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Abstract

Let A, B be invertible n x n matrices with irreducible characteristic polyno-
mials. For k € Z", denote

My(A,B) :={f(A)g(B) : f,g € F,[z], with deg f,degg < k}.
Assume ¢ > 2n, we prove that
|Mk(A, B)| > 4—k—1qmin(n,2k—1)‘

Moreover, let d = dim Ker(AB — BA), we prove

1 e
|M(A, B)| > e

16(7) (2(n—d)) =

Inspired by a question of Maze, Monico and Rosenthal [MMR], I. Shpar-
linski [S] proposed the following problem:
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Given three n x n matrices A, B, S over I, obtain a nontrivial lower bound
on the size of the set of the matrix products

My(A, B, S) = {f(A)Sg(B) : f,g € Fyfa], with deg f,degg < k}.

Apparently, a trivial lower (respectively, upper) bound is ¢* (resp. ¢?*).

Assume S is invertible. We can consider

f(A)Sg(B)S™! = f(A)g(B,) with B, = SBS™'.

Thus we may drop S and consider obtaining a lower bound on the size of
the set of the matrix products f(A)g(B). We start with some notations.

Given A, B € GL,(q). For h € Z*, we denote

P ={f € Fylz] : deg f < h}.
Fix a positive integer £k < n. Let
My(A, B) = {f(A)g(B) : f.g € Pra}.
We have the following lower bound on |M (A, B)].

Proposition 1. Assume g > 2n. Let v, = min(r’, 2k — 1), where r’ is the
number of distinct eigenvalues of A. Similarly, we have r” for B. Then

[ Mi(A, B)| > 47+ qa(rer) (1)

Remark 1.1. If eigenvalues of A (respectively, B) are distinct, we get
‘Mk(A, B)l > 4fk+176qmin(n,2kfl)' (2>

Suppose the characteristic polynomials of A and B are irreducible over F,.
Then for any f € Pr_1\{0} with £ < n, f does not vanish on any eigenvalue
of A. Therefore the assumption ¢ > 2n is unnecessary. Note that in this
situation (2) is also of interest for ¢ fixed and n — co. On the other hand, (2)
is poor, if k ~ n. Indeed, assume A, B can be diagonalized simultaneously,
then | M (A, B)| < nlg™t.



Next we give some estimates exploiting that A and B are far from com-
muting and will prove the following theorem.

Theorem 2. Let A,B € GL,(q) and let d = dim Ker(AB — BA). If the
characteristic polynomials of A and B are irreducible, then

My(A, B) > i), (3)

Remark 2.1. For almost all A, B € GL,(q), we have d = 0. Indeed, the
probability of being singular of a matrix in the space of n x n matrices with
zero diagonal is less than 2/q.

This type of result fits in the general ’sum-product’ philosophy, in the
sense that the set of products of additively stable sets in a ring is usually
large, unless for some algebraic reason. But in this problem ad hoc arguments
perform better than invoking more general theorems. (See [T}].)

Denote

P = {f€Prr: f(A) € GLu(q)},
P"={g€Pr1:9(B) € GL.(q)}.

First, we prove the following

Lemma 3. Assume ¢ > 2n. Then |[P'| |[P"] > 1¢*.

Proof. Let &,...,&, be the eigenvalues of A (in some extension IF_q of F,).
Since for any f € P/,

f(&) #0, fori=1,...,n, (4)

we have [P'| > ¢* —ng"~! > 3¢*. Similarly, [P"| > 3¢". O

Remark 3.1. Suppose the characteristic polynomials of A and B are irre-
ducible over F,. Then for any f € P \ {0} with £ <n, f does not vanish
on any eigenvalue of A. Therefore the assumption ¢ > 2n is unnecessary and
we have P’ = P" = P,_1 \ {0}.



Proof of Proposition 1.

We want to give a lower bound on
M = |My(A, B)|.
For x € GL,(q), denote
(@) = [{(f,9) € P’ x P":x= f(A)g(B)}.

Since

M > |{f(A)g(B): feP g eP"}
by Cauchy-Schwarz, we have

|Pl| |73”| _ Zn(x) < (Zn($)2)1/2M1/2~

Combining with Lemma 3, we have

q4k

M_
~ 16E

where

E=) nx)

=|{(f,9.F,G) e P'x P" x P' x P": f(A)g(B) = F(A)G(B)}|.

We note that the identity in (6) is equivalent to

F(A)"f(A) =G(B)g(B)".

Therefore, denoting
a(z) = {(f,F) € P'x P'1ax = F(A)" f(A)}]

and

Bz) ={(9.G) € P" x P":x = G(B)g(B) '},

E=Y a(@)p) < /3 a@)2/> )
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we have
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Therefore, we are estimating £y := ) «a(z)”.

By =[{(f.F,[,F) € P'x - x P F(A) 7' f(A) = F(A) T (A}

/.
<{(f, F, [, F) € Proa x -+ x Pooy s (FF)(A) = (FF)(A)}]
:‘{(f,F,f,ﬁ>Epk,lx-~~x'])k,1:fﬁ’—f~F€[}

)

where
I = {h € Fy[z] : h vanishes on the eigenvalues of A}|.

Since A has 7’ distinct eigenvalues,
1IN Pog—s| < g1,

with 7}, = min(r’, 2k — 1).

To estimate E;, we fix f and F. Since

fF e fF+(INPay_s),

there are at most ¢2*~1="* choices of fF. Given g = fF, factorizations of g

over I, gives at most q(%f:f) choices of (f, F).
Since there are ¢?* choices of ( f,F ), we have
e (2k—2 Lt
Brim Yap < g (P00 <t

x

Similarly,
By < 4’“_1(]4]‘3_7";,_

Putting (5), (8) and (9) together, we have (1). O

For the rest of the paper, we assume that the characteristic polynomials
of A and B are irreducible over F, and

kE<n<q.

Denote

P=P =P =P\ {0}



Returning to the definition of F in (6), we let
E={(f.9.F.G) P F(A)"'f(4) = G(B)g(B) '},

and let & =7, . () C P x P be the projection. We denote by M = M(B)
the algebra of n x n mtrices that commute with B. Clearly,

F(A)Tf(A) e M, if (f, F) €&, (10)

and also,

E
&1 > 7 (11)

Lemma 4. Let (f,F) € &. If F(A)7' f(A) has m distinct eigenvalues with
m > 5, then
dim Ker(AB — BA) > 2m — n. (12)

Proof. We diagonalize

A:ZSJ €j®6j with fj GE.

j=1
Then
o 1 Ny - J&)
A:=F(A) f(A)_Z)‘J e; ®e; € M, where \; = :
=1 F(&5)
Also,

AT = Z)\f ej®@e; € M, forallreZ™.

j=1

We partition {1,--- ,n} = o, I, with \; = A; = A, for all 4,7 € I,
and A\, # Ag for a # 8 and denote

Va = Z@j ®€j.

jEIa



It follows that

ZAQVQEM, forr=0,1,--- ,m— 1.

a=1

Therefore,

VoeM fora=1,...,m. (13)

The vectors in (13) can be extended to a basis of the space generated by
{e;®e;:7=1,...,n}. Therefore, A has a decomposition

A= A0+A1 with A() € M,Al ¢ M.
Obviously, rankA; < n — ‘{Va}a‘ = n — m. Since
AB - BA == AlB - BAl,

dimKer(AB — BA) =n —rank(A41B— BA;) >n—2(n—m)=2m—n. O

Lemma 5. Let m > n—% and assume that for all (f,F) € &, F(A)7' f(A)
has fewer than m distinct eigenvalues, then

E < ( 2 ! )) (4(n — m))" " g minthnm), (14)

n—im

Proof. For (f, F) € &, we write

€j ®6j,

P (4) = > 1

where &1, - -+, &, are the eigenvalues of A.

Let S C {1,...,n} be maximal such that all elements in {1{:((%)) 1 j € S}

are distinct. Hence |S| < m.
Take Sy C {1,...,n}\ S, with |Si| = n — m. Then we take Sy C
{1,...,n}, such that Sy N Sy =0,|Ss| =n —m and

{]];(éj])) ] eSl} C {]";(é]])) :jeSQ}.
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Such S, exists, because SN S; =0 and m > 5.
Thus there is a map S; — S5 sending j to j’ such that

F(&;)
F(&)

f(&) — f(&) =0 for j € 5;. (15)

Once Sy, Sy and the map j — j" are specified, (15) gives n — m linearly

independent conditions on f (with F fixed), and the number of (f, F') € PxP
satisfying (15) is at most ¢?*~("=™). Let b; = 5((57,)). Here we have used that
the matrix having (¢7,...,&,_,,) —b;(&],,....&. /) as the jth column has

the maximal rank n — m, since all &;, & are distinct.

The number of (51, 5,7 — j') is bounded by

<2<ni m)) (2?;—_ " >> (n—m)".

n

11 < (g ) 40— )" eonm
and (11) implies (14). O

Therefore,

Therefore, under the assumption of Lemma 5, by (5)

My(A, B) > hn—m, (16)

160" ) (dn-m) "

2(n—m)

By Lemma 4 and Lemma 5, given m > max(%® n — £), we see that (16)

holds. Thus, Theorem 2 is proved.
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