c = c(c(K), c2, d, r).

Proof. Let F = det−β. i.e.

F (x11, · · · , xdd) =
∑

π∈Sd

(−1)σ(π)x1,π(1) · · ·xd,π(d) − β.

Then Lemma 1.3 applied to F gives the existence of V0 ⊂ Mat(d), such that det(V0) =
{β} and |V0 ∩A0| > 1

cN1−rε, where c = c(c(K), c2, r, d).
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Write V0 = a0 + V , where V is a linear space. Then ∀ a ∈ V and ∀ t ∈ R,
det(a0 + ta) = β. Therefore, det a = 0. i.e. det(V ) = {0}.

Let A1 = V0 ∩A0. Then |A1| & N1−rε and a− a′ ∈ V, ∀ a, a′ ∈ A1. ¤
Proof of Theorem A. We assume that there is a constant K such that (1.7) and
(1.8) hold. Freiman-Ruzsa Theorem provides the existence of a generalized progression
P as in (1.6) which contains any subset of A. Then we use Proposition 1.6 to get a
contradiction to hypothesis (0.1).

Case 1. |A ∩GL(d)| > N
2 .

We apply Propositions 1.5 and 1.6 to Ã = A ∩GL(d) and note that |2Ã| < 2K|Ã|
and |Ã2| < 2K|Ã|.
Case 2. |A ∩GL(d)| ≤ N

2 .

We let
A0 = {a ∈ A: det a = 0}.

Then
|A0| > N

2
,

and we apply Proposition 1.6 directly on A0. ¤

Our goal in the rest of the paper is to prove Theorem B.

Section 2.

In this section we will prove the following technical proposition.

Proposition 2.1. Let A ⊂ Rm be a finite set, |A| = N and

|A + A| < KN (2.1)

with
log K ¿ log N.

Then there is E ⊂ A and an affine space V ⊂ Rm such that

(i) |E|
|A| = δ > K−c, where c = c(m)

(ii) E ⊂ V

(iii) If Γ ⊂ Rm is algebraic of degree < m10 and

|Γ ∩ E| > δ10K−10|E|, (2.2)
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then
V ⊂ Γ.

Before we give the proof, we will recall some definitions and facts about algebraic
sets. A set Γ ⊂ Rm is algebraic, if it is the common zero sets of a collection of
polynomials. We say Γ is irreducible, if it cannot be expressed as the union Γ = Γ1∪Γ2

of two proper algebraic subsets. We define the dimension of Γ to be the maximum of
all integers n such that there exists a chain Γ0 ⊂ Γ1 ⊂ . . . ⊂ Γn of distinct irreducible
algebraic subsets of Γ. The degree of Γ is the number of points of intersection of Γ
with a sufficiently general linear space L of dimension m−dimΓ. An irreducible linear
space either is contained in Γ or intersects Γ at no more than deg Γ many points.

Proof of Proposition 2.1. There are two steps in the proof. Assumption (2.1) will
only be used in the second step.

Step 1. We start by proving a weaker version of the theorem, in which an algebraic
set W is obtained instead of an affine set V . An additional argument using the small
doubling property will allow us to deduce that W can in fact be taken to be affine.
Therefore, we will first construct E ⊂ A satisfying (i) and an algebraic set W ⊃ E (cf
(ii)) such that

(iii′) deg W < m10 and W ⊂ Γ for any algebraic set Γ ⊂ Rm, with deg Γ < m10,
satisfying (2.2).

This construction is straightforward and by induction.

For i = 0, we take E0 = A,W0 = Rm. Hence δ0 = 1. If (iii′) does not hold, there is
a Γ0 algebraic such that

deg Γ0 < m10, (2.3)

|Γ0 ∩ E0| > δ10
0 K−10|E0| , (2.4)

and
W0 6⊂ Γ0. (2.5)

Note the fact that W0 = Rm and (2.5) imply

dimΓ0 < m. (2.6)

Let W1 be an irreducible component of Γ0 = Γ0 ∩W0 such that

|W1 ∩ E0| ≥ 1
deg Γ0 ∩W0

|(Γ0 ∩W0) ∩ E0|

>
1

deg Γ0
K−10|E0|

> m−10K−10|E0|. (2.7)
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The last two inequalities follow from (2.3) and (2.4).

Take E1 = W1 ∩ E0. Inequalities (2.6) and (2.7) give m1: = dim W1 ≤ dimΓ0 < m,
and δ1: =

|E1|
N > m−10K−10. If (iii′) fails again, there is Γ1 6⊃ W1, with deg Γ1 < m10

so that
|Γ1 ∩ E1| > δ10

1 K−10|E1|.

Similarly, let W2 be an irreducible component of Γ1 ∩W1 such that

|W2 ∩ E1| ≥ 1
deg(Γ1 ∩W1)

|(Γ1 ∩W1) ∩ E1|

>
1

deg Γ1
|Γ1 ∩ E1|

> m−10δ10
1 K−10|E1|. (2.7)

The fact that W2 ⊂ Γ1 ∩W1 6= W1 implies

m2: = dim W2 < dim W1 = m1.

Take E2 = W2 ∩ E1. Then

δ2: =
|E2|
N

=
|E2|
|E1| δ1 > m−10 δ11

1 K−10.

The process terminates after s < m steps, and we obtain E = Es,W = Ws, such
that W ⊂ Γ for all Γ algebraic,with deg Γ < m10, satisfying (2.2).

Also

δ = δs: =
|Es|
N

=
|Es|
|Es−1| δs−1 > m−10δ11

s−1K
−10. (2.8)

Step 2.

Now we will show that W obtained in Step 1 is an affine space.

We define

r(ξ) = |{(a1, a2) ∈ E × E : ξ = a1 − a2}| = |E ∩ (E + ξ)|. (2.9)

Then
|E|2 =

∑

ξ∈E−E

r(ξ) =
∑

|E ∩ (E + ξ)|. (2.10)
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The first equality and Cauchy-Schwartz imply that
∑

ξ∈E−E

r(ξ)2 ≥ |E|4
|E − E| . (2.11)

Let

B = {ξ ∈ E − E : r(ξ) >
|E|2

2|E − E| } ⊂ E \ E. (2.12)

Therefore, ∑

ξ∈(E−E)\B
r(ξ)2 ≤

( |E|2
2|E − E|

)2

|E − E|. (2.13)

Putting (2.11) and (2.13) together, we have

|B| |E|2 ≥
∑

ξ∈B

r(ξ)2 >
3|E|4

4|E − E| .

Hence

|B| > 3|E|2
4|E − E| . (2.14)

On the other hand, from (2.1) and (i), we have

|E + E| ≤ |A + A| < KN = Kδ−1|E|.
Applying Theorem 8.4 in [N3], we get

|E − E| < (Kδ−1)2|E|. (2.15)

Both (2.14) and (2.15) will be used in the proof of Claim 3 later.

Claim 1. W = W + ξ, for all ξ ∈ B.

Proof of Claim 1. Let ξ ∈ B and let Γ = W ∩ (W + ξ). Then the fact that W ⊃ E
and (2.9), (2.12), (2.15) give

|Γ ∩ E| = |E ∩W ∩ (W + ξ)| ≥ |E ∩ (E + ξ)|

= r(ξ) >
|E|2

2|E − E| >
δ2

2K2
|E|.

Therefore, W ⊂ Γ by (iii′). Namely,

W ⊂ W + ξ.

On the other hand, −B = B implies that

W ⊂ W − ξ.

Hence W = W + ξ. ¤
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Claim 2. W = W + 〈B〉.

Proof of Claim 2. It follows from Claim 1 that

W = W + rξ, ∀r ∈ Z.

Since W − W is algebraic, the line 〈ξ〉 either is contained in W − W or intersects
W −W no more than deg W −W many points. Therefore 〈ξ〉 ⊂ W −W . Namely,

W = W + 〈ξ〉, ∀ξ ∈ B.

Hence W = W + 〈B〉. ¤

Claim 3. There is an x0 ∈ E ⊂ W such that

|(E − x0) ∩B| > |E|
4(K ′)4

=
3δ4

8K4
|E|.

Proof of Claim 3. This is because of the following estimate

∑

x∈E

|(E − x) ∩B| =
∑

ξ∈B

|{(x′, x): x′ − x = ξ}|

=
∑

ξ∈B

r(ξ)

>
|E|2

2|E − E| |B|

>
3|E|4

8|E − E|2

>
3δ4|E|2

8K4

The last two inequalities are by (2.14) and (2.15). ¤

Let V = x0+〈B〉, where x0 is as in Claim 3. Note that as an algebraic set, deg V = 1.
Claim 2 implies that V ⊂ W . To see that W ⊂ V , we use Step 1. Inequality (2.2) in
(iii′) is satisfied because

|E ∩ V | > |E ∩ (x0 + B)| > 3δ4

8K4
|E|.
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Hence W = V , an affine space.

This completes the proof of Proposition 2.1. ¤

Section 3.

We will show that cancellation law for multiplication holds for A satisfying (1)-(3)
below. (See the definition of good pair.)

Recall (cf [BC]) that for a set A with |A| = N , the doubling constants for addition
and multiplication are

K+(A) =
|A + A|

N
, K×(A) =

|A ·A|
N

.

Let A ⊂ Sym(d) and assume log[K+(A) + K×(A)] ¿ log N .

Applying Proposition 2.1 to the set A with

K = d1+ 1
10

(
K+(A) + K×(A)

)
, (3.0)

we obtain E ⊂ A and an affine space V satisfying (i)-(iii).

Since by (i), K+(E) < δ−1K+(A) and K×(E) < δ−1K×(A), (iii) implies that if
Γ ⊂ Mat(d) is algebraic of deg Γ < d20 and satisfies

|Γ ∩ E| > |E|
d11[K+(E) + K×(E)]10

, (3.1)

then Γ ⊃ V .

Let

E =
d⋃

r=1

Er, with Er = {a ∈ E: rank a = r}.

Fix r ≤ d such that

|Er| ≥ |E|
d

=
δN

d
. (3.2)

Assume r < d.

Let DI,J(a) be the determinant of the (r + 1)× (r + 1) matrix obtained by deleting
d− (r + 1) rows I and d− (r + 1) columns J from a. Then rank a ≤ r if and only if

F (a):=
∑

I,J

DI,J (a)2 = 0.
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F = F (x11, · · · , xdd) is a polynomial on Rd×d of degree 2(r + 1). Let (F )0 be the zero
set of F . Since

|(F )0 ∩ E| ≥ |Er| ≥ |E|
d

,

Proposition 2.1 holds. Cf (3.1). Therefore

V ⊂ (F )0,

meaning that
rank a ≤ r for all a ∈ V.

We will work on Er instead of A. The inequality in (3.2) implies that

K∗(Er) < d K∗(E), (3.3)

where K∗ = K+ or K×.

Inequality (2.2) may be replaced by

|Γ ∩ Er| > |Er|
|(K+(Er) + K×(Er))10

,

because (3.1), (3.2) and (3.3) hold.

Definition. The pair (A, V ) is called good, if the following hold.

(1) A ⊂ V ⊂ Sym(d), A finite, and V is affine

(2) rank a ≤ r,∀a ∈ V , and rank a = r,∀a ∈ A for some r ≤ d

(3) for any algebraic set Γ ⊂ Rd×d with deg Γ < d20, if

|Γ ∩A| > |A|
|(K+(A) + K×(A))10

,

then Γ ⊃ V.
(
K+(A) and K×(A) are the doubling constants of A.

)

For the rest of the paper, we work on a good pair A, V .
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Proposition 3.1. Let A be as above and let a, b, c ∈ A. If b 6= c, then ab 6= ac.

Proof. If r = d, the statement is obvious. Assume r < d.

Let o be the orthogonal matrix formed by the orthonormal eigenvectors of a such
that

o−1ao =




λ1

. . . 0
λr

0

0
. . .

0




,

where λ1 · · ·λr 6= 0.

Since A ⊂ V = v0 + V0, V0 being linear,

w: = b− c ∈ V0, and a + tw ∈ V for t ∈ R.

Let (wi,j) = o−1wo.

Claim 1. wk,` = 0 for all k, ` ∈ {r + 1, . . . , d}

Proof of Claim. We note that rank (a + tw) ≤ r implies that

rank




λ1

. . . 0
λr

0

0
. . .

0




+ t(wi,j) ≤ r.

Let Dk,` be the determinant of the (r+1)×(r+1) submatrix of o−1(a+ tw)o obtained
by deleting the p-th rows for all p ∈ {r + 1, · · · , d} \ {k} and q-th columns for all
q ∈ {r+1, · · · , d}\{`}. So Dk,` is a polynomial in t vanishing identically. In particular,
the coefficient of t is zero. i.e.

wk`

r∏

i=1

λi = 0.

Therefore, wk,` = 0. ¤
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If aw = 0, then

o−1(aw)o = (o−1ao)(o−1wo) = (λiwi,j) = 0.

Since
∏r

i=1 λi 6= 0,, we have wi,j = 0 for i = 1, · · · , r and for all j. Now the proposition
follows from Claim 1 and a being symmetric. ¤

Section 4.

In this section we will study the multiplicative structure of V . Our goal is to prove
the following

Proposition 4.1. Let A ⊂ V be a good pair. Then

{a2: a ∈ V }
is commutative under multiplication.

The proof will use Proposition 2.1 several times.

Lemma 4.2. Let

S0 = {(a1, a2, a3) ∈ A×A×A : a1a2a3 ∈ a3Aa3}.
Then

(a) |S0| > N3

K×(A)

(b) ∀(a1, a2, a3) ∈ S0, a1a2a3 = a3a2a1

Proof. Part (b) is obvious. To show (a), we note that by Proposition 3.1, there is a
one-to-one correspondence between S0 and

T = {(a1, a2, a3, a4) ∈ A× · · · ×A : a1a2 = a3a4}.
So we will bound |T | instead.

Let r(n) = |{(a1, a2): n = a1a2}|. Then
∑

n∈A·A
r(n) = N2, |T | =

∑

n∈A·A
r(n)2

and Cauchy-Schwartz imply |T | ≥ N4

|A·A| = N3

K×(A) . ¤

We will work on

S = {(a1, a2, a3) ∈ A×A×A : a1a2a3 = (a1a2a3)T }.
By Lemma 4.2,

|S| ≥ N3

K×(A)
.
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Lemma 4.3. For a2, a3 ∈ A, let

Γa2,a3 = 〈a : aa2a3 = a3a2a〉,
S(a2, a3) = {a1 ∈ A: (a1, a2, a3) ∈ S},

S2,3 =
{
(a2, a3) ∈ A×A| |S(a2, a3)| > N

2K×(A)
}
.

Then

(a) |S2,3| > N2

2K×(A)

(b) S(a2, a3) = A ∩ Γa2,a3

(c) V ⊂ Γa2,a3 , ∀(a2, a3) ∈ S2,3.

Proof. (a) follows from a straightforward averaging argument. (b) is obvious. (c)
holds, because of (b) and that (A, V ) being a good pair.

Remark 4.3.1. The meaning of (c) is that a1a2a3 = a3a2a1 holds for all a1 ∈ V ,
(a2, a3) ∈ S2,3.

Lemma 4.4. Let

S2,3(a3) = {a2 ∈ A : (a2, a3) ∈ S2,3}

S3 =
{
a3 ∈ A : |S2,3(a3)| > N

4K×(A)
}

Γa1
a3

= 〈a : a1aa3 = a3aa1〉, for a3 ∈ S3, a1 ∈ V.

Then

(a) |S3| > N
4K×(A)

(b) S2,3(a3) ⊂ A ∩ Γa1
a3

(c) V ⊂ Γa1
a3

.

Proof. Same reasoning as in the proof of Lemma 4.3.

Remark 4.4.1. The meaning of (c) is that a1a2a3 = a3a2a1 holds for all a1, a2 ∈ V ,
a3 ∈ S3.

Proof of Proposition 4.1. For a1, a2 ∈ V , define

Γa1,a2 = 〈a : a1a2a = aa2a1〉.
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Then S3 ⊂ A ∩ Γa1.a2 .

(A, V ) being a good pair and Lemma 4.4 (a) imply V ⊂ Γ3, i.e.

a1a2a3 = a3a2a1, for all a1, a2, a3 ∈ V. (4.5)

In particular

a2
1a2 = a2a

2
1 (4.6)

a2
1a

2
2 = a2

2a
2
1 (4.7)

for all a1, a2 ⊂ V .

Thus {a2|a ∈ V } are commutative symmetric matrices. ¤

Section 5.

In this section we will conclude the proof of Theorem B. Let

Rd = ⊕Hα

be the eigenspace decomposition by the commutative system {a2 : a ∈ V } such that
if a ∈ V, x ∈ Hα, then

a2(x) = λα(a)x

with λα(a) ∈ R and also, if α 6= β, then

λα(a) 6= λβ(a) for some a ∈ V. (5.1)

Returning to (4.6), we have for x ∈ Hα

a2
1(a2x) = λα(a1)(a2x)

so that
a2x ∈ ⊕

λβ(a1)=λα(a1)
Hβ . (5.2)

Since (5.2) holds for all a2 ∈ V and (5.1) holds, necessarily

a2x ∈ Hα, ∀x ∈ Hα,∀a2 ∈ V.

Thus Hα is invariant for all a ∈ V .

Let dα = dim Hα, with
∑

dα ≤ d, we get a decomposition

a = ⊕
α

a(α), a(α) ∈ Sym(dα) ∩ GL(dα).
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At this point, we distinguish 2 cases.

1. dα < d for all α. In this situation, we use the induction hypothesis.

2. There is a unique invariant space Hα = Rd and

a2 = λ(a)1 for all a ∈ V ⊃ A.

In this situation, we will use a variant of the Erdös-Szemerédi argument.

Case 1.

Thus all dα < d. We will use induction.

We may assume
A ⊂ Sym(d1)× Sym(d2)

and theorem holds for each Sym(di). We need to establish a sum-product theorem for
Sym(d1)× Sym(d2).

Let π be the projection Sym(d1)× Sym(d2) → Sym(d1). For x ∈ π(A) ⊂ Sym(d1),
denote the fiber of A at x by

A(x) = {y ∈ Sym(d2) : (x, y) ∈ A}.

We perform the usual regularization of the graph using the additive doubling con-
stant. Let

M1 = |π(A)|
M2 = max

x∈π(A)
|A(x)| = |A(x̄)| . (5.3)

Thus
M1M2 ≥ N. (5.4)

Let
K = K+(A) + K×(A).

Then

K
∑

x∈π(A)

|A(x)| = K|A|

≥ K+(A)|A| = |A + A|
≥

∑

x∈π(A)

|A(x) + A(x̄)|

≥ |π(A)| |A(x̄)| = M1M2.
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Let
B = {x ∈ π(A) : |A(x)| > M2

2K
}. (5.5)

A straightforward averaging argument implies that

|B| > M1

2K
. (5.6)

Induction on B ⊂ Sym(d1) implies that there is ε1 = ε1(d1) such that

|B + B|+ |B ·B| > |B|1+ε1 >

(
M1

2K

)1+ε1

.

The last inequality is by (5.6).

Assume

|B + B| > 1
2

(
M1

2K

)1+ε1

. (5.7)

Then by (5.7), (5.5) and (5.4),

KN > |A + A| ≥ |B + B| min
x,x′∈B

|A(x) + A(x′)| > 1
2

(
M1

2K

)1+ε1 M2

2K
>

N

K3
Mε1

1 . (5.8)

Hence
K > M

ε1
4

1 . (5.9)

Assume

|B ·B| > 1
2

(
M1

2K

)1+ε1

.

Similarly,

KN > |A ·A| ≥ |B ·B| min
x,x′∈B

|A(x) ·A(x′)| > 1
2

(
M1

2K

)1+ε1 M2

2K
>

N

K3
Mε1

1 .

This is because of the following

Claim. For any y ∈ A(x), | y ·A(x′)| = |A(x′)| > M2
2K .

Proof. This follows from the fact that the map

A(x′) → yA(x′) : z 7→ yz is one-to-one.
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Indeed, if z1 6= z2 in A(x′), then (x′, z1) 6= (x′, z2) are distinct elements of A satisfying
Proposition 3.1. Thus

(x, y) · (x′, z1) 6= (x, y) · (x′, z2) ⇒ y.z1 6= y.z2. ¤

Hence, in either case (5.9) holds.

Let ε2 = ε2(d2) be provided by the induction hypothesis for {x̄}×A(x̄) ⊂ Sym(d2).

If M
ε1
4

1 ≥ N
ε1ε2

9 , then (5.9) implies the theorem. So we assume

M
ε1
4

1 < N
ε1ε2

9 . (5.10)

Note that (5.10) is equivalent to

Nε2M−2
1 > N

ε2
9 . (5.11)

The sum-product theorem for {x̄} ×A(x̄) gives

KN > |A + A|+ |A.A| ≥ |A(x̄) + A(x̄)|+ |A(x̄) ·A(x̄)| > M1+ε2
2 >

(
N

M1

)1+ε2

.

The last inequality is by (5.4). Hence

K > Nε2M−1−ε2
1 > Nε2M−2

1 . (5.12)

Combining (5.11) and (5.12), we obtain

K > N
ε2
9 > N

ε1ε2
9 .

Therefore, we may take
ε =

εd1εd2

9
(5.13)

and claim
|A + A|+ |A ·A| > |A|1+ε (5.14)

for A ⊂ Sym(d1)× Sym(d2).

This concludes Case 1.

Case 2. dα = d.

Thus A ⊂ V ⊂ Sym(d) and

a2 = λ(a)1, for all a ∈ V = v0 + V0, (5.15)

where V0 is a linear space.
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Claim. a2 = λ(a)1, for all a ∈ 〈v0, V0〉.

Proof. Let w ∈ V0, t ∈ R. Then v0 + tw ∈ V , hence

v2
0 + t(v0w + wv0) + t2w2 ∈ R1 for all t.

Therefore, for all w ∈ V0

w2, v0w + wv0 ∈ R1 ¤

Therefore, we may assume A ⊂ V , a linear space and a2 = λ(a)1, for all a ∈ V. For
a matrix a = (ai,j), let

| a | = ( d∑

i,j=1

a2
ij

)1/2
,

the Hilbert-Schmidt norm.

Since V ⊂ Sym(d), the Claim above and orthonormal diagonalization for symmetric
matrices give the following properties for a, b ∈ V :

| a| =
√

λ(a)d. (5.16)

λ(ab) = λ(a)λ(b) (5.17)

| ab | = d−
1
2 | a | | b | (5.18)

The proof is completed by noting that this case follows from

Proposition. (Theorem 3 in [C4]) Let {Rm, +, ∗} be an R-algebra with + the com-
ponentwise addition. For a = (a1, · · · , am), let |a| =

√
(
∑

a2
i ) be the Hilbert-Schmidt

norm, and let V ⊂ Rm such that

1. ∃ c = c(m), ∀a, b ∈ V , | a ∗ b| = c| a| | b|
2. for any a ∈ V \ {0}, a−1 exists (in a possibly larger field).

Then for any A ⊂ V , |A + A|+ |AA| > |A|1+δ.

Remark 5.1 Recall however that the set A here is a subset A′ of the original set A,
obtained by applying first Proposition 2.1 and making next the rank specification. Cf
(i) and (3.2). If N is the size of the original set A, from (i), (3.0), (3.4), the size of A′

here satisfies

|A′| > 1
d
K−CdN > d−1−Cd [K+(A) + K×(A)]−CdN. (5.19)
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Hence

[K+(A) + K×(A)]N = |A + A|+ |A ·A|
≥ |A′ + A′|+ |A′ ·A′| > |A′|1+ε

> d−(1+Cd)(1+ε)[K+(A) + K×(A)]−Cd(1+ε)N1+ε,

which gives

K+(A) + K×(A) >

(
1
d

)1+ε/(1+Cd(1+ε))

Nε/(1+Cd(1+ε)). (5.20)

We may therefore take εd = ε
1+Cd(1+ε) , with ε obtained by A′.

Remark 5.2. Concerning Case 2, there exists indeed linear space Vj of symmetric
matrices a such that a2 ∈ R1 for any a ∈ Vj , and dim Vj = j for any j.

Take V1 = R.

Let dj = 2j−1 and assume Vj is a subspace of Sym(dj) with the above properties.
Let Vj+1 consist of the (2j × 2j)-matrices

b =
(

λj+11 a
a −λj+11

)

where λj+1 ∈ R and a ∈ Vj . It is easy to see that b2 = (λ2
1 + · · · + λ2

j+1)1, and
dim Vj+1 = dim Vj + 1 = j + 1.
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Szemerédi sum-product problems, GAFA Vol. 113, (2002), 399-419.

[C3]. , On sums and products of distinct numbers, J. of Combinatorial Theory, Series A
105, (2004), 349-354.

[C4]. , A sum-product estimate in algebraic division algebras over R, Israel J. of Math.
(to appear).

[C5]. , A sum-product theorem in semi-simple commutative Banach algebras, J.Funct
Anal, 212, (2004), 399-430..

[E]. G. Elekes, On the number of sums and products, Acta Arithmetica 81, Fase 4 (1997),
365-367.

[ER]. G. Elekes, I.Z. Ruzsa, Product sets are very large if sumsets are very small, preprint.
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