ON A QUESTION OF DAVENPORT AND LEWIS ON
CHARACTER SUMS AND PRIMITIVE ROOTS IN FINITE FIELDS

Mei-Chu Chang

Abstract.

Let χ be a nontrivial multiplicative character of F_{p^n}. We obtain the following results related to Davenport-Lewis’ paper [DL] and the Paley Graph conjecture.

(1). Let $\varepsilon > 0$ be given. If

$$B = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j] \cap \mathbb{Z}, j = 1, \ldots, n \right\}$$

is a box satisfying

$$\prod_{j=1}^{n} H_j > p^{\left(\frac{2}{5} + \varepsilon\right)n},$$

then for $p > p(\varepsilon)$ we have

$$|\sum_{x \in B} \chi(x)| \ll p^{-\frac{2}{5}} |B|$$

unless n is even, χ is principal on a subfield F_2 of size $p^n/2$ and $\max_{\xi} |B \cap \xi F_2| > p^{-\varepsilon} |B|$.

As a corollary, we bound the number of primitive roots in B by

$$\frac{\varphi(p^n - 1)}{p^n - 1} |B|(1 + o(p^{-\gamma})).$$

(2). Assume $A, B \subset F_p$ such that

$$|A| > p^{\frac{2}{5} + \varepsilon}, |B| > p^{\frac{2}{5} + \varepsilon}, |B + B| < K|B|.$$

Then

$$\left| \sum_{x \in A, y \in B} \chi(x + y) \right| < p^{-\gamma} |A| |B|.$$
Introduction.

In this paper we obtain new character bounds in finite fields \(\mathbb{F}_q \) with \(q = p^n \), using methods from additive combinatorics related to the sum-product phenomenon. More precisely, Burgess’ classical amplification argument is combined with our estimate on the ‘multiplicative energy’ for subsets in \(\mathbb{F}_q \). (See Proposition 1 in §1.) The latter appears as a quantitative version of the sum-product theorem in finite fields (see [BKT] and [TV]) following arguments from [G], [KS1] and [KS2].

Our first results relate to the work [DL] of Davenport and Lewis. We recall their result. Let \(\{\omega_1, \ldots, \omega_n\} \) be an arbitrary basis for \(\mathbb{F}_{p^n} \) over \(\mathbb{F}_p \). Then elements of \(\mathbb{F}_{p^n} \) have a unique representation as
\[
\xi = x_1 \omega_1 + \ldots + x_n \omega_n, \quad (0 \leq x_i < p).
\] (0.1)

We denote \(B \) a box in \(n \)-dimensional space, defined by
\[
N_j + 1 \leq x_j \leq N_j + H_j, \quad (j = 1, \ldots, n)
\] (0.2)
where \(N_j \) and \(H_j \) are integers satisfying \(0 \leq N_j < N_j + H_j < p \), for all \(j \).

Theorem DL. ([DL], Theorem 2) Let \(H_j = H \) for \(j = 1, \ldots, n \), with
\[
H > p^{\frac{n}{2(2n+1)}} + \delta \quad \text{for some } \delta > 0
\] (0.3)
and let \(p > p_1(\delta) \). Then, with \(B \) defined as above
\[
| \sum_{x \in B} \chi(x) | < (p^{-\delta_1}H)^n,
\]
where \(\delta_1 = \delta_1(\delta) > 0 \).

For \(n = 1 \) (i.e. \(\mathbb{F}_q = \mathbb{F}_p \)) we are recovering Burgess’ result \((H > p^{\frac{1}{2} + \delta}) \). But as \(n \) increases, the exponent in (0.3) tends to \(\frac{1}{2} \). In fact, in [DL] the authors were quite aware of the shortcoming of their approach which they formulated as follows (see [DL], p130)

‘The reason for this weakening in the result lies in the fact that the parameter \(q \) used in Burgess’ method has to be a rational integer and cannot (as far as we can see) be given values in \(\mathbb{F}_q \).’

In this paper we address to some extent their problem and are able to prove the following

2000 Mathematics Subject Classification. Primary 11L40, 11L26; Secondary 11A07, 11B75.

Key words. character sums, primitive roots, Davenport-Lewis, Paley Graph conjecture.

Research partially financed by the National Science Foundation.
Theorem 2. Let χ be a nontrivial multiplicative character of F_p^n, and let $\varepsilon > 0$ be given. If

$$B = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j] \cap \mathbb{Z}, j = 1, \ldots, n \right\}$$

is a box satisfying

$$\prod_{j=1}^{n} H_j > p^{\left(\frac{2}{7} + \varepsilon\right)n},$$

then for $p > p(\varepsilon)$

$$\left| \sum_{x \in B} \chi(x) \right| \ll_n p^{-\frac{\varepsilon^2}{2}} |B|,$$

unless n is even and $\chi|_{F_2}$ is principal, F_2 the subfield of size $p^{n/2}$, in which case

$$\left| \sum_{x \in B} \chi(x) \right| \leq \max_{\xi} |B \cap \xi F_2| + O_n(p^{-\frac{\varepsilon^2}{2}} |B|).$$

Hence our exponent is uniform in n and supersedes [DL] for $n > 4$. The novelty of the method in this paper is to exploit the finite field combinatorics without the need to reduce the problem to a divisor issue in \mathbb{Z} or in the integers of an algebraic number field K (as in the papers [Bu3] and [Kar]).

Let us emphasize that there are no further assumptions on the basis $\omega_1, \ldots, \omega_n$. If one assumes $\omega_i = g^{i-1}, (1 \leq i \leq n)$, where g satisfies a given irreducible polynomial equation (mod p)

$$a_0 + a_1 g + \cdots + a_{n-1} g^{n-1} + g^n = 0, \text{ with } a_i \in \mathbb{Z},$$

or more generally, if

$$\omega_i \omega_j = \sum_{k=1}^{n} c_{ijk} \omega_k,$$ \hspace{1cm} (0.4)

with c_{ijk} bounded and p taken large enough, a result of the strength of Burgess’ was indeed obtained (see [Bu3] and [Kar]) by reducing the combinatorial problem to counting divisors in the integers of an appropriate number field. But such reduction seems not possible in the general context considered in [DL].

Character estimates as considered above have many applications, e.g. quadratic non-residues, primitive roots, coding theory, etc. We only mention the following consequence of Theorem 2 to the problem of primitive roots (see for instance [DL], p131).

\footnote{The author is grateful to Andrew Granville for removing some additional restriction on the set B in an earlier version of this theorem.}
Corollary 3. Let $B \subset \mathbb{F}_{p^n}$ be as in Theorem 2 and satisfying $\max_\xi |B \cap \xi F_2| < p^{-\varepsilon}|B|$ if n even. The number of primitive roots of \mathbb{F}_{p^n} belonging to B is

$$\frac{\varphi(p^n - 1)}{p^n - 1}|B|(1 + o(p^{-\tau'}))$$

where $\tau' = \tau'(\varepsilon) > 0$ and assuming $n \ll \log \log p$.

The aim of [DL] (and in an extensive list of other works starting from Burgess’ seminal paper [Bu1]) was to improve on the Polya-Vinogradov estimate (i.e. breaking the \sqrt{q}-barrier), when considering incomplete character sums of the form

$$\left| \sum_{x \in A} \chi(x) \right|,$$

where $A \subset \mathbb{F}_q$ has certain additive structure.

Note that the set B considered above has a small doubling set, i.e.

$$|B + B| < c(n)|B|$$

and this is the property relevant to us in our combinatorial Proposition 1 in §1.

In the case of a prime field ($q = p$), our method provides the following generalization of Burgess’ inequality.

Theorem 4. Let \mathcal{P} be a proper d-dimensional generalized arithmetic progression in \mathbb{F}_p with

$$|\mathcal{P}| > p^{2/5+\varepsilon}$$

for some $\varepsilon > 0$. If χ is a nontrivial multiplicative character of \mathbb{F}_p, we have

$$\left| \sum_{x \in \mathcal{P}} \chi(x) \right| < p^{-\tau}|\mathcal{P}|$$

where $\tau = \tau(\varepsilon, d) > 0$ and assuming $p > p(\varepsilon, d)$.

See §4, where we also recall the notion of a ‘proper generalized arithmetic progression’. Let us point out here that the proof of Proposition 1 below and hence Theorem 2, uses the full linear independence of the elements $\omega_1, \ldots, \omega_n$ over the base field \mathbb{F}_p. Assuming in Theorem 2 only that B is a proper generalized arithmetic progression requires us to make a stronger assumption on $|B|$.
Next, we consider the problem of estimating character sums over sumsets of the form
\[\sum_{x \in A, y \in B} \chi(x + y), \] (0.7)
where \(\chi \) is a nontrivial multiplicative character modulo \(p \) (we consider again only the prime field case for simplicity). In this situation, a well-known conjecture (sometimes referred to as the Paley Graph conjecture) predicts a nontrivial bound on (0.7) as soon as \(|A|, |B| > p^\delta \), for some \(\delta > 0 \). Presently, such result is only known (with no further assumptions) provided \(|A| > p^{\frac{1}{2} + \delta} \) and \(|B| > p^\delta \) for some \(\delta > 0 \). The problem is open even for the case \(|A| \sim p^{\frac{1}{2}} \sim |B| \). Using Proposition 1 (combined with Freiman’s theorem), we prove the following

Theorem 6. Assume \(A, B \subset \mathbb{F}_p \) such that

(a) \(|A| > p^{\frac{3}{2} + \varepsilon}, |B| > p^{\frac{3}{2} + \varepsilon} \)
(b) \(|B + B| < K|B| \).

Then
\[\left| \sum_{x \in A, y \in B} \chi(x + y) \right| < p^{-\tau}|A||B|, \]
where \(\tau = \tau(\varepsilon, K) > 0 \), \(p > p(\varepsilon, K) \) and \(\chi \) is a nontrivial multiplicative character of \(\mathbb{F}_p \).

This result may be compared with those obtained in [FI] on estimating (0.7) assuming the sets \(A, B \) have certain extra structure (for instance, assuming \(A = B \) is a large subset of an interval). We also consider the case when \(B \) is an interval, in which case we can obtain a stronger result. (See Theorem 8.)

We believe that this is the first paper exploring the application of recent developments in combinatorial number theory (for which we especially refer to [TV]) to the problem of estimating (multiplicative) character sums. (Those developments have been particularly significant in the context of exponential sums with additive characters. See [BGK] and subsequent papers.) One could clearly foresee more investigations along these lines.

The paper is organized as follows. We prove Proposition 1 in §1, Theorem 2 in §2, Corollary 3 in §3 and Theorem 6 in §4.

Notations. Let \(* \) be a binary operation on some ambient set \(S \) and let \(A, B \) be subsets of \(S \). Then
(1) \(A \ast B := \{a \ast b : a \in A \text{ and } b \in B\}\).

(2) \(a \ast B := \{a\} \ast B\).

(3) \(AB := A \ast B\), if \(*=\)multiplication.

(4) \(A^n := AA^{n-1}\).

Note that we use \(A^n\) for both the \(n\)-fold product set and \(n\)-fold Cartesian product when there is no ambiguity.

(5) \([a, b] := \{i \in \mathbb{Z} : a \leq i \leq b\}\).

§1. Multiplicative energy of a box.

Let \(A, B\) be subsets of a commutative ring. Recall that the multiplicative energy of \(A\) and \(B\) is

\[
E(A, B) = \left| \{(a_1, a_2, b_1, b_2) \in A^2 \times B^2 : a_1 b_1 = a_2 b_2\}\right|.
\]

(1.1)

(See [TV] p.61.)

We will use the following

Fact 1. \(E(A, B) \leq E(A, A)^{1/2} E(B, B)^{1/2}\).

Proposition 1. Let \(\{\omega_1, \ldots, \omega_n\}\) be a basis for \(\mathbb{F}_p^n\) over \(\mathbb{F}_p\) and let \(B \subset \mathbb{F}_p^n\) be the box

\[
B = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j], j = 1, \ldots, n \right\},
\]

where \(1 \leq N_j < N_j + H_j < p\) for all \(j\). Assume that

\[
\max_j H_j < \frac{1}{2} (\sqrt{p} - 1)
\]

(1.2)

Then we have

\[
E(B, B) < C^n (\log p) \left|B\right|^{11/4}
\]

(1.3)

for an absolute constant \(C < 2^{9/4}\).

The argument is an adaptation of [G] and [KS1] with the aid of a result in [KS2]. The structure of \(B\) allows us to carry out the argument directly from [KS1] leading to the same statement as for the case \(n = 1\).

We will use the following estimates from [KS1]. (See also [G].)

Let \(X, B_1, \cdots, B_k\) be subsets of a commutative ring and \(a, b \in X\). Then
Fact 2. \(|B_1 + \cdots + B_k| \leq \frac{|X+B_1| \cdots |X+B_k|}{|X|^{k-1}}.|X|

Fact 3. \(\exists X' \subset X\) with \(|X'| > \frac{1}{2}|X|\) and \(|X' + B_1 + \cdots + B_k| \leq 2^k \frac{|X+B_1| \cdots |X+B_k|}{|X|^{k-1}}.|X|

Fact 4. \(|aX + bX| \leq \frac{|X+X|^2}{|aX+bX|}.

Proof of Proposition 1.

Claim 1. \(\mathbb{F}_p \not\subset \frac{B-B}{B-B}\).

Proof of Claim 1. Take \(t \in \mathbb{F}_p \cap \frac{B-B}{B-B}\). Then \(t\sum x_j \omega_j = \sum y_j \omega_j\) for some \(x_j,y_j \in [-H_j,H_j]\), where \(1 \leq j \leq n\) and \(\sum x_j \omega_j \neq 0\). Since \(tx_j = y_j\) for all \(j = 1, \ldots, n\), choosing \(i\) such that \(x_i \neq 0\), it follows that

\[
t \in \left[\frac{[-H_i,H_i]}{-H_i,H_i}\{0\}\right] \subseteq \left[\frac{-\frac{1}{2}(\sqrt{p} - 1)\frac{1}{2}(\sqrt{p} - 1)}{-\frac{1}{2}(\sqrt{p} - 1)\frac{1}{2}(\sqrt{p} - 1)}\{0\}\right]. \tag{1.4}
\]

Since the set (1.4) is of size at most \(\sqrt{p}(\sqrt{p} - 1) < p\), it cannot contain \(\mathbb{F}_p\). This proves our claim.

We may now repeat verbatim the argument in [KS1], with the additional input of the multiplicative energy.

Claim 2. There exist \(b_0 \in B, A_1 \subset B\) and \(N \in \mathbb{Z}_+\) such that

\[
|aB \cap b_0 B| \sim N \text{ for all } a \in A_1, \tag{1.5}
\]

\[
N |A_1| > \frac{E(B,B)}{|B| \log |B|} \tag{1.6}
\]

and

\[
\frac{A_1 - A_1}{A_1 - A_1} + 1 \neq \frac{A_1 - A_1}{A_1 - A_1}. \tag{1.7}
\]

Proof of Claim 2.

From (1.1)

\[
E(B,B) = \sum_{a,b \in B} |aB \cap bB|.
\]

Therefore, there exists \(b_0 \in B\) such that

\[
\sum_{a \in B} |aB \cap b_0 B| \geq \frac{E(B,B)}{|B|}.
\]
Let A_s be the level set

$$A_s = \{ a \in B : 2^{s-1} \leq |aB \cap b_0B| < 2^s \}.$$

Then for some s_0 with $1 \leq s_0 \leq \log_2 |B|$ we have

$$2^{s_0} |A_{s_0}| \log_2 |B| \geq \sum_{s=0}^{\log_2 |B|} 2^s |A_s| > \sum_{a \in B} |aB \cap b_0B| \geq \frac{E(B, B)}{|B|}.$$

(1.5) and (1.6) are obtained by taking $A_1 = A_{s_0}$ and $N = 2^{s_0}$.

Next we prove (1.7) by assuming the contrary. By iterating t times, we would have

$$\frac{A_1 - A_1}{A_1 - A_1} + t = \frac{A_1 - A_1}{A_1 - A_1} \text{ for } t = 0, 1, \ldots, p - 1. \quad (1.8)$$

Since $0 \in \frac{A_1 - A_1}{A_1 - A_1}$, (1.8) would imply that $F_p \subset \frac{A_1 - A_1}{A_1 - A_1} \subset \frac{B+B}{B-B}$, contradicting Claim 1. Hence (1.7) holds.

Take $c_1, c_2, d_1, d_2 \in A_1, d_1 \neq d_2$, such that

$$\xi = \frac{c_1 - c_2}{d_1 - d_2} + 1 \notin \frac{A_1 - A_1}{A_1 - A_1}.$$

It follows that for any subset $A' \subset A_1$, we have

$$|A'|^2 = |A' + \xi A'| = |(d_1 - d_2)A' + (d_1 - d_2)A' + (c_1 - c_2)A'|
\leq |(d_1 - d_2)A' + (d_1 - d_2)A_1 + (c_1 - c_2)A_1|. \quad (1.9)$$

In Fact 3, we take $X = (d_1 - d_2)A_1, B_1 = (d_1 - d_2)A_1$ and $B_2 = (c_1 - c_2)A_1$. Then there exists $A' \subset A_1$ with $|A'| = \frac{1}{2} |A_1|$ and by (1.9)

$$|A'|^2 \leq |(d_1 - d_2)A' + (d_1 - d_2)A_1 + (c_1 - c_2)A_1|
\leq \frac{2^2}{|A_1|} |A_1 + A_1| \cdot (d_1 - d_2)A_1 + (c_1 - c_2)A_1|. \quad (1.10)$$

Since $|A_1 + A_1| \leq |B + B| \leq 2^n |B|$,

$$2^{-2} |A_1|^3 \leq 2^{n+2} |B| \cdot (d_1 - d_2)A_1 + (c_1 - c_2)A_1|
\leq 2^{n+2} |B| \cdot c_1 B - c_2 B + d_1 B - d_2 B|. \quad (1.11)$$
Facts 2, 4 and (1.5) imply

\[2^{-2} |A_1|^3 \leq 2^{n+2} |B| \frac{|B + B|^8}{N^4 |B|^3}. \]

(1.12)

Thus

\[N^4 |A_1|^3 \leq 2^{9n+4} |B|^6 \]

(1.13)

and recalling (1.6)

\[E(B, B)^4 \leq (\log |B|)^4 |B|^5 N^4 |A_1|^3 < 2^{9n+4} (\log p)^4 |B|^{11} \]

implying (1.3). \qed

§2. Burgess’ method and the proof of Theorem 2.

The goal of this section is to prove the following theorem.

Theorem 2. Let \(\chi \) be a nontrivial multiplicative character of \(\mathbb{F}_{p^n} \). Given \(\varepsilon > 0 \), there is \(\tau > \frac{\varepsilon^2}{4} \) such that if

\[B = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j] \cap \mathbb{Z}, j = 1, \ldots, n \right\} \]

is a box satisfying

\[\prod_{j=1}^{n} H_j > p^{(\frac{3}{4} + \varepsilon)n}, \]

then for \(p > p(\varepsilon) \)

\[\left| \sum_{x \in B} \chi(x) \right| \ll_n p^{-\tau} |B|, \]

unless \(n \) is even and \(\chi|_{\mathbb{F}_2} \) is principal, \(F_2 \) the subfield of size \(p^{n/2} \), in which case

\[\left| \sum_{x \in B} \chi(x) \right| \leq \max_{\xi} |B \cap \xi F_2| + O_n(p^{-\tau} |B|). \]

First we will prove a special case of Theorem 2, assuming some further restriction on the box \(B \).
Theorem 2’. Let χ be a nontrivial multiplicative character of \mathbb{F}_{p^n}. Given $\varepsilon > 0$, there is $\tau > \frac{\varepsilon^2}{4}$ such that if

$$B = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [N_j + 1, N_j + H_j], j = 1, \ldots, n \right\}$$

is a box satisfying

$$\prod_{j=1}^{n} H_j > p^{\left(\frac{2}{5} + \varepsilon\right)n}$$

and also

$$H_j < \frac{1}{2}(\sqrt{p} - 1)$$

for all j,

(2.1)

then for $p > p(\varepsilon)$

$$\left| \sum_{x \in B} \chi(x) \right| \ll_{n} p^{-\tau}|B|.$$

(2.2)

We will need the following version of Weil’s bound on exponential sums. (See Theorem 11.23 in [IK])

Theorem W. Let χ be a nontrivial multiplicative character of \mathbb{F}_{p^n} of order $d > 1$. Suppose $f \in \mathbb{F}_{p^n}[x]$ has m distinct roots and f is not a d-th power. Then for $n \geq 1$ we have

$$\sum_{x \in \mathbb{F}_{p^n}} \chi((f(x))) \leq (m - 1)p^{\frac{n}{d}}.$$

Proof of Theorem 2’.

By breaking up B in smaller boxes, we may assume

$$\prod_{j=1}^{n} H_j = p^{\left(\frac{2}{5} + \varepsilon\right)n}. \tag{2.3}$$

Let $\delta > 0$ be specified later. Let

$$I = [1, p^\delta] \tag{2.4}$$

and

$$B_0 = \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [0, p^{-2\delta}H_j], j = 1, \ldots, n \right\}. \tag{2.5}$$
Since $B_0 I \subset \left\{ \sum_{j=1}^{n} x_j \omega_j : x_j \in [0, p^{-\delta} H_j], j = 1, \ldots, n \right\}$, clearly

$$\left| \sum_{x \in B} \chi(x) - \sum_{x \in B} \chi(x + yz) \right| < |B \setminus (B + yz)| + |(B + yz) \setminus B| < 2np^{-\delta} |B|$$

for $y \in B_0, z \in I$. Hence

$$\sum_{x \in B} \chi(x) = \frac{1}{|B_0||I|} \sum_{x \in B, y \in B_0, z \in I} \chi(x + yz) + O(np^{-\delta} |B|). \quad (2.6)$$

Estimate

$$\left| \sum_{x \in B, y \in B_0, z \in I} \chi(x + yz) \right| \leq \sum_{x \in B, y \in B_0} \left| \sum_{z \in I} \chi(x + yz) \right|$$

$$= \sum_{x \in B, y \in B_0} \left| \sum_{z \in I} \chi(xy^{-1} + z) \right|$$

$$= \sum_{u \in F, n} w(u) \left| \sum_{z \in I} \chi(u + z) \right|, \quad (2.7)$$

where

$$\omega(u) = \left| \{(x, y) \in B \times B_0 : \frac{x}{y} = u \} \right|. \quad (2.8)$$

Observe that

$$\sum_{e \in F, n} \omega(u)^2 = \left| \{(x_1, x_2, y_1, y_2) \in B \times B \times B_0 \times B_0 : x_1 y_2 = x_2 y_1 \} \right|$$

$$= \sum_{\nu} \left| \{(x_1, x_2) : \frac{x_1}{x_2} = \nu \} \right| \left| \{(y_1, y_2) : \frac{y_1}{y_2} = \nu \} \right|$$

$$\leq E(B, B)^{\frac{1}{2}} E(B_0, B_0)^{\frac{1}{2}}$$

$$< 2^{\frac{3}{4}n+1} (\log p) |B|^{\frac{11}{12}} |B_0|^{\frac{11}{12}}$$

$$< 2^{\frac{3}{4}n+1} (\log p) \left(|B| \right)^{\frac{11}{14}} p^{-\frac{14}{14} n \delta}, \quad (2.9)$$

by the Cauchy-Schwarz inequality, Proposition 1 and (2.5).

Let r be the nearest integer to $\frac{n}{\xi}$. Hence

$$\left| r - \frac{n}{\xi} \right| \leq \frac{1}{2}. \quad (2.10)$$
By Hölder’s inequality, (2.7) is bounded by

$$
\left(\sum_{u \in \mathbb{F}_p^n} \omega(u) \right)^{\frac{1}{2r-1}} \left(\sum_{u \in \mathbb{F}_p^n} | \sum_{z \in I} \chi(u+z)^{2r} \right)^{\frac{1}{2r}}.
$$

(2.11)

Since $$\sum \omega(u) = |B_0| \cdot |B|$$ and (2.9) holds, we have

$$
\left(\sum_{u} \omega(u)^{\frac{2r}{2r-1}} \right)^{\frac{1}{2r-1}} \leq \left[\sum \omega(u) \right]^{1-\frac{1}{2r}} \left[\sum \omega(u)^2 \right]^{\frac{1}{2r}}
$$

$$
< 2^{\frac{q(n+1)}{2r}} \left(|B_0| \cdot |B| \right)^{1-\frac{1}{2r}} \left(|B| \right)^{\frac{1}{2r}} \left(\log p \right)^{p-\frac{1}{2r} n \delta}.
$$

(2.12)

The first inequality follows from the following fact, which is proved by using Hölder’s inequality with $$\frac{2r}{2r-1} + \frac{1}{2r-1} = 1$$.

Fact 5. \(\left(\sum f(u)^{\frac{2r}{2r-1}} \right)^{\frac{1}{2r-1}} \leq \left[\sum f(u) \right]^{1-\frac{1}{2r}} \left[\sum f(u)^2 \right]^{\frac{1}{2r}}. \)

Proof. Write \(f(u)^{\frac{2r}{2r-1}} = f(u)^{\frac{2r-2}{2r-1}} f(u)^{\frac{2}{2r-1}}. \)

Next, we bound the second factor of (2.11).

Let

$$q = p^n.$$

Write

$$\sum_{u \in \mathbb{F}_p^n} \sum_{z \in I} | \chi(u+z)^{2r} | \leq \sum_{z_1, \ldots, z_{2r} \in I} \sum_{u \in \mathbb{F}_q^n} \chi((u+z_1) \ldots (u+z_r)(u+z_{r+1})^{q-2} \ldots (u+z_{2r})^{q-2}).$$

(2.13)

For \(z_1, \ldots, z_{2r} \in I \) such that at least one of the elements is not repeated twice, the polynomial \(f_{z_1, \ldots, z_{2r}}(x) = (x+z_1) \ldots (x+z_r)(x+z_{r+1})^{q-2} \ldots (x+z_{2r})^{q-2} \) clearly cannot be a \(d \)-th power. Since \(f_{z_1, \ldots, z_{2r}}(x) \) has no more that \(2r \) many distinct roots, Theorem W gives

$$\left| \sum_{u \in \mathbb{F}_q^n} \chi((u+z_1) \ldots (u+z_r)(u+z_{r+1})^{q-2} \ldots (u+z_{2r})^{q-2}) \right| < 2rp^{\frac{q}{2}}. \quad (2.14)$$

For those \(z_1, \ldots, z_{2r} \in I \) such that every root of \(f_{z_1, \ldots, z_{2r}}(x) \) appears at least twice, we bound \(\sum_{u \in \mathbb{F}_q^n} \chi(f_{z_1, \ldots, z_{2r}}(u)) \) by \(|\mathbb{F}_q| \) times the number of such \(z_1, \ldots, z_{2r} \). Since
there are at most \(r \) roots in \(I \) and for each \(z_1, \ldots, z_{2r} \) there are at most \(r \) choices, we obtain a bound \(|I| r^{2r} p^n \).

Therefore
\[
\sum_{u \in \mathbb{F}_p^n} | \sum_{z \in I} \chi(u + z) |^{2r} < |I| r^{2r} p^n + 2r |I|^2 p^{n/2} \tag{2.15}
\]
and
\[
\left(\sum_{u \in \mathbb{F}_p^n} | \sum_{z \in I} \chi(u + z) |^{2r} \right)^{1/2r} \leq r |I|^{1/2} p^{n/2r} + 2 |I| p^{n/2r}. \tag{2.16}
\]

Putting (2.7), (2.11), (2.12) and (2.16) together, we have
\[
\left| \sum_{x \in B} \chi(x + yz) \right| < 4^n (\log p) \left(|B_0| |B| \right)^{-1/2} \left(|B| \right)^{1 + \frac{11}{37} - \frac{12}{37} \frac{2 \delta}{|B|} \left(r |I|^{1/2} p^{n/2r} + 2 p^{n/2r} \right)}
\]
\[
< 4^n (\log p) p^{12n \delta - \frac{11}{37} \frac{n}{p^{n/2r}}} \left(|B| \right)^{1 - \frac{2}{37} \left(r p^{n/2r} + 2 p^{n/2r} \right)}
\]
\[
< 4^n (\log p) 2r p^{\frac{11}{37} - \frac{2}{37} \left(\frac{25}{2} + \delta \right) n} |B|
\]
\[
< 2 \cdot 4^n (\log p) r |B| p^{-\frac{5}{37} \left(\frac{25}{2} + \delta \right) (n - \delta)}. \tag{2.17}
\]

The second to the last inequality holds because of (2.3) and assuming \(\delta \geq n/2r \).

Let
\[
\delta = \frac{n}{2r}. \tag{2.18}
\]

To bound the exponent \(\frac{5}{37} \frac{n}{r} (\varepsilon - \delta) = \frac{5}{16} \varepsilon^2 \frac{n}{r \varepsilon} (2 - \frac{n}{r \varepsilon}) \), we let
\[
\theta = \frac{n}{\varepsilon r} - 1.
\]

Then by (2.10),
\[
|\theta| < \frac{1}{2r} < \frac{\varepsilon}{2n - \varepsilon} < \frac{3}{(10n - 3)} \leq \frac{3}{7},
\]
and
\[
\frac{5}{37} \frac{n}{r} (\varepsilon - \delta) = \frac{5}{16} \varepsilon^2 (1 + \theta)(1 - \theta) > \frac{25}{98} \varepsilon^2.
\]

Returning to (2.6), we have
\[
\left| \sum_{x \in B} \chi(x) \right| < c n \varepsilon^{-1} (\log p) p^{-25 \varepsilon^2} |B| < np^{-\frac{\varepsilon^2}{4}} |B| \tag{2.19}
\]
and thus proves Theorem 2'. □

Our next aim is to remove the additional hypothesis (2.1) on the shape of B. We proceed in several steps and rely essentially on a further key ingredient provided by a result of Nick Katz.

First we make the following observation (extending slightly the range of the applicability of Theorem 2').

Let $H_1 \geq H_2 \geq \cdots \geq H_n$. If $H_1 \leq p^{\frac{1}{2}+\frac{\epsilon}{2}}$, we may clearly write B as a disjoint union of boxes $B_{\alpha} \subset B$ satisfying the first condition in (2.1) and $|B_{\alpha}| > (\frac{1}{2}p^{-\frac{\epsilon}{2}})^n|B| > 2^{-n} p(\frac{\epsilon}{2}+\frac{\epsilon}{2})^n$. Since (2.1) holds for each B_{α}, we have

$$\left| \sum_{x \in B_{\alpha}} \chi(x) \right| < cnp^{-\tau}|B_{\alpha}|.$$

Hence

$$\left| \sum_{x \in B} \chi(x) \right| < cnp^{-\tau}|B|.$$

Therefore we may assume that $H_1 > p^{\frac{1}{2}+\frac{\epsilon}{2}}$.

Next we recall some results of Nick Katz.

Proposition K1. ([K1]) Let χ be a nontrivial multiplicative character of \mathbb{F}_q and let $g \in \mathbb{F}_q$ be a generating element, i.e. $\mathbb{F}_q = \mathbb{F}_p(g)$. Then

$$\left| \sum_{t \in \mathbb{F}_p} \chi(g + t) \right| \leq (n - 1) \sqrt{p} \quad (2.21)$$

It was pointed out by N. Katz that a similar result remains valid when an extra additive character appears.

Proposition K2. ([K2]) Under the same assumption as Proposition K1. We have

$$\max_a \left| \sum_{t \in \mathbb{F}_p} e_p(at) \chi(g + t) \right| \leq c(n) \sqrt{p}. \quad (2.22)$$

Following a standard argument, we may restate Proposition K2 for incomplete sums.
Proposition K3. Under the same assumption as Proposition K1. For any integral interval \(I \subset [1, p] \),

\[
| \sum_{t \in I} \chi(g + t) | \leq c(n) \sqrt{p} \log p \tag{2.23}
\]

Note that (2.23) is nontrivial as soon as \(|I| \gg \sqrt{p} \log p\).

Proof of Proposition K3. Let \(\mathbb{I}_I \) be the indicator function of \(I \). Write \(\mathbb{I}_I(t) = \sum_a \hat{\mathbb{I}}_I(a)e_p(at) \). Then

\[
| \sum_{t \in I} \chi(g + t) | \leq | \sum_a |\hat{\mathbb{I}}_I(a)| \sum_{t \in \mathbb{F}_p} \chi(g + t)e_p(at) | \leq c(n) \sqrt{p} \log p
\]

by Proposition K2. \(\square \)

Proof of Theorem 2.

Case 1. \(n \) is odd.

We denote \(I_i = [N_i + 1, N_i + H_i] \) and estimate using (2.23)

\[
\left| \sum_{x \in B} \chi(x) \right| = \left| \sum_{x_i \in I_i, x_i \in I_1, 2 \leq i \leq n} \chi(x_1 + x_2 \frac{\omega_2}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1}) \right| \leq c(n)p^{\frac{2}{3}} \log p \frac{|B|}{H_1} + (*), \tag{2.24}
\]

where

\[
(*) = \left| \sum_{x_i \in I_1, (x_2, \ldots, x_n) \in D} \chi(x_1 + x_2 \frac{\omega_2}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1}) \right| \tag{2.25}
\]

and

\[
D = \left\{ (x_2, \ldots, x_n) \in I_2 \times \cdots \times I_n : \mathbb{F}_p \left(x_2 \frac{\omega_2}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1} \right) \neq \mathbb{F}_q \right\}.
\]

In particular,

\[
(*) \leq p |D| \leq p \sum_G \left| G \cap \text{Span}_{\mathbb{F}_p} \left(\frac{\omega_2}{\omega_1}, \ldots, \frac{\omega_n}{\omega_1} \right) \right|,
\]

where \(G \) runs over nontrivial subfields of \(\mathbb{F}_q \). Since \(q = p^n \) and \(n \) is odd, obviously \(|\mathbb{F}_q : G| \geq 3 \). Hence \(|G : \mathbb{F}_p| \leq \frac{n}{3} \). Furthermore, since \(\{\omega_1, \ldots, \omega_n\} \) is a basis of \(\mathbb{F}_q \) over \(\mathbb{F}_p \), \(1 \not\in \text{Span}_{\mathbb{F}_p} \left(\frac{\omega_2}{\omega_1}, \ldots, \frac{\omega_n}{\omega_1} \right) \) and the proceeding implies that

\[
\dim_{\mathbb{F}_p} \left(G \cap \text{Span}_{\mathbb{F}_p} \left(\frac{\omega_2}{\omega_1}, \ldots, \frac{\omega_n}{\omega_1} \right) \right) \leq \frac{n}{3} - 1. \tag{2.26}
\]
Therefore, under our assumption on $|H_1|$, back to (2.24)

$$\left| \sum_{x \in B} \chi(x) \right| < c(n) \left((\log p)p^{-\frac{n}{2}} |B| + p^{\frac{3}{2}} \right)$$

$$< \left(c(n)(\log p)p^{-\frac{n}{2}} + p^{-\frac{n}{13}} \right) |B|,$$

since $|B| > p^{\frac{5}{8}n}$. This proves our claim.

We now treat the case when n is even. The analysis leading to the second part of Theorem 2 was kindly communicated by Andrew Granville to the author.

Case 2. n is even.

In view of the earlier discussion, our only concern is to bound

$$(\ast_2) = \left| \sum_{x_1 \in I_1} \sum_{(x_2, \ldots, x_n) \in D_2} \chi \left(x_1 + x_2 \frac{\omega_2}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1} \right) \right|$$

with

$$D_2 = \left\{ (x_2, \ldots, x_n) \in I_2 \times \cdots \times I_n : \left(x_2 \frac{\omega_2}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1} \right) \in F_2 \right\}$$

and F_2 the subfield of size $p^{n/2}$.

First, we note that since $1, \frac{\omega_2}{\omega_1}, \ldots, \frac{\omega_n}{\omega_1}$ are independent, $\frac{\omega_j}{\omega_1} \in F_2$ for at most $\frac{n}{2} - 1$ many j’s. After reordering, we may assume that $\frac{\omega_j}{\omega_1} \in F_2$ for $2 \leq j \leq k$ and $\frac{\omega_j}{\omega_1} \notin F_2$ for $k+1 \leq j \leq n$, where $k \leq \frac{n}{2}$. We also assume that $H_{k+1} \leq \ldots \leq H_n$. Fix x_2, \ldots, x_{n-1}.

Obviously there is no more than one value of x_n such that $x_2 \frac{\omega_2}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1} \in F_2$, since otherwise $(x_n - x'_n) \frac{\omega_n}{\omega_1} \in F_2$ with $x_n \neq x'_n$ contradicting the fact that $\frac{\omega_n}{\omega_1} \notin F_2$.

Therefore,

$$|D_2| \leq |I_2| \cdots |I_{n-1}| \quad (2.29)$$

and

$$(\ast_2) \leq \frac{|B|}{H_n}. \quad (2.30)$$

If $H_n > p^\tau$, we are done. Otherwise

$$H_{k+1} \cdots H_n \leq p^{(n-k)\tau}. \quad (2.31)$$
Define
\[B_2 = \left\{ x_1 + x_2 \frac{\omega_2}{\omega_1} + \cdots + x_k \frac{\omega_k}{\omega_1} : x_i \in I_i, 1 \leq i \leq k \right\}. \]

Hence \(B_2 \subset F_2 \) and by (2.31)
\[|B_2| > \frac{|B|}{H_{k+1} \cdots H_n} > p^{\left(\frac{2}{5} - \frac{\tau}{2}\right)n} > p^n. \] (2.32)

(We can assume \(\tau < \frac{2}{15} \).)

Clearly, if \((x_2, \ldots, x_n) \in D_2\), then \(z = x_{k+1} \frac{\omega_{k+1}}{\omega_1} + \cdots + x_n \frac{\omega_n}{\omega_1} \in F_2 \). Assume \(\chi|_{F_2} \) non-principal, it follows from the generalized Polya-Vinogradov inequality (proved as that of Proposition K3) and (2.32) that
\[
\left| \sum_{y \in B_2} \chi(y + z) \right| \leq (\log p)^{\frac{n}{2}} \max_{\psi} \left| \sum_{x \in F_2} \psi(x) \chi(x) \right| \leq (\log p)^{\frac{n}{2}} \cdot |F_2|^{\frac{1}{2}} \leq p^{-\frac{n}{13}} |B_2|, \] (2.33)
where \(\psi \) runs over all additive characters. Therefore, clearly
\[
(*)_2 \leq H_{k+1} \cdots H_n p^{-\frac{n}{13}} |B_2| = p^{-\frac{n}{13}} |B| \] (2.34)
providing the required estimate.

If \(\chi|_{F_2} \) is principal, then obviously
\[
(*)_2 = H_1 \cdot |D_2| = \left| F_2 \cap \frac{1}{\omega} B \right| \] (2.35)
and
\[
\left| \sum_{x \in B} \chi(x) \right| = |F_2 \cap B| + O_n(p^{-\tau}|B|). \] (2.36)

This complete the proof of Theorem 2. \(\square\)

Remark 2.1. The conclusion of Theorem 2 certainly holds, if we replace the assumption of \(\prod_{j=1}^{n} H_j > p^{(\frac{2}{5} + \varepsilon)n} \) by the stronger assumption
\[
p^{\frac{2}{5} + \varepsilon} < H_j \text{ for all } j. \] (2.37)
This improves on Theorem 2 of [DL] for \(n > 4 \). In [DL], the condition \(H_j > p^{\frac{n}{2(n+1)}} \) is required. Our assumption (2.37) is independent of \(n \), while, in the [DL] result, when \(n \) goes to \(\infty \), the exponent \(\frac{n}{2(n+1)} \) goes to \(\frac{1}{2} \).

§3. **Distribution of primitive roots.**

Theorem 2 allows us to evaluate the number of primitive roots of \(\mathbb{F}_{p^n} \) that fall into \(B \).

We denote the Euler function by \(\phi \).
Corollary 3. Let \(B \subseteq \mathbb{F}_p^n \) be as in Theorem 2 and satisfying \(\max_\xi |B \cap \xi F_2| < p^{-\varepsilon} |B| \) if \(n \) even. The number of primitive roots of \(\mathbb{F}_p^n \) belonging to \(B \) is

\[
\frac{\varphi(p^n-1)}{p^n-1} |B| \left(1 + o(p^{-\tau'})\right)
\]

(3.1)

where \(\tau' = \tau'(\varepsilon) > 0 \) and assuming \(n \ll \log \log p \).

The deduction from Theorem 2 follows the argument of Burgess [Bu2]. We include it here for the readers’ convenience.

Proof. Let \(p_1, \ldots, p_s \) be all the distinct primes of \(p^n - 1 \) and let \(H_{p_i} < \mathbb{F}_p^n \) be the subgroup of order \(|H_{p_i}| = \frac{p^n - 1}{p_i} \). Then \(\alpha \) is a primitive root of \(\mathbb{F}_p^n \) if and only if \(\prod (1 - \mathbb{I}_{H_{p_i}}(\alpha)) = 1 \), where \(\mathbb{I}_H \) is the indicator function of \(H \).

Let

\[
m = p_1 \cdots p_s.
\]

Then

\[
\prod (1 - \mathbb{I}_{H_{p_i}}) = \sum_{r \geq 0} (-1)^r \sum_{i_1 < \cdots < i_r} \mathbb{I}_{H_{p_{i_1}} \cap \cdots \cap H_{p_{i_r}}}
\]

\[
= \sum_{d | p^n - 1} \mu(d) \mathbb{I}_{H_d}
\]

\[
= \sum_{d | m} \mu(d) \mathbb{I}_{H_d}.
\]

Here \(\mu \) is the Möbius function. (Recall that \(\mu(d) = (-1)^r \), if \(d \) is the product of \(r \) distinct primes, \(\mu(d) = 0 \) otherwise.)

Observe that

\[
\mathbb{I}_{H_d} = \frac{1}{d} \sum_{\chi^d = 1} \chi = \frac{1}{d} \sum_{d_1 | d} \sum_{\chi \in \mathcal{E}_{d_1}} \chi,
\]

where \(\chi \) is a multiplicative character and \(\mathcal{E}_{d_1} = \{ \chi : \text{ord}(\chi) = d_1 \} \).

Then

\[
\sum_{d | m} \mu(d) \left(\frac{1}{d} \sum_{d_1 | d} \sum_{\chi \in \mathcal{E}_{d_1}} \chi\right) = \sum_{d_1 | m} \frac{\mu(d_1)}{d_1} \left(\sum_{\chi \in \mathcal{E}_{d_1}} \chi\right) \left(\sum_{r | \frac{m}{d_1}} \frac{\mu(r)}{r}\right)
\]

\[
= \frac{\phi(p^n - 1)}{p^n - 1} \sum_{d_1 | m} \frac{\mu(d_1)}{\phi(d_1)} \left(\sum_{\chi \in \mathcal{E}_{d_1}} \chi\right)
\]

\[
= \frac{\phi(p^n - 1)}{p^n - 1} \sum_{d_1 | p^n - 1} \frac{\mu(d_1)}{\phi(d_1)} \left(\sum_{\chi \in \mathcal{E}_{d_1}} \chi\right).
\]
The second identity is because
\[\sum_{r | \frac{m}{d_1}} \frac{\mu(r)}{r} = \prod_{p_i | \frac{m}{d_1}} \left(1 - \frac{1}{p_i} \right) = \frac{\phi(m)}{m} = \frac{d_1 \phi(p^n - 1)}{p^n - 1}. \]

Let \(k \) be the number of primitive roots of \(\mathbb{F}_{p^n} \) in the box \(B \). Then
\[
k = \frac{\phi(p^n - 1)}{p^n - 1} \sum_{a \in B} \sum_{d | p^n - 1} \frac{\mu(d)}{\phi(d)} \left(\sum_{\chi \in E_d} \chi(a) \right)
= \frac{\phi(p^n - 1)}{p^n - 1} \left(|B| + \sum_{d | p^n - 1} \sum_{d > 1} \frac{\mu(d)}{\phi(d)} \left(\sum_{\chi \in E_d} \sum_{a \in B} \chi(a) \right) \right).
\]

Hence, by Theorem 2,
\[
\left| k - \frac{\phi(p^n - 1)}{p^n - 1} |B| \right| < \frac{\phi(p^n - 1)}{p^n - 1} \sum_{d | p^n - 1} \frac{1}{\phi(d)} \phi(d) p^{-\tau} |B|
< \frac{\phi(p^n - 1)}{p^n - 1} \exp \left(\frac{\log p^n}{\log \log p^n} \right) p^{-\tau} |B|. \quad \square
\]

Remark 3.1. In the case of a prime field \((n = 1)\), Burgess theorem (see [Bu1]) requires the assumption \(H > p^{\frac{1}{4} + \varepsilon} \), for some \(\varepsilon > 0 \), which seems to be the limit of this method. For \(n > 1 \), the exact counterpart of Burgess’ estimate seems unknown in the generality of an arbitrary basis \(\omega_1, \ldots, \omega_n \) of \(\mathbb{F}_{p^n} \) over \(\mathbb{F}_p \), as considered in [DL] and here. Higher dimensional results of the strength of Burgess seem only known for certain special basis (see [Bu3] when \(n = 2 \) and basis of the form \(\omega_j = g^j \) with given \(g \) generating \(\mathbb{F}_{p^n} \), see [Bu4] and [Kar]).

§4. Some further implications of the method.

In what follows, we only consider for simplicity the case of a prime field (several statements below have variants over a general finite field, possibly with worse exponents).

4.1. Recall that a generalized \(d \)-dimensional arithmetic progression in \(\mathbb{F}_p \) is a set of the form
\[
P = a_0 + \left\{ \sum_{j=1}^d x_j a_j : x_j \in [0, N_j - 1] \right\}
\]
for some elements $a_0, a_1, \ldots, a_d \in \mathbb{F}_p$. If the representation of elements of \mathcal{P} in (4.1) is unique, we call \mathcal{P} proper. Hence \mathcal{P} is proper if and only if $|\mathcal{P}| = N_1 \cdots N_d$ (which we assume in the sequel).

Assume $|\mathcal{P}| < 10^{-d} \sqrt{p}$, hence $\mathbb{F}_p \not= \frac{\mathbb{F}_p - \mathcal{P}}{\mathcal{P} - \mathcal{P}}$ (in the considerations below, $|\mathcal{P}| \ll p^{1/2}$ so that there is no need to consider the alternative $|\mathcal{P}| \gg p^{1/2}$). Following the argument in [KS1] (or the proof of Proposition 1), we have

$$E(\mathcal{P}, \mathcal{P}) < c_d (\log p)|\mathcal{P}|^{11/4}.$$
(4.2)

Also, repeating the proof of Theorem 2, we obtain

Theorem 4. Let \mathcal{P} be a proper d-dimensional generalized arithmetic progression in \mathbb{F}_p with

$$|\mathcal{P}| > p^{2/5 + \varepsilon}$$
(4.3)

for some $\varepsilon > 0$. If \mathcal{X} is a nontrivial multiplicative character of \mathbb{F}_p, we have

$$\left| \sum_{x \in \mathcal{P}} \mathcal{X}(x) \right| < p^{-\tau} |\mathcal{P}|$$
(4.4)

where $\tau = \tau(\varepsilon, d) > 0$ and assuming $p > p(\varepsilon, d)$.

Theorem 4 is another extension of Burgess’ inequality. A natural problem is to try to improve the exponent $\frac{2}{5}$ in (4.3) to $\frac{1}{4}$.

Let us point out one consequence of Theorem 4 which gives an improvement of a result in [HIS]. (See [HIS], Corollary 1.3.)

Corollary 5. Given $C > 0$ and $\varepsilon > 0$, there is a constant $c = c(C, \varepsilon) > 0$ and a positive integer $k < k(\varepsilon)$, such that if $A \subset \mathbb{F}_p$ satisfies

(i) $|A + A| < C|A|$

(ii) $|A| > p^{\frac{2}{5} + \varepsilon}$.

Then we have

$$|A^k| > cp.$$

Proof.

According to Freiman’s structural theorem for sets with small doubling constants (see [TV]), under assumption (i), there is a proper generalized d-dimensional progression \mathcal{P} such that $A \subset \mathcal{P}$ and
\[d \leq C \quad (4.5) \]

\[\log \frac{|\mathcal{P}|}{|A|} < C^2 (\log C)^3 \quad (4.6) \]

By assumption (ii), Theorem 4 applies to \(\mathcal{P} \). Let \(\tau \) be as given in Theorem 4. We fix
\[k \in \mathbb{Z}_+, \quad k > \frac{1}{\tau}. \quad (4.7) \]
(Hence \(k > k(\varepsilon) \).) Denote by \(\nu \) the probability measure on \(\mathbb{F}_p \) obtained as the image measure of the normalized counting measure on the \(k \)-fold product \(\mathcal{P}^k \) under the product map
\[
\mathcal{P} \times \cdots \times \mathcal{P} \longrightarrow \mathbb{F}_p
\]
\[
(x_1, \ldots, x_k) \longmapsto x_1 \cdots x_k.
\]

Hence by the Fourier inversion formula, we have
\[
\nu(x) = \frac{1}{p-1} \sum_{\chi} \chi(x) \hat{\nu}(\chi)
\]
\[
= \frac{1}{p-1} \sum_{\chi} \chi(x) \left(\sum_{t} \nu(t) \bar{\nu}(t) \right)
\]
\[
= \frac{|\mathcal{P}|^{-k}}{p-1} \sum_{\chi} \chi(x) \left(\sum_{y \in \mathcal{P}} \bar{\chi}(y) \right)^k
\]
\[
\leq \frac{|\mathcal{P}|^{-k}}{p-1} \sum_{\chi} \left| \sum_{y \in \mathcal{P}} \chi(y) \right|^k,
\]
\(\chi \) denoting a multiplicative character.

Applying the circle method and (4.4), we get
\[
\max_{x \in \mathbb{F}_p^*} \nu(x) \leq \frac{1}{p-1} + \max_{\chi \text{ nontrivial}} |\mathcal{P}|^{-k} \left| \sum_{x \in \mathcal{P}} \chi(x) \right|^k
\]
\[
< \frac{1}{p-1} + p^{-\tau k}
\]
\[
< \frac{2}{p}. \quad (4.8)
\]
The last inequality is by (4.7). Assuming $A \subset \mathbb{F}_p^\ast$, we write

$$|A|^k \leq |A| \max_{x \in \mathbb{F}_p^\ast} \left| \{(x_1, \ldots, x_k) \in A \times \cdots \times A : x_1 \cdots x_k = x \} \right|$$

$$\leq |A|^k \left| \mathcal{P} \right|^k \max_{x \in \mathbb{F}_p^\ast} \nu(x)$$

implying by (4.6) and (4.8)

$$|A|^k > \left(\frac{|A|}{|\mathcal{P}|} \right)^k \frac{p}{2} > \frac{p}{2} \exp \left(- kC^2 (\log C)^3 \right) > c(C, \varepsilon)p.$$

This proves Corollary 5. □

4.2. Recall the well-known Paley Graph conjecture stating that if $A, B \subset \mathbb{F}_p, |A| > p^{\varepsilon}, |B| > p^{\varepsilon}$, then

$$\left| \sum_{x \in A, y \in B} \chi(x+y) \right| < p^{-\delta} |A| |B|$$ (4.9)

where $\delta = \delta(\varepsilon) > 0$ and χ a nontrivial multiplicative character.

An affirmative answer is only known in the case $|A| > p^{1/2 + \varepsilon}, |B| > p^{\varepsilon}$ for some $\varepsilon > 0$ (as a consequence of Weil’s inequality (2.14)). Even for $|A| > p^{1/2}, |B| > p^{1/2}$, an inequality of the form (4.9) seems unknown.

Next result provides a statement of this type, assuming A or B has a small doubling constant.

Theorem 6. Assume $A, B \subset \mathbb{F}_p$ such that

(a) $|A| > p^{\frac{1}{2} + \varepsilon}, |B| > p^{\frac{1}{2} + \varepsilon}$

(b) $|B + B| < K|B|$.

Then

$$\left| \sum_{x \in A, y \in B} \chi(x+y) \right| < p^{-\tau} |A| |B|,$$

where $\tau = \tau(\varepsilon, K) > 0, p > p(\varepsilon, K)$ and χ is a nontrivial multiplicative character of \mathbb{F}_p.

Proof.

The argument is a variant of the proof of Theorem 2, so we will be brief. The case $|B| > p^{1/2 + \varepsilon}$ is taken care of by Weil’s estimate (2.14). Since we can dissect B into $\leq p^\varepsilon$
subsets satisfying assumptions (a) and (b), we may assume that \(|B| < \frac{1}{2}(\sqrt{p} - 1)\). We denote the various constants (possibly depending on the constant \(K\) in assumption (b)) by \(C\).

Let \(B_1\) be a generalized \(d\)-dimensional proper arithmetic progression in \(\mathbb{F}_p\) satisfying \(B \subset B_1\) and \(d \leq K\) (4.10)

\[\log \frac{|B_1|}{|B|} < C. \] (4.11)

Let

\[B_2 = (-B_1) \cup B_1. \]

We take \(\delta = \frac{\varepsilon}{4d}, r = \left\lfloor \frac{10}{\delta} \right\rfloor \) (4.12)

Similar to the proof of Theorem 2, we take a proper progression \(B_0 \subset B_2 \subset \mathbb{F}_p\) and an integral interval \(I = [1, p^\delta]\) with the following properties

\[|B_0| > p^{-2d\delta}|B_2| \]

\[B - B_0 I \subset B_2. \] (4.13)

Therefore,

\[|B| \leq |B_1| \leq e^{C(K)}|B| \quad \text{and} \quad |B_2| = 2|B_1| - 1. \] (4.14)

Estimate

\[
\left| \sum_{x \in A, y \in B} \chi(x + y) \right| \leq \sum_{y \in B} \left| \sum_{x \in A} \chi(x + y) \right| \\
\leq |B_0|^{-1}|I|^{-1} \sum_{y \in B_2} \sum_{z \in B_0, t \in I} \left| \sum_{x \in A} \chi(x + y + zt) \right|. \] (4.15)

The second inequality is by (4.13). Write

\[
\sum_{y \in B_2} \sum_{x \in A} \chi(x + y + zt) \leq \left(|B_2| |B_0| |I| \right)^{\frac{1}{2}} \sum_{y \in B_2, z \in B_0, t \in I} \chi \left(\frac{(x_1 + y)z^{-1} + t}{(x_2 + y)z^{-1} + t} \right)^{\frac{1}{2}}. \] (4.16)
The sum on the right-hand side of (4.16) equals
\[
\left| \sum_{u_1, u_2 \in \mathbb{F}_p} \nu(u_1, u_2) \sum_{t \in I} \chi \left(\frac{u_1 + t}{u_2 + t} \right) \right|
\leq \left[\sum_{u_1, u_2} \nu(u_1, u_2) \right]^{\frac{2r}{2r-1}} \left[\sum_{u_1, u_2} \left| \sum_{t \in I} \chi \left(\frac{u_1 + t}{u_2 + t} \right) \right|^{2r} \right]^{\frac{1}{2r}}
\] (4.17)
where for \((u_1, u_2) \in \mathbb{F}_p^2\) we define
\[
\nu(u_1, u_2) = \left| \{(x_1, x_2, y, z) \in A \times A \times B_2 \times B_0 : \frac{x_1 + y}{z} = u_1 \text{ and } \frac{x_2 + y}{z} = u_2 \} \right|.
\] (4.18)
Hence
\[
\sum_{u_1, u_2} \nu(u_1, u_2) = |A|^2 |B_2| |B_0|
\] (4.19)
and
\[
\sum_{u_1, u_2} \nu(u_1, u_2)^2
= \left| \{(x_1, x_2, x'_2, y, y', z, z') \in A^4 \times B_2^2 \times B_0^2 : \frac{x_i + y}{z} = \frac{x_i' + y'}{z'} \text{ for } i = 1, 2 \} \right|
\leq |A|^3 \max_{x_i, x'_i} \left| \{(y, y', z, z') \in B_2^2 \times B_0^2 : \frac{x_1 + y}{z} = \frac{x'_1 + y'}{z'} \} \right|
\leq |A|^3 E(B_0, B_0)^{\frac{1}{2}} \max_{x} E(x + B_2, x + B_2)^{\frac{1}{2}}
< |A|^3 \log p |B_0|^{\frac{11}{8}} |B_2|^{\frac{11}{8}}
< C|A|^3 |B_2|^{\frac{11}{8}}
\] (4.20)
by Proposition 1, Fact 1 and several applications of the Cauchy-Schwarz inequality. Therefore, by Fact 5 (after (2.12)), (4.19) and (4.20) , the first factor of (4.17) is bounded by
\[
\left[\sum \nu(u_1, u_2) \right]^{\frac{1}{2r}} \left[\sum \nu(u_1, u_2)^2 \right]^{\frac{1}{2r}}
\leq C|A|^2 |B_2| |B_0|(|A|^{- \frac{1}{2}} |B_2|^{- \frac{1}{2}} p^{2d\delta})^{\frac{1}{7}}.
\] (4.21)
Next, write using Weil’s inequality (2.14)
\[
\sum_{u_1, u_2 \in \mathbb{F}_p} \left| \sum_{t \in I} \chi \left(\frac{u_1 + t}{u_2 + t} \right) \right|^{2r}
\leq \sum_{t_1, \ldots, t_{2r} \in I} \left| \sum_{u \in \mathbb{F}_p} \chi \left(\frac{(u + t_1) \cdots (u + t_r)}{(u + t_{r+1}) \cdots (u + t_{2r})} \right) \right|^2
\leq p^2 |I|^r r^{2r} + Cr^2 p |I|^{2r},
\] (4.22)
so that the second factor in (4.17) is bounded by

\[Crp^{\frac{1}{2}} |I|^{\frac{1}{2}} + Cp^{\frac{1}{2r}} |I|. \]

(4.23)

Applying (4.14) and collecting estimates (4.16), (4.17), (4.21), (4.23) and assumption (a), we bound (4.15) by

\[\left| \sum_{x \in A, y \in B} \chi(x + y) \right| < C |A| |B| |I|^{-\frac{1}{2}} (|A|^{-\frac{1}{2}} |I|^{-\frac{1}{2}} p^{2d\delta})^\frac{1}{2r} (\sqrt{r} p^{\frac{1}{2r}} |I|^{\frac{1}{2}} + p^{\frac{1}{2r}} |I|^{\frac{1}{2}}) \]

\[< C \sqrt{r} |A| |B| (p^{-(\frac{1}{2} + \epsilon)^2 + 2d\delta})^\frac{1}{2r} (p^{\frac{1}{2r} - \frac{\delta}{2}} + p^{\frac{1}{2r}}) \]

\[< C \sqrt{r} |A| |B| (p^{\frac{1}{2} - \frac{\epsilon}{2} + 2d\delta - \frac{\delta}{2} r} + p^{-\frac{9}{8} \epsilon + 2d\delta})^\frac{1}{2r}. \]

(4.24)

Recall (4.12). The theorem follows by taking \(\tau(\epsilon) = \frac{\epsilon^2}{128K} \) \(\square \).

Next, we consider the special case \(A \subset \mathbb{F}_p \) and \(I \subset \mathbb{F}_p \) an interval. First, we begin with the following technical lemma.

Lemma 7. Let \(A \subset \mathbb{F}_p^* \) and let \(I_1, \ldots, I_s \) be intervals such that \(I_i \subset [1, p^{\frac{1}{ki}}] \). Denote

\[w(u) = \left| \{(y, z_1, \ldots, z_s) \in A \times I_1 \times \cdots \times I_s : y \equiv uz_1 \cdots z_s \pmod{p}\} \right| \]

(4.25)

and

\[\gamma = \frac{1}{k_1} + \cdots + \frac{1}{k_s}. \]

(4.26)

Then

\[\sum w(u)^2 < |A|^{1+\gamma} p^{\gamma + \frac{s}{\log \log p}}. \]

Proof. Using multiplicative characters and Plancherel, we have

\[\sum w(u)^2 = \frac{1}{p - 1} \sum_{\chi} \langle w, \chi \rangle^2, \]

(4.27)

where

\[\langle w, \chi \rangle = \sum_{y \in A} \overline{\chi(y)} \chi(z_1) \cdots \chi(z_s). \]

Hence

\[\left| \langle w, \chi \rangle \right| = \left| \sum_{y \in A} \chi(y) \prod_{i} \left| \sum_{z_i \in I_i} \chi(z_i) \right| \right|. \]
Using generalized Hölder inequality with $1 = (1 - \gamma) + \frac{1}{k_1} + \cdots + \frac{1}{k_s}$, we have

$$
\sum w(u)^2 = \frac{1}{p-1} \sum \left| \sum_{y \in A} \chi(y) \right|^2 \prod_{i} \left| \sum_{z_i \in I_i} \chi(z_i) \right|^2 \leq \frac{1}{p-1} \left(\sum \left| \sum_{y \in A} \chi(y) \right|^\frac{2}{1-\gamma} \prod_{i} \left(\sum \left| \sum_{z_i \in I_i} \chi(z_i) \right| \right) \right)^\frac{2}{k_i}.
$$

(4.28)

Now we estimate different factors. Writing the exponent as $\frac{2}{1-\gamma} = 2\gamma + 1$ and using the trivial bound, we have

$$
\sum \left| \sum_{y \in A} \chi(y) \right|^\frac{2}{1-\gamma} \leq |A|^{\frac{2\gamma}{1-\gamma}} \sum \left| \sum_{y \in A} \chi(y) \right|^2 = |A|^{\frac{2\gamma}{1-\gamma}} \sum_{y,z \in A} \sum \chi(y z^{-1}) = p|A|^{\frac{1+\gamma}{1-\gamma}}.
$$

(4.29)

For an interval $I \subset [1, p^{\frac{1}{k_i}}]$, we define

$$
\eta(u) = \left| \{(z_1, \ldots, z_k) \in I \times \cdots \times I : z_1 \ldots z_k \equiv u \ (\text{mod } p)\} \right|.
$$

Since $z_1 \ldots z_k \equiv z'_1 \ldots z'_k \ (\text{mod } p)$ implies $z_1 \ldots z_k \equiv z'_1 \ldots z'_k \in \mathbb{Z}$, $\eta(u) < \left(\exp \left(\frac{\log p}{\log \log p} \right) \right)^k$. On the other hand $\sum \eta(u) < (p^k)^k = p$. Therefore,

$$
\sum \left| \sum_{z \in I} \chi(z) \right|^{2k} = \sum \left(\sum_{u} \eta(u) \chi(u) \right)^2 = \sum \langle \eta, \chi \rangle^2 = (p-1) \sum \eta(u)^2 < p^{2+\frac{k}{\log \log p}}.
$$

(4.30)

Putting (4.28)-(4.30) together, we have the lemma. □

Theorem 8. Let $A \subset \mathbb{F}_p$ be a subset with $|A| = p^\alpha$ and let $I \subset [1, p]$ be an arbitrary interval with $|I| = p^\beta$, where

$$
\alpha(1 - \beta) + \beta > \frac{1}{2} + \delta
$$

(4.31)

and $\beta > \delta > 0$. Then for a non-principal multiplicative character χ, we have

$$
\left| \sum_{\substack{x \in I \\ y \in A}} \chi(x+y) \right| < p^{-\frac{\alpha}{2}} |A| \cdot |I|.
$$

Proof. Let

$$
\tau = \frac{\delta}{26}
$$

(4.32)
and
\[R = \left\lceil \frac{1}{2\tau} \right\rceil. \] (4.33)

Choose \(k_1, \ldots, k_s \in \mathbb{Z}^+ \) such that
\[2\tau < \beta - \sum_i \frac{1}{k_i} < 3\tau. \] (4.34)

Denote
\[I_0 = [1, p^\tau], \quad I_i = [1, p^{k_i}] \quad (1 \leq i \leq s). \]

We perform the Burgess amplification as follows. First, for any \(z_0, \ldots, z_s \in I_s \),
\[\sum_{x \in I, y \in A} \chi(x + y) = \sum_{x \in I, y \in A} \chi(x + y + z_0z_1 \ldots z_s) + O(|A|p^{\beta - \tau}). \]

Letting \(\gamma = \sum_i \frac{1}{k_i} \), we have
\[
\left| \sum_{x \in I, y \in A} \chi(x + y + z_0z_1 \ldots z_s) \right| = p^{-\gamma - \tau} \left| \sum_{x \in I, y \in A} \chi(x + y + z_0z_1 \ldots z_s) \right| \\
\leq p^{-\gamma - \tau} \sum_{x \in I, y \in A} \left| \sum_{z_0 \in I_0} \chi(x + y + z_0z_1 \ldots z_s) \right| \\
\leq p^{\beta - \gamma - \tau} \max_{x \in I} \sum_{y \in A} \left| \sum_{z_0 \in I_0} \chi \left(\frac{x + y}{z_1 \ldots z_s} + z_0 \right) \right|. \] (4.35)

Fix \(x \in I \) achieving maximum in (4.35), and replace \(A \) by \(A_1 = A + x \). Denote \(w(u) \) the function (4.25) with \(A \) replaced by \(A_1 \). Hence (4.35) is
\[
p^{\beta - \gamma - \tau} \sum_u |w(u)| \sum_{z \in I_0} \left| \chi(u + z) \right|. \] (4.36)

By (4.36), Hölder inequality, Fact 5 and Weil estimate (cf (2.16)), (4.35) is bounded by
\[
p^{\beta - \gamma - \tau} \left(\sum_u |w(u)|^{2R - \tau} \right)^{\frac{1-\tau}{2R}} \left(\sum_u \left| \sum_{z \in I_0} \chi(u + z) \right|^{2R} \right)^{\frac{1}{2R}} \\
\leq p^{\beta - \gamma - \tau} \left[\sum_u |w(u)| \right]^{1-\frac{1}{2R}} \left[\sum_u |w(u)|^{2R} \right]^\frac{1}{2R} \left(R|I_0|^\frac{1}{2} p^{\frac{\beta - \gamma - \tau}{2}} + 2|I_0|p^{\frac{\beta - \gamma - \tau}{2}} \right) \\
\ll p^{\alpha + \beta - \frac{1}{2R} (\delta - 3\tau - \frac{1}{\log \log p})} < |A||I|^p < \frac{|A||I|^p}{27}. \]
In the last inequalities, we use \(|\sum w(u)| = |A|p^\gamma, (4.31)-(4.34)\) and Lemma 7. □

Acknowledgement. The author is grateful to Andrew Granville for removing some additional restriction on the set \(B\) in Theorem 2 in an earlier version of the paper, and to the referee for many helpful comments. The author would also like to thank J. Bourgain and Nick Katz for communication on Propositions K1-K3, and Gwoho Liu for assistance.

References

