ON A QUESTION OF DAVENPORT AND LEWIS AND
NEW CHARACTER SUM BOUNDS IN FINITE FIELDS
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ABSTRACT.

Let x be a nontrivial multiplicative character of F,n. We obtain the following results.
(1). Let e > 0 be given. If B ={} ", zjw; :x; € [Nj+1,N;+H;]NZ,j=1,... ,n}is
a box satisfying ﬁ H; > p(%JFE)", then for p > p(e) and some absolute constant ¢ > 0,

i=1

we have, denoting x a nontrivial multiplicative character

62
| > x(@)| < enp™ T|B|
zeB

unless n is even, Y is principal on a subfield F» of size p™/2 and maxg |[BNEF| > p~¢|B.
(2). Assume A, B C Fj, such that

4 4
|A| > p9te,|B| > p5t°,|B+ B| < K|B.

Then

>, x(@+y)| <p T|A]|B].
rEA,yEB

(3). Let I C Fp, be an interval with |I| = p® and let D C F,, be a pf- spaced set with
|D| = p°. Assume 3 > i - ﬁ + 6. Then for a non-principal multiplicative character
X

_82
> x@+w)|<p T DL
zel,yeD

We also improve a result of Karacuba.
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Introduction.

In this paper we obtain new character sum bounds in finite fields IF, with ¢ = p",
using methods from additive combinatorics related to the sum-product phenomenon.
More precisely, Burgess’ classical amplification argument is combined with our estimate
on the ‘multiplicative energy’ for subsets in F,. (See Proposition 1 in §1.) The latter
appears as a quantitative version of the sum-product theorem in finite fields (see [BKT]
and [TV]) following arguments from [G], [KS1] and [KS2].

Our first results relate to the work [DL] of Davenport and Lewis. We recall their
result. Let {wy,...,wyn} be an arbitrary basis for Fyn» over F,. Then elements of Fyn
have a unique representation as

E=xw1 + ...+ Tpwn, (0 <z; <p). (0.1)

We denote B a box in n-dimensional space, defined by
N;j+1<z; <N, + Hj, (j=1,...,n) (0.2)
where N; and Hj are integers satisfying 0 < N; < N; + H; < p, for all j.
Theorem DL. ([DL], Theorem 2) Let H; = H for j =1,... ,n, with
H > pmﬂs for some § > 0 (0.3)

and let p > p1(9). Then, with B defined as above

> x@)| < @ H)",

rEB

where 61 = 61(5) > 0.

For n =1 (i.e. F, = F,) we are recovering Burgess’ result (H > pit%). But as n
increases, the exponent in (0.3) tends to 3. In fact, in [DL] the authors were quite
aware of the shortcoming of their approach which they formulated as follows (see [DL],
p130)

‘The reason for this weakening in the result lies in the fact that the parameter q used
in Burgess’ method has to be a rational integer and cannot (as far as we can see) be
gwen values in F, .

In this paper we address to some extent their problem and are able to prove the
following
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Theorem 2*. Let x be a nontrivial multiplicative character of Fpyn, and let € > 0 be
gen. If

B:{ijwj Zil?jG[Nj+1,Nj+Hj]ﬂZ,j:1,... ,n}
j=1

18 a box satisfying
ﬁ Hj > p(%—’_e)n,
j=1

then for p > p(e) and some absolute constant c

3 x@)| < enp 7|,

rEB

unless n is even and x|, is principal, where Fy is the subfield of size p™'2, in which
case ,

‘ Z X(x)‘ < max |BNEFR| + cnp” T |B.

reB

Hence our exponent is uniform in n and supersedes [DL] for n > 4. The novelty of
the method in this paper is to exploit the finite field combinatorics without the need
to reduce the problem to a divisor issue in Z or in the integers of an algebraic number
field K (as in the papers [Bu3] and [Kar2]).

Let us emphasize that there are no further assumptions on the basis wq, ... ,w,. If
one assumes w; = ¢~ 1, (1 < i < n), where g satisfies a given irreducible polynomial
equation (mod p)

ao+a1g+ -+ an_19g"" 1 +¢" =0, with a; € Z,
or more generally, if

wiwj = Zcijkwk, (0.4)
k=1

with ¢;;, bounded and p taken large enough, a result of the strength of Burgess’ theo-
rem was indeed obtained (see [Bu3| and [Kar2]) by reducing the problem of bounding
the multiplicative energy in the finite field to counting divisors in the ring of integers

*The author is grateful to Andrew Granville for removing an additional restriction on the set B
from an earlier version of this theorem.

3



of an appropriate number field. But such reduction seems not possible in the general
context considered in [DL].

Character estimates as considered above have many applications, e.g. quadratic
non-residues, primitive roots, coding theory, etc. Corollary 3 in §2 is a standard
consequence of Theorem 2 to the problem of primitive roots (see for instance [DL],
pl31).

The aim of [DL] (and in an extensive list of other works starting from Burgess’
seminal paper [Bul]) was to improve on the Polya-Vinogradov estimate (i.e. breaking
the ,/g-barrier), when considering incomplete character sums of the form

3 x@)], (0.5)

T€EA

where A C F, has certain additive structure.

Note that the set B considered above has a small doubling set, i.e.
|B + B| < ¢(n)|B]| (0.6)

and this is the property relevant to us in our combinatorial Proposition 1 in §1.

In the case of a prime field (¢ = p), our method provides the following generalization
of Burgess’ inequality.

Theorem 4. Let P be a proper d-dimensional generalized arithmetic progression in
F, with
P > p*/5te

for some e > 0. If X is a non-principal multiplicative character of F),, we have

> x@)| <pIP)

zeP

where T = 7(g,d) > 0 and assuming p > p(e,d).

See §4, where we also recall the notion of a ‘proper generalized arithmetic progres-
sion’. Let us point out here that the proof of Proposition 1 below and hence Theorem
2, uses the full linear independence of the elements wy, ... ,w, over the base field IF,.
Assuming in Theorem 2 only that B is a proper generalized arithmetic progression
requires us to make more restrictive assumptions on the size | B|.

Next, we consider the problem of estimating character sums over sumsets of the
form

4



> xz+uy), (0.7)

r€AyeEB

where x is a non-principal multiplicative character modulo p (we consider again only
the prime field case for simplicity). In this situation, a well-known conjecture* predicts
a nontrivial bound on (0.7) as soon as |A|, |B| > p?, for some § > 0. (See [C] and [S]
p.305.) Presently, such a result is only known (with no further assumptions) provided
|A| > p2+% and |B| > p® for some § > 0. (See [Karl].) The problem is open even for

the case |A| ~ pz ~ |B|. Using Proposition 1 (combined with Freiman’s theorem), we
prove the following result.

Theorem 6. Assume A, B C F, such that
(a) |[A] > po+e,|B| > pote
(b) |B + B| < K|B|.

Then

> x@+y)|<pIAlIBL
r€AyEB

where T = 7(e, K) > 0, p > p(e, K) and x is a non-principal multiplicative character
of Fp.

Assuming B = [ an interval, we obtain the next estimate.

Theorem 8. Let A C IF), be a subset with |A| = p* and let I C [1,p] be an arbitrary
interval with |I| = p®, where

1
(1—a)(1-0)< 5—5
and 3 > 6 > 0. Then for a non-principal multiplicative character x, we have

iy
S x| <p AL

xel
yeA

The following variant of Theorem 8 may be compared with Theorem 2’ in [FI]. (See
the discussion in §4.)

*This conjecture was partly motivated by the ‘Paley-Graph conjecture’ on the maximal size of a
set C' C Fp, such that z — y is a quadratic residue (mod p) for all z,y € C.
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Theorem 9. Let I C F, be an interval with |I| = p® and let D C F, be a p”-spaced
set modulo p with |D| = p°. Assume 3 > o and

1
(1-20)(1-0)< 5~ 4] (0.8)
for some & > 0. Then
> xay|<p LD (0.9)
zel,yeD

for a non-principal multiplicative character x.

Rewriting (0.8) as 8 > 1 — 4(%0), we note that Theorem 9 breaks Burgess’ 1-

threshold as soon as o > 0.

The next result is a slight improvement of Karacuba’s [Karl].

Theorem 10. Let I C [1,p] be an interval with |I| = p® and S C [1,p] be an arbitrary
set with |S| = p®. Assume that o, 3 satisfy

5<ﬁ§%and (1—%>a+§<1+%>5>%+i+5

for some e >0 and k € Z4. Then

S Y x| <p 1)

yel xzeS
for some &' =¢€'(e) > 0.

We believe that this is the first paper exploring the application of recent devel-
opments in combinatorial number theory (for which we especially refer to [TV]) to
the problem of estimating (multiplicative) character sums. (Those developments have
been particularly significant in the context of exponential sums with additive charac-
ters. See [BGK] and subsequent papers.) One could clearly foresee more investigations
along these lines.

The paper is organized as follows. We prove Proposition 1 in §1, Theorem 2 in §2,
Theorems 6 in §3, and Theorems 8, 9, 10 in §4.

Notations. Let * be a binary operation on some ambient set S and let A, B be subsets
of S. Then
6



(1) AxB:={axb:a€Aandbe B}.
(2) ax B :={a} * B.
(3)
(4) A

AB := A x B, if *=multiplication.
= AA"™ 1

Note that we use A™ for both the n-fold product set and n-fold Cartesian product
when there is no ambiguity.

(5) [a,b] :={i €Z:a<i<b}.

§1. Multiplicative energy of a box.

Let A, B be subsets of a commutative ring. Recall that the multiplicative energy of
A and B is

E(A,B) = ‘{((Il,ag,bhbg) €EAx Ax BxB: Clel = agbg}‘. (11)

(See [TV] p.61.)
We will use the following (see [TV] Corollary 2.10)
Fact 1. E(A, B) < E(A, A)Y?E(B, B)'/2.

Proposition 1. Let {w1,...,w,} be a basis for Fyn over F,, and let B C Fpn be the
box

{ijwj xzj € [N;+1,N; + Hj],j 1,...,n},
where 1 < N; < N;j + H; < p for all j. Assume that

1
max Hy < 2 (5~ 1) (1:2)
J

Then we have

E(B,B) < C"(log p) |B|""/* (1.3)

for an absolute constant C' < 21,

The argument is an adaptation of [G] and [KS1] with the aid of a result in [KS2].
The structure of B allows us to carry out the argument directly from [KS1] leading to
the same statement as for the case n = 1.

We will use the following estimates from [KS1] (Corollaries 1.4-1.6). (See also [G].)
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Let X, By, -+, B be subsets of a commutative ring and a,b € X. Then

Fact 2. |By + -+ By| < |X+B|3(|-|-I;\_)§+Bk|.

Fact 3. 3X' C X with |X’| > §[X| and [ X'+ By + -+« + By| < 28 XN,

(X2
Fact 4. |CLX:|:bX| S m.

Proof of Proposition 1.
Claim 1. F, ¢ =8

Proof of Claim 1. Take t € F, N g g Then t¥Xz;w; = Yy,;w; for some z;,y; €
[—H;, Hj], where 1 < j <n and Yxjw; # 0. Since tz; = y; for all j =1,... ,n,

choosing ¢ such that z; # 0, it follows that

[_Hi7Hi] - [_%(\/ﬁ_l)v%(\/ﬁ_l)]
[—Hi, Hi\{0} ~ [-5(vp— 1), 3(vP — D0}

(S

(1.4)

Since the set (1.4) is of size at most \/p(y/p — 1) < p, it cannot contain F,. This
proves our claim.

We may now repeat verbatim the argument in [KS1|, with the additional input of
the multiplicative energy.

Claim 2. There exist by € B, A1 C B and N € Z, such that

laBNbyB| ~ N for all a € Ay, (1.5)
E(B,B)
N 2B, 5) 1.
A1 1B 1og B o
and A — A A — A
1 — 1 1 — 1
1 1.
A A, YT A A (1.7)

Proof of Claim 2.

From (1.1)
E(B,B)= Y |aBNbB|.
a,b €B

Therefore, there exists by € B such that

E(B, B)

laB NbyB| >
2 |B|

a€EB
8



Let A, be the level set
Ay ={ac B:2°"! <|aBnbyB| < 2%}.

Then for some sy with 1 < sy < log, |B| we have

log, |B|
E(B,B
280 |Aso| log2’B|2 Z 28|As|>Z‘GmeOB‘2 (|B| )
s=0 acB

(1.5) and (1.6) are obtained by taking A; = A,, and N = 2%,

Next we prove (1.7) by assuming the contrary. By iterating ¢ times, we would have

A —A A —A
A1-4 AT A

for t=0.1.....p—1. 1,
R T or t=0,1,...,p (1.8)

Since 0 € ﬁ, (1.8) would imply that F,, C A ﬁi C =5 contradicting Claim 1.
Hence (1.7) holds.

Take c1,C2, dl, do € Al, d1 7é dg, such that

C1 — C2 A — A

+1¢

é::dl—dz A — A

It follows that for any subset A’ C A;, we have

|A/’2 ‘Al + fA/| = |(d1 dQ)A/ + (dl — dQ)A/ + (Cl — Cg)All
S |<d1 — dg)A/ (dl — dQ)Al + (01 — CQ>A1|. (19)

In Fact 3, we take X = (d1 — dg)Al, Bl = (d1 — dg)Al and B2 = (Cl — CQ)Al. Then
there exists A’ C A; with |A’| = 1|A;| and by (1.9)

’A/|2 g ’(dl — dQ)AI + (dl — dg)Al + (Cl — 02)A1’
22

’A | |A1 -+ A1| ’ (d1 dg)Al + (Cl — Cg)Al‘ (110)

Since |41 + A1| < |B + B| < 2"|B|,

272|A1|3 S 2n+2|B| | (d1 — dg)Al + (Cl — 02)A1|

< 2""2|B| | 1B — ¢oB + d1 B — dyB). (1.11)
9



Facts 2, 4 and (1.5) imply

_ B+ BJ?
272|A 3<2"+2B|—. 1.12
Al < 2Bl (1.12)
Thus

N4 AP < 29"+ B|° (1.13)

and recalling (1.6)
E(B,B)* < (log|B|)*|BI°N*|A:[* < 2°"*(log p)*|B|"!

implying (1.3). O

§2. Burgess’ method and the proof of Theorem 2.

The goal of this section is to prove the theorem below.

Theorem 2. Let x be a non-principal multiplicative character of Fpn. Given € > 0,
there is T > % such that if

B:{ijwj 3113']'E[Nj+1,Nj+Hj]ﬂZ,jzl,... ,TL}
7j=1

18 a box satisfying
2

ﬁ HJ > p(5+€)n,
j=1

then for p > p(e) and some absolute constant c

‘ Z X(:v)‘ < cnp T|B|,

zeB

unless n is even and x|p, is principal, where Fy is the subfield of size p™2, in which
case

‘ Z X(x)’ < max |BNEF| + enp™ ™| B

zeB

First we will prove a special case of Theorem 2, assuming some further restriction
on the box B.
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Theorem 2’. Let x be a non-principal multiplicative character of Fpn. Given € > 0,
there is T > % such that if

B:{Z:ij]' 1x; € [N]—|—1,NJ—|—H]],j:1, ,n}
j=1

18 a box satisfying
ﬁ Hj > p(%JrE)n
=1

and also )
H; < 5(\/]_)— 1) for all j, (2.1)
then for p > p(e)
‘ Z X(m)‘ < cnp T|B|. (2.2)
xeB

We will need the following version of Weil’s bound on exponential sums. (See
Theorem 11.23 in [IK])

Theorem W. Let x be a non-principal multiplicative character of Fpn of order d > 1.
Suppose f € Fyn[x] has m distinct roots and f is not a d-th power. Then for n > 1

we have
’ > X(f(x))‘ < (m —1)p?.

CEG[Fpn

Proof of Theorem 2°.

By breaking up B in smaller boxes, we may assume

jlill Hj ~ p3tom, (2.3)

Let 0 > 0 be specified later. Let
=1 (2.4)

and .
Bo= {Z%‘wa’ raj €[0,p7 ;)5 =1, n} (2.5)
j=1

11



Since Byl C {2?21 Tjwj 1T, € [O,p_‘SHj],j =1,... ,n}, clearly

" @) = X xa+y2)| < IB\B +y2)| + (B +y2)\B| < 20p~° |

for y € By,z € I. Hence

Sx =g X xatys)+ 0w B, (26)

xeB reB,yeBg,z€l

*Estimate following Burgess’ method

> Xy Y [ Y@ty

rEB,yc€Bo,z€1 rzeB,yeBy zel

= D [Doxy Tt +2)

reB,yeBy z€l

= > ww) | x(u+t2), (2.7)

uE]Fpn zel

where

w(u):‘{(x,y)EBxBozgzuH. (2.8)

Next, observe that

Z w(u)? = [{(x1,32,51,42) € B x B x By X By : 12 = %21}

_ZH (21, x2) x__VH ’{ (Y1, 92) —V}‘

< E(B, B)EE(BO,BO)%

< 21" (log p)|B| ¥ |By| ¥

<2805 p)(1B]) 'y, (2.9)
by the Cauchy-Schwarz inequality, Proposition 1 and (2.5). Compared with Burgess’

argument (where w(u) < p°1)), obtaining good bounds on >, w(u)? in our setting is
considerably harder and (2.9), based on Proposition 1 is the main new ingredient.

*This initial step of translation by a product is by now standard and was first used in [Kar2] in
the context of character sums.
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Let r be the nearest integer to Z. Hence
n 1
—— < = 2.10
‘r 5‘ -2 ( )

By Holder’s inequality, (2.7) is bounded by

(}:(Amﬁﬁ>ké(:z:|§:Xm+zﬂ”)$. (2.11)

u€lf,n u€lf,n ze€l

Since ), w(u) = |Bol| - |B| and (2.9) holds, we have

<Z w(u)zfil)l_;" g[zu)(u)] 71[2@0(11)2]217

u
1
-

11
<203 (1ol 1Bl) 7 (1BI) ™ (log p)p ¥ 7.

(2.12)

The first inequality follows from the following fact, which is proved by using Holder’s
inequality with 2’“—:2 + 1o =1.

Fact 5. ( Z f(u )27” 1) <[> f(u )]1_%[2 f(u)z]%

—1
1
T 2r

Proof. Write f(u)7T = f(u)21 f(u)=1. O

Next, we bound the second factor of (2.11).

Let
q=p".
Write
ST S 3wl o b))
u€lF,n  z€I 21,...,22r €1 u€l,
(2.13)
For z1,...,29,. € I such that at least one of the elements is not repeated twice,

the polynomial f,, . ., () = (z+2z1)...(x+2.) (@ +2,41)9 2. .. (2 + 22,)9 2 clearly
cannot be a d-th power. Since f,, . ., (z) has no more that 2r many distinct roots,
Theorem W gives

‘ Z x((u4z1) . (w4 20w+ 2001)0 72 (w4 20,)772)| < 2rp2. (2.14)
u€lF,
13



For those 21, ... , 29, € I such that every root of f,, ., () appears at least twice,

we bound )| > X(fz,... 2. (u))| by |Fy| times the number of such z1, ... , z2,. Since
u€l,

there are at most r roots in I and for each z1,... , 2o, there are at most r choices, we
obtain a bound |I|"r?"p".

Therefore )
S0 I x| <1yt 4 20|17 (2.15)

uern zeIl

and

( 3 ‘ZX(U—{—Z)‘%)TT < r|I|Ep + 2| I|pt. (2.16)

uer’fL z€e1

Putting (2.7), (2.11), (2.12) and (2.16) together, we have

1
xeB,yeBp,z€l

N -7 e _
<4% (105 p)(1Bol [B]) " (1BI) "

1

m"‘

%5<T|f|75p% +2pﬁ>
n lops—1llng 1_% =5 n n
<4r<10g p)pr n 8 T <’B|> (rp 2 per _|_2p4r)
<47 (log p)2r ﬁJr2‘s%’%(%+€)”|3|
<2-4% (logp) r|Blp~ &7 (9. (2.17)

The second to the last inequality holds because of (2.3) and assuming § > n/2r.

Let
6= —. (2.18)

To bound the exponent 22 (e — §) = e 2 (2 — ), we let

0 =——1. 2.19
p- (2.19)
Then by (2.10),
1 € 3 3
— < = 2.2
o< S < <~ Tm=3 =7 (220)
and 5 5 95
n
Sle—8) = —2(1+0)(1-0) > =e2 2.21
S d)= 21+ 0)(1—0) > o (221)



Returning to (2.6), we have

52
|3 x(@)| < ens(og p)p BB < mp= 3] (2.22)
zeB
and thus proves Theorem 2’. O

Our next aim is to remove the additional hypothesis (2.1) on the shape of B. We
proceed in several steps and rely essentially on a further key ingredient provided by
the following estimate. (See [PS].)

Proposition &*. Let x be a non-principal multiplicative character of Fy and let g €
F, be a generating element, i.e. F, =F,(g). For any integral interval I C [1,p],

> x(g+t)| <enyp logp (2.23)
tel

Note that (2.23) is nontrivial as soon as |I| > /p logp.

First we make the following observation (extending slightly the range of the appli-
cability of Theorem 27).

Let Hy > Hy > --- > H,. If H < p2T5, we may clearly write B as a disjoint
union of boxes B, C B satisfying the first condition in (2.1) and |Bs| > (3p~2)"|B| >
2-np(E+8)7 . Since (2.1) holds for each B, we have

‘ Z X(x)| < enp™T|Bal.

Hence

‘ Z x(x)| < enp™T|B].

z€eB
Therefore we may assume that H; > pzT5.
Proof of Theorem 2.
Case 1. n is odd.
We denote I; = [N; + 1, N; + H;] and estimate using (2.23)

w2 w 1 B
S| =| X w(mran v, 2| < awognl 4 (), 220
r€EB z,€I; T1€N
2<i<n

*This was originally communicated to the author by Nick Katz as an extension of his work [K].
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where

(x) = (2.25)

w9 Wn
YL fnrnZeern)
w1 w1

1€l (za,...,xn)ED

and w w
D:{(ajg,... ,xn)EIQ><---><In:]Fp<x2—2+---+xn—n> #Fq}.
w1 w1
In particular,
w9 Wn

(x) <p|D|<p Z‘Gﬂ Spanwp(ujlw- w—l)‘
G

where G runs over nontrivial subfields of F,. Since ¢ = p" and n is odd, obviously
[Fy : G] > 3. Hence [G : Fp] < Z. Furthermore, since {wi,... ,w,} is a basis of F,

over Fp,, 1 & Spaan (<2 “n) and the proceeding implies that

UJI,.."UJI

dim, (Gﬂ Span, (%, . &>) < 1 (2.26)

w1 ’ w1

Therefore, under our assumption on |H;|, back to (2.24)

‘ Z X(:L‘)‘ <c(n)<(logp)p—%|3| -I—p%)

zeB
<(etm)togp)p~t +p~ 1) | B,
since |B| > p™. This proves our claim.

We now treat the case when n is even. The analysis leading to the second part of
Theorem 2 was kindly communicated by Andrew Granville to the author.

Case 2. n is even.

In view of the earlier discussion, our only concern is to bound

- Y2 Yn
(r2)=1| > > X(m LR w1> (2.27)
1€l (z2,...,2n)ED2
with
Dy = {(252,--- ,Tp) € Ip X oo Xy <362ﬂ +---+xnw—n> € FQ} (2.28)
w1 w1



and Fy the subfield of size p™/2.

First, we note that since 1, ﬂ ce Z_? are mdependent € F; for at most 2-1
many j’s. After reordering, we may assume that € F; for 2 <j<k and g Fg for
k+1 < j < n, where k <3 2 We also assume that Hk+1 <...<H,. Fix .1’2, e a:n 1.
Obviously there is no more than one value of x,, such that xzz—f R o e oL € Fs,
since otherwise (z, — x7,) %> € Fy with x,, # x;, contradicting the fact that ‘::’11 ¢ Fy.

Therefore,
| Da| < [Lo] -+ 1] (2.29)

and
| B|

(x2) < - (2.30)

If H,, > p7, we are done. Otherwise

Hpyr - H, < pn b7, (2.31)

Define

322{11314—332&4‘+$kﬁ$1€,{2,1§l§k}
w1 w1

Hence By C F5 and by (2.31)

|B| 2_ 1T n
Byl > — 21 S pG=%n 5 8, 2.32
| B2 ey 10, (2.32)
2
(We can assume 7 < 1%.)
Clearly, if (z2,... ,z,) € Ds, then z = x4 wff + - -+a:n“uj—'1l € Fy. Assume x|, is

non-principal, it follows from the generalized Polya-Vinogradov inequality and (2.32 )
that

> xly+2)| <

yE By

(logp)® m < (logp)? - |Fy|? < p~15|Bsy|, (2.33)

x| Y ()

reFs
where 1 runs over all additive characters. Therefore, clearly
(*2) < Hyyr--- Hop~ 13| By| = p~13| B (2.34)

providing the required estimate.
17



If x|, is principal, then obviously

1
(*2) = Hy - |[Da| = ‘Fz N w—B’ (2.35)
1
and
‘ Z X(:zc)) = |wi1F> N B| + cnp™7|B|. (2.36)
zeEB

This complete the proof of Theorem 2. O

Remark 2.1. The conclusion of Theorem 2 certainly holds, if we replace the assump-

n
tion of II H; > p(%“)" by the stronger assumption
j=1

pste < Hj for all j. (2.37)

This improves on Theorem 2 of [DL] for n > 4. In [DL], the condition H; > peFn T
is required. Our assumption (2.37) is independent of n, while, in the [DL] result, when
n goes to oo, the exponent ﬁ goes to %
Remark 2.2. In the case of a prime field (n = 1), Burgess theorem (see [Bul])
requires the assumption H > p%“, for some ¢ > 0, which seems to be the limit of
this method. For n > 1, the exact counterpart of Burgess’ estimate seems unknown
in the generality of an arbitrary basis wi, ... ,w, of Fyn over F,, as considered in [DL]
and here. Higher dimensional results of the strength of Burgess seem only known for

certain special basis, in particular, basis of the form w; = g7 with given g generating
Fpn. (See [Bu3], [Bud] and [Kar2].)

Theorem 2 allows us to estimate the number of primitive roots of F,» that fall into
B.
We denote the Euler function by ¢.

Corollary 3. Let B C Fpn be as in Theorem 2 and satisfying maxg ’Bﬂng’ < p~¢|B|
if n even. The number of primitive roots of F,n belonging to B is

Sp(pn — 1) —7’

pn—_1|B|(1 +0(p™ "))

where 7' = 7'(e) > 0 and assuming n < loglogp.

§3. Some further implications of the method.
18



In what follows, we only consider for simplicity the case of a prime field (several
statements below have variants over a general finite field, possibly with worse expo-
nents).

3.1. Recall that a generalized d-dimensional arithmetic progression in F, is a set of
the form

d
P=ao+{> wja;:a; € 0,N; — 1]} (3.1)

j=1
for some elements ag, a1, ... ,aq € Fp. If the representation of elements of P in (3.1)

is unique, we call P proper. Hence P is proper if and only if |P| = Ny --- N4 (which
we assume in the sequel).

Assume |P| < 1074, /p, hence F,, # Z=F (in the considerations below, |P| < p'/? so
that there is no need to consider the alternative |P| > p'/?). Following the argument

in [KS1] (or the proof of Proposition 1), we have

E(P,P) < ct(log p)|P|*/4. (3.2)
Also, repeating the proof of Theorem 2, we obtain

Theorem 4. Let P be a proper d-dimensional generalized arithmetic progression in
F, with
[P > p*/ote (3.3)

for some ¢ > 0. If X is a non-principal multiplicative character of ), we have

> x@)|<pip) (3.4)

zeP

where T = 7(g,d) > 0 and assuming p > p(e,d).

Theorem 4 is another extension of Burgess’ inequality. A natural problem is to try
to improve the exponent 2 in (3.3) to ;.

Let us point out one consequence of Theorem 4 which gives an improvement of a
result in [HIS]. (See [HIS], Corollary 1.3.)
Corollary 5. Given C > 0 and € > 0, there is a constant ¢ = ¢(C,e) > 0 and a
positive integer k < k(e), such that if A C I, satisfies

(i) |A+ A| < C|A|

() 4] > p =
19



Then we have
|AF| > ep.

Proof.

According to Freiman’s structural theorem for sets with small doubling constants
(see [TV]), under assumption (i), there is a proper generalized d-dimensional progres-
sion P such that A C P and

d<C (3.5)

log :Zl < C?*(logC)? (3.6)

By assumption (ii), Theorem 4 applies to P. Let 7 be as given in Theorem 4. We
fix

1
keZy, k> - (3.7)
T
(Hence k > k(e).) Denote by v the probability measure on F,, obtained as the image

measure of the normalized counting measure on the k-fold product P* under the
product map

Px--xP—F,

(1,... ,Tk) —> T1 ... Tk.

Hence by the Fourier inversion formula, we have

v(z) = E Zx(w)ﬁ(x) = o7 2 X@ (2 vx(®)
X t
k ‘fp’fk k
_1 (Z )) < _1Z‘Zx(y) ,
yeP p X yeP
x denoting a multiplicative character, and we get
maxz/(x)<;+ max |P|~ k‘z ’ <—+p_7k<g.
w€F T p— 1 X non-principal veP 1 p (38)

20



The last inequality is by (3.7). Assuming A C F}, we write
|AF < |A¥| m%x‘{(xl,... o) EAX X Aiay .. wy =}
S ;

< |A*| [P max v(x)

implying by (3.6) and (3.8)

s (ANR P (ke (log O
| A% > <|P’> 5~ 5 exp ( — kC?(log C)?) > ¢(C, e)p.

This proves Corollary 5. O

3.2. Recall the well-known conjecture stating that if A, B C Fp, |A| > p®, |B| > p7,
then

Y x@tw)| <pl4l 1B (3.9)
r€EA,yeB

where § = §(¢) > 0 and x a non-principal multiplicative character.

An affirmative answer is only known in the case |A| > pzt< |B| > p° for some
e > 0 (as a consequence of Weil’s inequality (2.14)). Even for |A| > p'/2,|B| > p'/?,
an inequality of the form (3.9) seems unknown. On the other hand, for more structured
sets A and B, better results can be obtained (See in particular [Karl] and [FI].) In

the rest of this section and the next section, we will establish further estimates in this
vein.

Our first result provides a statement of this type, assuming A or B has a small

doubling constant.

Theorem 6. Assume A, B C F,, such that
(a) [A] > ps+e,|B| > pite
(b) |B+ B| < K|B|.

Then

> xe+y)|<pT4] 1B
reA,yeB

where T = 1(e, K) > 0, p > p(e, K) and x is a non-principal multiplicative character
of Fp.

Proof.
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The argument is a variant of the proof of Theorem 2, so we will be brief. The case
|B| > pzt< is taken care of by Weil’s estimate (2.14). Since we can dissect B into < p©
subsets satisfying assumptions (a) and (b), we may assume that |B| < 3(,/p—1). We
denote the various constants (possibly depending on the constant K in assumption
(b)) by C.

Let B; be a generalized d-dimensional proper arithmetic progression in [F,, satisfying
B C By and

d< K (3.10)
log % <C. (3.11)
Let
By = (—B1) U By.
We take
5= %, r= {%0}. (3.12)

Similar to the proof of Theorem 2, we take a proper progression By C By C F, and an
integral interval I = [1, p°] with the following properties

| Bo| > p_2d5|82’

B — Byl C Bs. (313)

Therefore,
1B| < |By| < eCH)|B| and |By| = 2|By| — 1. (3.14)

Estimate

S x| <[ xw+y)

reA,yeEB yEB €A

<|Bo| I Y ‘Zx(x+y+zt)’. (3.15)
yEBs TEA
zEBp,tel

The second inequality is by (3.13). Write

1
2

SR D SRCERER EUANAILN B DR (e ey

]
(xo+y)z=t+t
yeBy  TEA yEBy,2€By teI
z€Bg,tel r1,x2€A

(3.16)
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The sum on the right-hand side of (3.16) equals

| s Sa( )

ul,uQEIFp
1
r I U/]_ +t 2r| 2r
<[ X vtunw?=] TS [ (] 317
where for (u1,uz) € F2 we define
Tty T2 +Y
v(ug,uz) = |[{(z1,22,y,2) € AXAxByx By : = u; and = us}|. (3.18)
z
Hence
> wlur, uz) = |AP?|Bo| |Bol (3.19)
Uy, u2
and
Z V(ul,u2)2
: Y,
= ’{(1’1,1’2,1”1,1'/2,y,yl,Z,Z/) cA* x B2 x B2 ity _ —i;y for i = 1,2}
z
/ /
< AP max| {22 € B x B3 Y - AV
x1,% z
< |APE(By, Bo)? max E(z + Ba, z + B2)?
< |4 logp |Bo| ¥ Ba ¥
< C|AP |Bo| 7 (3.20)

by Proposition 1, Fact 1 and several applications of the Cauchy-Schwarz inequality.
Therefore, by Fact 5 (after (2.12)), (4,19) and (3.20) , the first factor of (3.17) is
bounded by

ﬁ\'—‘

(St ]

[ Ul,UQ :|W
<C‘A| 1Ba| |Bo|(| A2

|Bo| =5 p**) . (3.21)
Next, write using Weil’s inequality (2.14)
SR DON G D DI D OR (e e e
ug +t - (u+ tr+1 < (u+ toy)

uy,u€F,  te ti,...,t2r €1 u€lF,

< p? [ 7"+ Cr?p I, (3.22)
23



so that the second factor in (3.17) is bounded by
12 a1
Crpr |I|2 + Cp2r |1]. (3.23)

Applying (3.14) and collecting estimates (3.16), (3.17), (3.21), (3.23) and assumption
(a), we bound (3.15) by

> x(@+y)| < ClALBIII (A B8 d (Vrp# (11 4 (11}

r€EA,yeB
< Cr|A| |B| (p~ G5 +2d0y5 (pa—3 4 par)
< CVr |A| |B| (p%—ga—mdé—gr +p—%s+2d6)%. (3.24)
Recall (3.12). The theorem follows by taking 7(g) = 12682K .

84. The case of an interval.

Next, we consider the special case > 4, X(¥ +y), where A C F, is arbitrary
and I C IF,, is an interval. We begin with the following technical lemma.

Lemma 7. Let A CF; and let I, ..., I be intervals such that I; C [1,p’%i]. Denote
w(u) = ‘{(y,zl,...  2s) EAX Ty X+ X Ig: y=uzy... 25 (modp)}‘ (4.1)
and ) )
-y 4.2
V=t (4.2)
Then

S
> w(w)? < |AI [ 5] pretes < |A[ 1 e,
u =1
Proof. Using multiplicative characters and Plancherel, we have

S wlw)? = —— 3w, ) (4.3)

p—1

where



Hence

[(w, x)| = ) Zx(y)‘ H’ > x(z)

Using generalized Holder inequality with 1 = (1 —~) + l +- 4+ k—ls, we have

S wf =3 [ S| | 3 x|

u X yeEA 1 z; €l
1 2\ 1- =
1—v
i (E[S 7)) IS S )"
X yeA zi€1; (4.4)
Now we estimate different factors. Writing the exponent as % = 12_—77 + 2 and

using the trivial bound, we have

Z‘ZX(y)‘laﬂA'mZ\Zx(] — 1A 3 S x(ye) = plAT

X yeEA X y€eA Y,2€A X
(4.5)
For an interval I C [1, p%], we define
= ‘{(zl, J2g) ELX XTIt z1...2,=u (modp)}’.

Since z1 ...z, = 2] ... 2z, (mod p) implies z; ...z = 2] ...2, InZ, n(u) < (exp(bgl%))k.
On the other hand Y n(u) = |I|*. Therefore,

> Zx(z)‘zk =3 (ZH(U)X(U)) = (0,0° = (p-1 Zn ) < pttmtoes | 117,

x z€l X u X
(4.6)
Putting (4.4)-(4.6) together, we have the lemma. O
We may state Lemma 7 in the following sharper version.

Lemma 7’. Under the same assumption as Lemma 7, we have

> w(u)® < |A'"TE(A, A)pesies [ [ L] < |Al'TTE(A, A)p st
u =1

where E(A, A) is defined as in (1.1).

Proof. Proceeding as in the proof of Lemma 7, we replace (4.5) by the estimate

| ] <[ S| [~ [Z\Zx ™

yeA
<(plA)TT (p E(A,A)T7. O
25




Theorem 8. Let A C IF), be a subset with |A| = p* and let I C [1,p] be an arbitrary

interval with |I| = p®, where

1

(1-a)(1-6) <53

and 3 > 6 > 0. Then for a non-principal multiplicative character x, we have

2
Y x| <p AL

xel
yeA

Proof. Let

and

Choose ki, ... ,ks € ZT such that
1
21 < B — E k‘_i<37'

Denote L
Iy=[1p"], L=[1pr] (1<i<s).

We perform the Burgess amplification as follows. First, for any zg € Iy, ...

Y ox@+y) =D x@+y+z2...2)+O0(AP° ).

xzel zel
yeA yeA

Letting v = >, 2, we have (up to the error term)

‘Zx(ﬂchy)‘:p_”‘T Y Xyt an...z)

zel zel, yeA
yEA Z()EI(),...,ZSEIS

<p 77 Z ‘ Z x(x+y+2021...25)

z€l, yeA zo€lo
ZIEII7~~~ 7Zs€Is

< PP~ max
=P el Z

ZJGA zo€lg
Zlella-“ 723615

26
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>x(— 7t x)
Z1..-Rg

(4.7)

(4.8)

(4.9)

(4.10)

, 25 € I,

(4.11)



Fix x € I achieving maximum in (4.11), and replace A by A; = A + z. Denote
w(u) the function (4.1) with A replaced by A;. Hence (4.11) is

PPy w(u)‘ 3 x(u+ z)‘. (4.12)

ZGIO

By (4.12), Hélder inequality, Fact 5 and Weil estimate (cf (2.16)), (4.11) is bounded

(i) (o)

u u  z€lp
< [ Swtw)] [ ww?] ™ (Rl + 21l )

A R V() (U

-

In the last inequalities, we use | Y, w(u)| = |A|p”, (4.7)-(4.10) and Lemma 7. O

Next we consider the sum

Z x(x+y), (4.13)

zel,yeD

where I C ), is an interval with || = p? and D is pP-spaced modulo p. Such sums
were estimated in [FI|. In particular, Theorem 2’ of [FI] gives a non-trivial estimate
for (4.13) under the following assumptions

(*) D lies in an interval of length D. Moreover, for some r € Z and € > 0

I|D <p't2 and |I||D|? > pitate. (4.14)

Note that if we do not specify D to be contained in an interval of size D, (hence
D = p), the restriction (4.14) forces I and D to satisfy

D+ 1|~ |1]|D] > p=+2, (4.15)

which can be dealt with in an elementary way.
In what follows we give new estimates without any restriction on the |I|-spaced set.

Observe that any sum as considered in Theorem 8 may be replaced by a sum of the
form (4.13). Conversely, Theorem 8 may be used to bound (4.13) as follows. Denote
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I' = [1,p?~7] for some 7 > 0 and A = D+ I'. Hence |A| = |D| - |I'| by the separation
assumption. Also,

S @ty =— Y x@+y+H+0E D)

1’|
zel,yeD zeltel

yeD

1 -7
= 2 X@+2)+ 06D, (4.16)
zel,z€ A

If |D| = p?, then |A| = p® with a = 0+ [ —7 and condition (4.7) becomes (for 7 small
enough)

c+2—-0—-0)3> %, (4.17)

which improves over (4.15). One has in fact a stronger statement if § > o (when
Lemma 7’ is an improvement over Lemma 7).

Theorem 9. Let I C F, be an interval with |I| = p® and let D C F, be a p”-spaced
set with |D| = p?. Assume

1
(1-28)(1-0)<;~30 (4.18)
for some 6 > 0. Then

2
Y x| <p it D)
zel,yeD

for a non-principal multiplicative character x.

Sketch of the Proof. The argument is a technical refinement of that of Theorem 8

based on Lemma 7’. We use the same notation as above and assume [ < % We
choose T = % and R, 7 the same as in Theorem 8. (See (4.8)-(4.10).)

Let A=D+I'. Asin (4.11), we write

1 —T
> xle+y) = 0 Y X(@+2)+0@ TP
zel,yeD zel,ze A
p T _T
<Prr | X xerytzn.z)| +0ETIID)
zel, yecA

zo€lg,... ,zs €1

_ r+y
< p~ 7 max E E X( + z0>
xel Z1...%g
yEA zo€lp
Zlella“-»zsels

28
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To use Lemma 7', we bound E(A, A) as follows. Write

E(AJA)=EMD+I'D+1)<p* dI%axDE(dl +I',dy + 1)
1,d2€

< ploteWII )P < pPote) A2, (4.19)
Here we use the well-known estimate (e.g. see [FI] p.369).
E(I, 1) < p°W || - |1 (4.20)

for the multiplicative energy of intervals Iy, Iy C I, such that |I1] - |I2| < p. Substitu-
tion of (4.19) in Lemma 7’ gives

Zw(u)Q < |A‘p'y(1—|—20')+0(1)

u

and the proof is completed as in Theorem 8. 0

Finally we establish some improvement over Karacuba’s theorem [Kal]. Recall the
statement of [Kal]. Let I C [1,p] be an interval with |I| = p® and S C [1,p] be an
arbitrary set with |S| = p®. If for some £ > 0

a>e,f>cand a+20>1+¢

then for some ¢/ > 0

Z‘ZX@H?J)‘ <p = |I]1S]. (4.21)

yel zeS
We will prove the following

Theorem 10. In the above setting, assume that o, 3 satisfy

1 2 2 2 1 1
<= _ = z z S e .
8<ﬁ_kand<1 3k>a+3<1+k>ﬁ>2+3k+€ (4.22)

for some e >0 and k € Zy. Then (4.21) holds for some ' =¢'(g) > 0.

To see the strength of Theorem 10, for example, we take a = 3, and let k = 3, then
estimate (4.21) is valid, provided

11
a,ﬁ>ﬂ+5

which is a slight improvement over the condition «, 8 > % gotten from [Kal].
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The proof of Theorem 10 is a combination of variants of arguments used in [FI]
(Theorem 3) and [Ka2], together with Lemma 7’.

Proof of Theorem 10.
Take 1 = B — 7 with 7 > 0 and 7 = o(1).

We partition [1,p] in intervals I; of size p' and consider the intersections S N I;.
Up to a factor of log p, one may clearly replace S by sets of the form

S = U (67" +Sr)7 (424)

&-€D

where D is a pP'-spaced set with |D| = p? and S, C [0, p™] satisfying |S,| ~ pP—°
(for some o independent of ) and |D|.p?1=7 > p=°()|S|. Hence

a>y+p1—o>a—o(l). (4.25)
We will carry out two estimates.

Case 1. a—{—ﬁ—a—% >%+5forsome5>0.
We assume o < 31 — 7 (more restrictive conditions will appear later).

By (4.24) and Cauchy-Schwarz, we have

Z‘Zx(rﬁy)’ <y Z‘ Zx(£r+x+y)‘

yel xzeS €D yel zeS,
1
< m%m%‘ S X(w—lﬂ) >

X
§r€Dyel,z1,22€8, gr + 2 + Y

It will suffice to establish a non-trivial bound on the inner sum

Tr1 — X9
1+ —) 4.26
Z X< 67" + T2ty ( )
§r€Dyel
32175.7}2657“

Denote V' the interval [0,p%]. We recall that z1 — x5 € [—p®~7,pP~7]. After fixing
r and z1,z2 € S, in the summation (4.26), we may translate y € I by a product
t.(x1 — x2) with ¢ € V. The error is O(p~ 2 [I|(3p [S:?)).

1 1
m Z X(l + Ertytao +t>’

&r€DyelteV E1—®2
T1#T2E€S,
30

Hence we obtain



which we bound by

1 1
v Zn(u)‘Zx<1+u+t)‘. (4.27)
u€clkF, teV
Here
n(u) = ‘{(fr,y,xl,xg) €EDXxIxS*: 2, #xand u= WH
1= T2

Under the assumption of the case, we claim

(Snw) > pb(Snw?). (4.28)

It is obvious from the construction that

S () ~ (DL pPtrt 2=, (4.29)

Also
> n(u)?

- }{(grafr’ﬂlﬁy/axlax%x/l?x/2) I 7& 1112,.1?/1 7é 33'/2 and

& +y+ a2 :£T’+y/+x/2}‘
T1 — X9 x) — b

< p2(Br=0) iz, &Y b +y/}‘

z 2!

{665,922 € D x [0.20°) x [-p"p

= p? B B(D +[0,20°], [-p™, p™)).

Applying Lemma 7' with A = D +[0,2p°], s = 1,7 = % and I = [0,2p%] where
B < B <+, we get E(A, A) < [D|*p?P+el) by (4.21), and

E(A,I) < p?W|A|*"F E(A, A)F || < pPHAit+t)yted) (4.30)

Hence
Zn(u)z < pPH3B1—20+(1+F)v+o(1) (4.31)

and (4.28) holds by (4.29), (4.31) and recalling (4.25).

We follow the usual procedure (e.g. see the bounding of (4.11)), we have the bound

1118 p~7
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Note that since we may assume o < 3 + o(1), the condition o0 < 8; — 7 for 7 small
enough, is automatically satisfied under the assumption of this case.

Case 2. 2a+ﬁ—|—0—2%>1+5forsome5>0.

S [Snte )| < | X ()

yel x€S 21,22€S
yel

Since

Y

we need a nontrivial estimate on

> ()
T +y/
T1,T2€S 2Ty
yel
Making a translation y — y + 2t with z € [1,p”1] = I,,t € V = [0,p?] leads to
1 U1 —’rt)
— n(uy,u ,
V| 1 u2) ‘Z <uQ +t

Ul:'LLQG]F

(4.32)

where

T +y

n(uy, ug) = ‘{(xl,xg,y,z) €S xIxI:u = , for i = 1,2}‘.

Let n(u) = n(u1,u2). We will show that the assumption of this case implies

(Snw) > (Snw?). (13

Here

Z 77 204-1-/3-1—51

Clearly, using the bound (4.30), we have
> n(w)?

/ / / / 4 2 2 .
= H(xl,xz,xl,xQ,y,y,z,z) €S*xI*xIi:

/

/ /
< |9 H(aaw’,yyy’,z,Z')ESQ X [P x I x;ry == :’y }
£+ xty _ & —|—x/—|—y/}‘

/

< p“

{(€T7§T/7$7 x/7y7 y/’ Z? Z/) G D2 X 52 X 12 X If : z

< p*p* "=V E(D +(0,2p],[0,p™))
< pa+,8+3ﬁ172a+(1+%)'y+0(1).
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2
Proceeding in the same way as before, we obtain the bound || |S| p~2 (% A1),

To reach condition (4.22), we assume Case 1 fails. Hence

2y 1
g — ) 1
a+08—o0 2 <2+0()

and recalling (4.25), i.e.
a+o(l)y>y+p—0>a—o0(1)

(letting 7 be small enough), it follows that

(1+%>0> <1—%>a+<1+%)ﬁ—%—0(1).

Therefore the assumption of Case 2 will be satisfied if

(12204 o> b o 2

This proves Theorem 10.
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