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Abstract

Let A,B be invertible n× n matrices with irreducible characteristic polyno-
mials. For k ∈ Z+, denote

Mk(A,B) := {f(A)g(B) : f, g ∈ Fq[x], with deg f, deg g < k}.

Assume q ≥ 2n, we prove that

|Mk(A,B)| > 4−k−1qmin(n,2k−1).

Moreover, let d = dim Ker(AB −BA), we prove

|Mk(A,B)| > 1

16
(
n
d

)(
2(n− d)

)n−d
2

qk+min( k
2
,n−d

2
).

Inspired by a question of Maze, Monico and Rosenthal [MMR], I. Shpar-
linski [S] proposed the following problem:
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Given three n× n matrices A,B, S over Fq, obtain a nontrivial lower bound
on the size of the set of the matrix products

Mk(A,B, S) = {f(A)Sg(B) : f, g ∈ Fq[x], with deg f, deg g < k}.

Apparently, a trivial lower (respectively, upper) bound is qk (resp. q2k).

Assume S is invertible. We can consider

f(A)Sg(B)S−1 = f(A)g(B1) with B1 = SBS−1.

Thus we may drop S and consider obtaining a lower bound on the size of
the set of the matrix products f(A)g(B). We start with some notations.

Given A,B ∈ GLn(q). For h ∈ Z+, we denote

Ph = {f ∈ Fq[x] : deg f ≤ h}.

Fix a positive integer k ≤ n. Let

Mk(A,B) = {f(A)g(B) : f, g ∈ Pk−1}.

We have the following lower bound on |Mk(A,B)|.

Proposition 1. Assume q ≥ 2n. Let r′∗ = min(r′, 2k − 1), where r′ is the
number of distinct eigenvalues of A. Similarly, we have r′′∗ for B. Then

|Mk(A,B)| > 4−k−1q
1
2
(r′∗+r

′′
∗ ) (1)

Remark 1.1. If eigenvalues of A (respectively, B) are distinct, we get

|Mk(A,B)| > 4−k+1−εqmin(n,2k−1). (2)

Suppose the characteristic polynomials of A and B are irreducible over Fq.
Then for any f ∈ Pk−1 \{0} with k ≤ n, f does not vanish on any eigenvalue
of A. Therefore the assumption q ≥ 2n is unnecessary. Note that in this
situation (2) is also of interest for q fixed and n→∞. On the other hand, (2)
is poor, if k ∼ n. Indeed, assume A, B can be diagonalized simultaneously,
then |Mk(A,B)| ≤ n!qn+1.
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Next we give some estimates exploiting that A and B are far from com-
muting and will prove the following theorem.

Theorem 2. Let A,B ∈ GLn(q) and let d = dimKer(AB − BA). If the
characteristic polynomials of A and B are irreducible, then

Mk(A,B) >
1

16
(
n
d

)(
2(n− d)

)n−d
2

qk+min( k
2
,n−d

2
). (3)

Remark 2.1. For almost all A,B ∈ GLn(q), we have d = 0. Indeed, the
probability of being singular of a matrix in the space of n× n matrices with
zero diagonal is less than 2/q.

This type of result fits in the general ’sum-product’ philosophy, in the
sense that the set of products of additively stable sets in a ring is usually
large, unless for some algebraic reason. But in this problem ad hoc arguments
perform better than invoking more general theorems. (See [T].)

Denote
P ′ = {f ∈ Pk−1 : f(A) ∈ GLn(q)},

P ′′ = {g ∈ Pk−1 : g(B) ∈ GLn(q)}.

First, we prove the following

Lemma 3. Assume q ≥ 2n. Then |P ′| |P ′′| > 1
4
q2k.

Proof. Let ξ1, . . . , ξn be the eigenvalues of A (in some extension Fq of Fq).
Since for any f ∈ P ′,

f(ξi) 6= 0, for i = 1, . . . , n, (4)

we have |P ′| ≥ qk − nqk−1 > 1
2
qk. Similarly, |P ′′| > 1

2
qk. �

Remark 3.1. Suppose the characteristic polynomials of A and B are irre-
ducible over Fq. Then for any f ∈ Pk−1 \ {0} with k ≤ n, f does not vanish
on any eigenvalue of A. Therefore the assumption q ≥ 2n is unnecessary and
we have P ′ = P ′′ = Pk−1 \ {0}.
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Proof of Proposition 1.

We want to give a lower bound on

M := |Mk(A,B)|.

For x ∈ GLn(q), denote

η(x) =
∣∣{(f, g) ∈ P ′ × P ′′ : x = f(A)g(B)}

∣∣.
Since

M ≥
∣∣{f(A)g(B) : f ∈ P ′, g ∈ P ′′}

∣∣,
by Cauchy-Schwarz, we have

|P ′| |P ′′| =
∑
x

η(x) ≤
(∑

x

η(x)2
)1/2

M1/2.

Combining with Lemma 3, we have

M >
q4k

16E
, (5)

where

E =
∑
x

η(x)2

=
∣∣{(f, g, F,G) ∈ P ′ × P ′′ × P ′ × P ′′ : f(A)g(B) = F (A)G(B)}

∣∣. (6)

We note that the identity in (6) is equivalent to

F (A)−1f(A) = G(B)g(B)−1. (7)

Therefore, denoting

α(x) = |{(f, F ) ∈ P ′ × P ′ : x = F (A)−1f(A)}|

and
β(x) = |{(g,G) ∈ P ′′ × P ′′ : x = G(B)g(B)−1}|,

we have

E =
∑
x

α(x)β(x) ≤
√∑

α(x)2
√∑

β(x)2. (8)
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Therefore, we are estimating E1 :=
∑

x α(x)2.

E1 =
∣∣{(f, F, f̃ , F̃ ) ∈ P ′ × · · · × P ′ : F (A)−1f(A) = F̃ (A)−1f̃(A)}

∣∣
≤|{(f, F, f̃ , F̃ ) ∈ Pk−1 × · · · × Pk−1 : (fF̃ )(A) = (f̃F )(A)}

∣∣
=|{(f, F, f̃ , F̃ ) ∈ Pk−1 × · · · × Pk−1 : fF̃ − f̃F ∈ I}

∣∣,
where

I = {h ∈ Fq[x] : h vanishes on the eigenvalues of A}
∣∣.

Since A has r′ distinct eigenvalues,

|I ∩ P2k−2| ≤ q2k−1−r
′
∗ ,

with r′∗ = min(r′, 2k − 1).

To estimate E1, we fix f̃ and F . Since

fF̃ ∈ f̃F + (I ∩ P2k−2),

there are at most q2k−1−r
′
∗ choices of fF̃ . Given g = fF̃ , factorizations of g

over Fq gives at most q
(
2k−2
k−1

)
choices of (f, F̃ ).

Since there are q2k choices of (f̃ , F ), we have

E1 :=
∑
x

α(x)2 ≤ q2k q2k−1−r
′
∗ q

(
2k − 2

k − 1

)
< 4k−1q4k−r

′
∗ . (9)

Similarly,
E2 < 4k−1q4k−r

′′
∗ .

Putting (5), (8) and (9) together, we have (1). �

For the rest of the paper, we assume that the characteristic polynomials
of A and B are irreducible over Fq and

k < n� q.

Denote
P = P ′ = P ′′ = Pk−1 \ {0}.
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Returning to the definition of E in (6), we let

E = {(f, g, F,G) ∈ P4 : F (A)−1f(A) = G(B)g(B)−1},

and let E1 = π
(f,F )

(E) ⊂ P×P be the projection. We denote byM =M(B)
the algebra of n× n mtrices that commute with B. Clearly,

F (A)−1f(A) ∈M, if (f, F ) ∈ E1, (10)

and also,

|E1| ≥
E

qk
. (11)

Lemma 4. Let (f, F ) ∈ E1. If F (A)−1f(A) has m distinct eigenvalues with
m > n

2
, then

dimKer(AB −BA) ≥ 2m− n. (12)

Proof. We diagonalize

A =
n∑
j=1

ξj ej ⊗ ej with ξj ∈ Fq.

Then

Ā := F (A)−1f(A) =
n∑
j=1

λj ej ⊗ ej ∈M, where λj =
f(ξj)

F (ξj)
.

Also,

Ār :=
n∑
j=1

λ r
j ej ⊗ ej ∈M, for all r ∈ Z+.

We partition {1, · · · , n} =
⋃m
α=1 Iα with λj = λj′ = λα for all j, j′ ∈ Iα

and λα 6= λβ for α 6= β and denote

Vα :=
∑
j∈Iα

ej ⊗ ej.
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It follows that

m∑
α=1

λrαVα ∈M, for r = 0, 1, · · · ,m− 1.

Therefore,
Vα ∈M for α = 1, . . . ,m. (13)

The vectors in (13) can be extended to a basis of the space generated by
{ej ⊗ ej : j = 1, . . . , n}. Therefore, A has a decomposition

A = A0 + A1 with A0 ∈M, A1 /∈M.

Obviously, rankA1 ≤ n−
∣∣{Vα}α∣∣ = n−m. Since

AB −BA = A1B −BA1,

dim Ker(AB −BA) = n− rank(A1B −BA1) ≥ n− 2(n−m) = 2m− n. �

Lemma 5. Let m ≥ n− k
2
and assume that for all (f, F ) ∈ E1, F (A)−1f(A)

has fewer than m distinct eigenvalues, then

E <

(
n

2(n−m)

)(
4(n−m)

)n−m
q3k−min(k,n−m). (14)

Proof. For (f, F ) ∈ E1, we write

F (A)−1f(A) =
n∑
j=1

f(ξj)

F (ξj)
ej ⊗ ej,

where ξ1, · · · , ξn are the eigenvalues of A.

Let S ⊂ {1, . . . , n} be maximal such that all elements in
{
f(ξj)

F (ξj)
: j ∈ S

}
are distinct. Hence |S| < m.

Take S1 ⊂ {1, . . . , n} \ S, with |S1| = n − m. Then we take S2 ⊂
{1, . . . , n}, such that S1 ∩ S2 = ∅, |S2| = n−m and{ f(ξj)

F (ξj)
: j ∈ S1

}
⊂
{ f(ξj)

F (ξj)
: j ∈ S2

}
.
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Such S2 exists, because S ∩ S1 = ∅ and m > n
2
.

Thus there is a map S1 → S2 sending j to j′ such that

f(ξj)−
F (ξj)

F (ξj′)
f(ξj′) = 0 for j ∈ S1. (15)

Once S1, S2 and the map j 7→ j′ are specified, (15) gives n −m linearly
independent conditions on f (with F fixed), and the number of (f, F ) ∈ P×P
satisfying (15) is at most q2k−(n−m). Let bj =

F (ξj)

F (ξj′ )
. Here we have used that

the matrix having (ξj1, . . . , ξ
j
n−m) − bj(ξj1′ , . . . , ξ

j
n−m′) as the jth column has

the maximal rank n−m, since all ξi, ξi′ are distinct.

The number of (S1, S2, j → j′) is bounded by(
n

2(n−m)

)(
2(n−m)

n−m

)
(n−m)n−m.

Therefore,

|E1| <
(

n

2(n−m)

)(
4(n−m)

)n−m
q2k−n+m

and (11) implies (14). �

Therefore, under the assumption of Lemma 5, by (5)

Mk(A,B) >
1

16
(

n
2(n−m)

) (
4(n−m)

)n−m qk+n−m. (16)

By Lemma 4 and Lemma 5, given m > max(d+n
2
, n− k

2
), we see that (16)

holds. Thus, Theorem 2 is proved.
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