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Abstract

Let p be a sufficiently large prime and (L;)i<i<n & nondegenerate
system of linear forms in n variables over F,. We establish a nontrivial
estimate on the incomplete character sum

n

> x([Iew),

z€]ljzy [ai,ai+H] J=1
provided H > p%*’g.

Résume

Soit p un nombre premier suffisamment grand et (L;)1<;<n un systéme
non-dégénéré de formes linéaires sur F, en n variables. Nous obnons une
estimée non-triviale de la somme incompléte

n

> x([[nw),

€[5 [as,a;+H] J=1

ot X # 1 est un charactére multiplicative (mod p) et H > p%“.

Version Fransaise abrégée

Soit p un nombre premier et (L;)i1<;<, un systéme non-dégénéré de formes

linéaires en x1,...,z, € F, . Soit X # 1 un charactere multiplicatif (modp) et
n
5= 2 X ( I1 Lj(ﬂ?))-
z€l[i, [ai,a;+H] j=1

Nous établissons une estimée non-triviale sur S sous 'hyppothese H > p%"‘s.
Ceci généralize I'inégalité classique de Burgess [Burl] pour n = 1, le résultat
obtenu dans [Ch2] pour n = 2 et améliore la condition H > p%_mﬁ de
[Bur2] I’Outile principale dans la démonstration est la géométrie des nombres
et une approche initiée dans [K].



0 Introduction

Let p be a large prime and let (L;)1<i<n be n linearly independent forms in
Ti,..., Ty €TFp.

For X a nontrivial multiplicative character (mod p), we consider incomplete
sums of the form

S = 3 X( - Lj(z)). (0.1)

ze[[iL, [aiai+H] J
For n = 1, Burgess’ classical inequality provides an estimate
S| <p™°H (0.2)

if H> pite, where § = 6(e) > 0 (see [Burl]).

In [Bur2] an estimate of the form (0.2) is established for n = 2 and H > p3+<
and in the general case for H > péfﬁ%, (See also [Chl].) If n = 2, a result

of the same strength as Burgess theorem for n = 1 (i.e. assuming H > p%“)
was obtained in [Ch2]. Here we extend that result to the general dimension n.

Theorem. Assume H > pi+e. Then
|S| < p °H" (0.3)
with 6 = d,(¢) > 0.

Let us emphasize that the estimate (0.3) (as well as [Ch2]) is uniform in
(Li)i<i<n-

The approach is based on the ‘shifted product’ technique (standard in this
type of problem) and an estimate on ‘multiplicative energy’ which is the new
ingredient. Compared with [Ch2] for n = 2, the technique involved here is quite
different. In [Ch2], the problem is reduced to uniform estimates for divisor func-
tions in quadratic number fields while here we rely on methods from geometry
of numbers. This approach to the multiplicative energy originates from recent
work of S. Konyagin [K] and [Chl], [Ch2] on the Davenport-Lewis problem on
incomplete character sums over boxes in fields .

Acknowledgement: The authors are grateful to S. Konyagin for making his
preprint available.

1 Burgess Method

Fori=1,...,n,let
Li = (€i71,...7€i7n) cz”



and assume
det(L;,...L,) £0 (modp). (1.0)

Our aim is to bound nontrivially

> ox (f[l Lix> (1.1)

xEBpy

where
Bp=B" ={zelp)":a;<z;i<a;+H(1<i<n)},

and clearly, L;z is the inner product (L;, z).

Following Burgess’ method, first we replace « by x4ty with 1 <t < p3,y €
Bj—-g and estimate

(L)< @)™ s Y X(H(Lix + tLZ-y)> +Cp EH™
xEBHJJEBp—sH
t<p%
In the sum we may restrict =,y requiring L;z # 0, L;y # 0(modp) for i =
1,...,n.

Estimate the sum by

DD Y|

Lix
t+
Ly
a:GBH,yGBp,EH t<ps/2

=Y nzam)| DX (H(t+zi)> ‘ (1.2)

z€Fy t<pe/2 i=1

n
1=

1

and denoting
(21, .y 2n)
=|{(z,y) € By X By : Lixz = z;Lyyy (modp) fori =1,...,n}| (1.3)
where, from the preceding, z1,..., 2z, #Z 0 (modp).
Applying Burgess’ technique, it then suffices to establish a bound

> n*(2) <p 2 |Bul?By-cpl’p (1.4)

Z€Fn
for some ¢ > 0.
Thus we need H to satisfy
{(z,y,2',y") € By : Liz, Liz', Lyy, Lyy' # 0 (modp), and

Lixz Lyy = Lya' Ly (modp) fori=1,...,n}| < p 2 9H"
(1.5)



for some § > 0.

Note that in the definition of Bpy, it suffices to consider the case where
a; =0(1<i<n).

2 Lattices and Geometry of Numbers

Fix z = (z1,...,2,) € (F3)™ and introduce the lattice £, C Z*"
L. ={(z,y) € Z*": Lijy = z;Liz(modp) fori =1,...,n}. (2.1)

Let A\; < Ay < --- < Mg, be the successive minima of B = [—1,1]?" with respect
to L£,. By Minkowski’s second theorem

Al ‘e /\Qn ~ Vol Ez = pn (22)

where ~ involves factors that are dependent on n.

Define 1 < s < 2n by

)\1,...,)\S<H,/\S+1 > H. (23)
If uy,...,u2, € L, |u;| = \;, and Eg = span (uq,...,us) in R?" one has
*/H
|(By x By) N L.| ~ |(By xBH)ﬂ,CZﬁE3|~H<y). (2.4)

i=1
The dual lattice £} is defined as

Lr={z¢€ R2" . (x,y) € Ztorally € L,}.

Obviously pZ** C L. Tt follows that for = = (z1,...,72,) € L, (x,Z?") C
%Z, and hence z; € %Z (1 <i<2n). Denote

L. = pL:.
Hence £/, C Z?" and
L, ={xeZ: (z,y) =0(modp) for all y € L.}.
Denoting A the (n x n)=matrix (L;)1<i<n, we have
L. ={(u,v) € Z*" : Au= z- Av(modp)} (2.5)

and
Lo={(z,y) € Z*" : (A Yz =—2- (A1) *y (modp)}. (2.6)



Here - indicates the product in the ring F, x --- x F,. We will omit it, when
there is no ambiguity.

The successive minima A} < --. < A3 of £} satisfy for 1 <7 < 2n
AN ~ 1 (2.7)
(cf. [Le]). Denoting p; = pA; the successive minima of £/, it follows
Aittant+1—i ~p (1 <i<2n). (2.8)
From (2.4), (2.2) and (2.8),
H® H® 1

(Brz x Br) 0 L] ~ g A [ - - fon—s 29)

and if s = 2n )

|(BH><BH)ﬂ£Z|N —. (210)
Let uj,...,ub, € L., |u}| = u;. Note that by (2.3), (2.8) we get
p p
nes S = Uop_sil 2 . 2.11
My eey K2 NHltz +1R ( )
Denoting Ef, . = span (uf,...,ub,_,), it follows that
2n—s D
By x BN LU~ [(By x BN £Ln B~ T (57,)
i=1 *
and recalling (2.9)
p’ﬂ
|(B% XB%)QEHNWKBHXBH)QEZL (2.12)
We emphasize that
|(BHXBH)H£Z|N|(BHXBH)HLZHES‘ (213)
and
‘(B%XB%)HL‘,IZ|N|(B%XB%)ﬂﬁlzﬂEéniJ (2.14)

where Ey (resp. FE},_.) is an s-dim (resp. (2n — s) — dim) subspace of R?".
Clearly either s < n or 2n — s < n holds. It will be exploited later on.



3 Some Inequalities

Returning to (1.5) and with A = (L;)1<;<n as above, we need to bound

H(z,y,2',y') € By : Az - Ay = Az’ - Ay (mod p)}|. (3.1)
It will be useful to generalize the setting a bit. We consider sets of the form
{(z,y,2",y') € By : Ayx- A,y = A2’ - A,y (mod p)} (3.2)
with A,, As, A;, A, € Mat,, «,(Z) satisfying
det A; # 0 (modp) for j =1,2,3,4. (3.3)

Let C(n, H) denote an upperbound on (3.2) with the A; satisfying (3.3).

Let us use the notation A to indicate restriction of A on x € Z™ such that
L;x # 0(modp) fori=1,...,n.

By elimination of variables, one easily sees that

1(3.2)]
< |{($,y, x/ay/) S B;l{ : le ' Zzy = st/ : Z4y, (mOdp)}‘ (34)
+Cm;<1xH2("_m)C(m,H).
Further
(3.4)
= Z |{($,$/) € B?—I :ZIx ==z 'ZSQ’JH ' |{(y7y/) € B?J IZ4y/ = ZzzyH
ZGFg
(3.5)
<Y By NL.|-|BE M.
zEFg
where
L.={(z,2")€Z*: Ajx=2-A,2' (modp)} (3.6)

and the lattice M is defined similarly.

More generally, for 1 < H, K <p
Z |{(-’L‘,$/) € B?—I :le ==z .ng/H . |{(yay/) € B?{ : A4y/ =z Azy}|

z€Fy

= |{($>$/,y7y/) € B?—I X B%( :Zlaj ’ A2y EZS.’L'/ : A4y/ (HlOdp)}‘

<W(z,2',y,y) € B4 x B : A x- A,y =A,2" - Ay (modp)}| (3.7)
+ Cmax H*™ - C(m, H)'/? - C(m,K)? (3.8)
< Cmax HX =) C(m,H)? - C(m,K)? (3.9)



where in (3.8), (3.9) we used the Cauchy-Schwarz inequality.
If s = s(z) is defined as in (2.3), the pigeonhole inequality implies
H\s
\(Byr x By) N L.] < (E) \(By, x By,) N L.| for Hy < H. (3.10)

Finally recall also (2.12).

4 The Recursive Inequality

We establish a recursive inequality on the C(n, H), H < \/p.

Considering (3.2), let £, be defined by (3.6). Either s(z) < n or
2n — s(z) < n.

Consider first the contribution of z € (Fy)"™ with s(z) < n.
Following previous section, estimate (3.5) by

> Hwy)eBy Ay =z Ay} By Ll

2€Fy
a(z)<in

<3 (5) W) e By Ay == A 1By, 0L (4

z€Fy
by (3.10) and choosing H; = p~"H for some small x > 0 to be specified
later. We distinguish two cases. Either
|BY, NL.|~|{(z,2') € By, : Az =2 A2} (4.2)

Using Cauchy-Schwarz, the corresponding contribution to (4.1) may be bounded
by
H?MH2"C(n, H)|2[H; *"C(n, H))]?. (4.3)

If (4.2) fails, elimination of variables give, for some m < n
(B x BMyn .| < C|(BY x By L. | (4.4)
Hq Hq ) z Hy H; Zl :

with £. obtained from £, by eliminating 2(n — m) variables.

Substituting (4.4) in (4.1) and following the calculation leading to (3.9) gives
the bound

H \n—m 1 1
H2n max (71> [H_sz(m, H)]E[Hf%nC(m, Hl)]f

< pCH?™ max [(H')~2™C/(m, H')). (4.5)



Thus the contribution to (3.5) for s(z) < n is bounded by (4.3)+(4.5).

Next, consider the case s(z) > n. Then certainly 2n — s < n. We use the
dual lattice £, and (2.12)

Thus B o
> {w.y) € By Ay =z Ay}| B N L.
2€Fy
s(z)>n

may be estimated (up to factors depending on n) by

H2n / 2 A / A 2 I

T > Hw.y) e By Ay =24y} B3 L. (4.6)
z€Fy
s(z)>n

and since 2n — s < n in (2.14), application of (3.10) with £ give

2 ’ P \" 2 ’ p
|B% ﬂﬁz|§ (ﬁ) |BKﬂ£Z|fOI'KSE

and

6 < Y (2) Hwy) e By A/ == A} [BR Ll (47)

z€Fy

Since H < /p, we may take K = H; as above. The expression (4.7) may be
estimated as (4.1).

From the preceding, it follows that
H™"C(n, H)

< C[H*"C(n, H))2 [H; *"C(n, H1)]? + p“* max [(H')*"C(m, H)]. (48)
H'<H

Tterating (4.8) easily leads to an estimate

max H~*"C(n, H) < CpCr (C depending on n)
H<\/p

< oVioer, (4.9)

choosing x appropriately.

Hence we proved in particular
Lemma. For H < ,/p,

H(z,y,2',y') € By : Az - Ay = Az’ - Ay/(mod p)}| < p*H?*".

It follows that (1.5) will hold for H > pi™<, proving the Theorem.



5 Remark

One expects the analogue of the Theorem to remain valid when summing over
arbitrary boxes By, g, = {a; <x; <a+i+H;(1<i<n)}where0< H; <p
and []_, H; > p17c (it is easily seen that it suffices to consider the case
H; < /p). The methods described above permit to prove such statement for
small values of n, but the general case remains to be settled.
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