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Let Fq be a finite field of order q with q = pn, where p is a prime. A multiplicative
character χ is a homomorphism from the multiplicative group 〈F∗q , ·〉 to the unit
circle. In this note we will mostly give a survey of work on bounds for the character
sum

∑
x χ(x) over a subset of Fq. In Section 5 we give a nontrivial estimate of

character sums over subspaces of finite fields.

§1. Burgess’ method and the prime field case.

For a prime field Fp and when the subset is an interval, Polya and Vinogradov
(Theorem 12.5 in [IK]) had the following estimate.

Theorem 1.1. (Polya-Vinogradov) Let χ be a non-principal Dirichlet character
modulo p. Then

∣∣∣
a+b∑

m=a+1

χ(m)
∣∣∣ < Cp

1
2 (log p).

This bound is only nontrivial when b > p
1
2 (log p). Forty four years later Burgess

[B1] made the following improvement.

Theorem 1.2. (Burgess) Let χ be a non-principal Dirichlet character modulo p.
For any ε > 0, there exists δ > 0 such that if b > p

1
4+ε, then

∣∣∣
a+b∑

m=a+1

χ(m)
∣∣∣ ¿ p−δb.

Applying the theorem to a quadratic character, one has the following corollary.
(The power of 1/

√
e is gained by sieving.)

Corollary 1.3. The smallest quadratic non-residue modulo p is at most p
1

4
√

e
+ε

for ε > 0 and p > c(ε).

Note that we always assume ε > 0 and p > c(ε).

The proof of the Burgess theorem is based on an amplification argument (due
to Vinogradov), a bound on the multiplicative energy of two intervals (Lemma 1.4)
and Weil’s estimate (Theorem 1.5).

The multiplicative energy E(A, B) of two sets A and B is a measure of the
amount of common multiplicative structure between A and B.

E(A,B) =
∣∣∣
{
(a1, a2, b1, b2) ∈ A×A×B ×B : a1b1 = a2b2

}∣∣∣.

Similarly, we can define the multiplicative energy of multiple sets.
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Friedlander and Iwaniec ([FI]) have an optimal bound on the multiplicative en-
ergy of two intervals.

Lemma 1.4. (Friedlander-Iwaniec) If I, J are intervals with |I| |J | < p, then

E(I, J) < c log p |I| |J |.

The next estimate of the complete character sum of a polynomial is from the
well-known Weil’s bound on exponential sums. (See Theorem 11.23 in [IK]).

Theorem 1.5 (Weil) Let χ be a non-principal multiplicative character of Fpn of
order d > 1. Suppose f ∈ Fpn [x] has m distinct roots and f is not a d-th power.
Then for n ≥ 1 we have

∑

x∈Fpn

χ((f(x)) ≤ (m− 1)p
n
2 .

Sketch of Burgess’ Proof.

It suffices to give the proof for intervals of length p
1
4+ε.

Let I ⊂ [1, p) be an interval of length |I| = [p
1
4+ε], and let J = [1, p

1
4 ] and

T = [1, p
ε
2 ]. For y ∈ J and t ∈ T , we have

∣∣∣
∑

x∈I

χ(x)−
∑

x∈I

χ(x + yt)
∣∣∣ <

∣∣∣I \ (I + yt)
∣∣∣ +

∣∣∣(I + yt) \ I
∣∣∣ < 2p

1
4+ ε

2 .

Hence, ∑

x∈I

χ(x) = p−
1
4− ε

2

∑
x∈I,y∈J

t∈T

χ(x + yt) + O(p−
ε
2 |I|).

Next, we estimate∣∣∣
∑

x∈I,y∈J
t∈T

χ(x + yt)
∣∣∣ ≤

∑

x∈I,y∈J

∣∣∣
∑

t∈T

χ(xy−1 + t)
∣∣∣ =

∑

u∈F∗p
η(u)

∣∣∣
∑

t∈T

χ(u + t)
∣∣∣,

where
η(u) =

∣∣{(x, y) : x ∈ I, y ∈ J, xy−1 = u (mod p)}
∣∣.

Next, apply Hölder’s inequality with a suitably chosen large power 2r.
∑

u∈F∗p
η(u)

∣∣∣
∑

t∈T

χ(u + t)
∣∣∣ ≤

[∑
u

η(u)
2r

2r−1

]1− 1
2r

︸ ︷︷ ︸
(A)

[∑
u

∣∣∣
∑

t∈T

χ(u + t)
∣∣∣
2r] 1

2r

︸ ︷︷ ︸
(B)

.

To estimate (A), we will use Lemma 1.4.

Since 1 < 2r
2r−1 < 2, Hölder’s inequality implies that

(A) ≤
( ∑

η(u)
)1− 1

r
( ∑

η(u)2
) 1

2r

= (|I| |J |)1− 1
r E(I, J)

1
2r

< log p (|I| |J |)1− 1
2r .

(The equality follows from the definitions of η(u) and the multiplicative energy.)
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Now we estimate (B)

(B) ≤
{ ∑

t1,...,t2r∈T

∣∣∣
∑

u∈Fp

χ
( (u + t1) · · · (u + tr)

(u + tr+1) · · · (u + t2r)

)∣∣∣
} 1

2r

,

which by Weil’s inequality, is bounded by
{

r2r|T |rp + |T |2r(2r − 1)p
1
2

} 1
2r

< Cr

(
|T | 12 p

1
2r + |T |p 1

4r

)
.

Therefore, up to an error of O(p−
ε
2 |I|), taking r ∼ 1

ε , our character sum is bounded
by ∑

x∈I

χ(x) ≤Cr log p p−
1
4− ε

2 p( 1
2+ε)(1− 1

2r )
[
p

ε
4+ 1

2r + p
ε
2+ 1

4r

]

<Cr log p |I|
(
p

1
4r− ε

4− ε
2r + p−

ε
2r

)
¿ p−

ε2
3 |I|.

§2. Extensions of Burgess method to a general finite field Fpn .

Let ω1, . . . , ωn be an arbitrary basis for Fpn over Fp. Then for any x ∈ Fpn ,
there is a unique representation of x in terms of the basis.

x = x1ω1 + · · ·+ xnωn.

A box B ⊂ Fpn is a set such that for each j, the coefficients xj form an interval.

B =
{ n∑

j=1

xjωj : xj ∈ [Nj , Nj + Hj ], ∀j
}

. (2.0)

Burgess, Friedlander, Karacuba, and Davenport-Lewis all contributed non-trivial
estimates of the character sum ∑

x∈B

χ(x).

Here by non-trivial we mean smaller than the trivial bound by a factor of qε for
some ε > 0.

Let us recall their results.

The first theorem is about boxes defined by special bases. It was done by Burgess
[Bu3] for n = 2, and Karacuba [Kar2] for general n.

Theorem 2.1 (Burgess, Karacuba) Let χ be a non-principal multiplicative charac-
ter of Fpn , and let ω1, ω2, . . . , ωn be a basis of Fpn over Fp satisfying the condition
that

ωiωj =
∑

1≤r≤n

dijrωr with |dijr| < C. (2.1)

For a box B as defined in (2.0) by the basis ω1, ω2, . . . , ωn with

Hj > p
1
4+ε, ∀j, for some ε > 0, (2.2)

we have ∣∣∣
∑

x∈B

χ(x)
∣∣∣ < p−δ|B|.
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Remark 2.1.1. Let θ be an algebraic integer such that its minimal polynomial
irrZ(θ) is irreducible modulo p. The basis ω1 = 1, ω2 = θ, . . . , ωn = θn−1 satisfies
condition (2.1). Hence Theorem 2.1 applies.

For general bases, there is also the weaker result by Davenport and Lewis.

Theorem 2.2. (Davenport-Lewis [DL] ) Let χ be a non-principal multiplicative
character of Fpn , and let ω1, . . . , ωn be an arbitrary basis, and let the box B be as
defined in (2.0) with

Hj = H > p
n

2(n+1)+ε, ∀j.
Then for p > p(ε), we have

∣∣∣
∑

x∈B

χ(x)
∣∣∣ < (p−ε1H)n, for some ε1(ε) > 0.

Remark 2.2.1. For n = 1, this is Burgess’ result, but it becomes weaker for n > 1
and n

2(n+1) → 1
2 for n large.

In Karacuba’s argument, the problem of estimating E(B, B), B the given box
in Fpn , is reduced to counting divisor in Q(θ).

In Davenport-Lewis’ argument, the amplification uses only an Fp-parameter and
this explains why their result is weaker. They raise the question of how to exploit
a Fpn-parameter when the basis {ω1, . . . , ωn} is arbitrary.

For n = 2, we are able to have an estimate of Burgess’ strength.
(
See Theorem

5 in [C2].
)

Theorem 2.3. Let Let χ be a non-principal multiplicative character of Fp2 = Fp(ω)
and let B be a box

B =
{

x1 + x2ω : xj ∈ [Nj , Nj + H], ∀j
}

,

where
H > p

1
4+ε.

Then ∣∣∣
∑

x∈B

χ(x)
∣∣∣ < p−δ|B|

with δ = δ(ε) independent of ω.

As for the most essential ingredient of the proof, multiplicative energy, we have
an optimal bound.

(
See Lemma 2’ in [C2].

)

Lemma 2.4. Let ω ∈ Fp2\Fp,

B =
{

x + ωy : x, y ∈
[
1,

1
10

p1/4
]}

.

Take z1, z2 ∈ Fp2 and ep = exp
(
c log p

log log p

)
. Then

E(z1 + B, z2 + B) < ep |B|2,
where zi + B = {zi + b : b ∈ B}.
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The proof of Lemma 2.4 uses the following estimate on divisor functions on a
box.

Lemma 2.5. Let B be a box defined as in the lemma above. Then

max
ξ∈Fp2

∣∣∣{(z1, z2) ∈ B ×B : ξ = z1z2}
∣∣∣ < exp

(
c

log p

log log p

)
.

To prove Lemma 2.5 we use the uniform bounds on divisor functions in algebraic
number fields Q(ω) of bounded degree.

As for general n, here is our improvement of Davenport and Lewis’ result.
(
See

Theorem 2 in [C1].
)

Theorem 2.6. Let B be a box as defined in (2.0) with ω1, . . . , ωn being an arbitrary
basis and

n∏

j=1

Hj > p( 2
5+ε)n

for some ε > 0.

Let p > p(ε) and χ be a nontrivial multiplicative character of Fpn . Then
∣∣∣
∑

x∈B

χ(x)
∣∣∣ ¿ np−

ε2
4 |B|,

unless n is even and χ|F2 is principal, F2 = subfield of size pn/2, in which case
∣∣∣
∑

x∈B

χ(x)
∣∣∣ ≤ max

ξ
|B ∩ ξF2|+ On(p−

ε2
4 |B|).

As an application, we can estimate as follows the number of primitive roots of
Fpn in boxes. ( See [DL], p131.)

Corollary 2.7 Let B ⊂ Fpn be as in Theorem 2.6 and satisfying maxξ

∣∣B ∩ ξF2

∣∣ <
p−ε|B| if n even. Then the number of primitive roots of Fpn belonging to B is

ϕ(pn − 1)
pn − 1

|B|(1 + o(p−τ ′)),

where τ ′ = τ ′(ε) > 0 and assuming n ¿ log log p.

The proof follows from the formula

ϕ(pn − 1)
pn − 1

{
1 +

∑
d|pn−1

d>1

µ(d)
ϕ(d)

∑

ord(χ)=d

χ(x)
}

=

{
1 if x is primitive
0 otherwise.

Recently, Konyagin [K] generalized Burgess’ result to n ≥ 2.
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Theorem 2.8. (Konyagin) Let χ be a nontrivial multiplicative character of Fpn

and ε ∈ (0, 1/4] be given. If n ≥ 2, {ω1, . . . , ωn} is an arbitrary basis for Fpn over
Fp,

B = {
n∑

j=1

xjωj : xj ∈ [Nj + 1, Nj + Hj ] ∩ Z}

is a box satisfying Hj ≥ p1/4+ε (j = 1, . . . , n), then we have

|
∑

x∈B

χ(x)| ¿n p−ε2/2|B|,

where δ = δ(ε) > 0.

Remark 2.8.1. Konyagin’s proof is based on geometry of numbers and Minkowski’s
inequalities for successive minima.

Remark 2.8.2. At this point, Konyagin’s argument requires each Hj > p1/4+ε,
while Theorem 2.6 assumes only a condition on

∏
Hj . Also, in Theorem 2.6, the

dependence on n is better due to the fact that the multiplicative energy bound
(Lemma 2.10 below) only involves a factor Cn.

The proof of Theorem 2.6 is divided into two cases, depending on whether
maxj Hj < p

1
2+ ε

10 .

If Hj > p
1
2+ ε

10 for some 1 ≤ j ≤ n, we use the following theorem by Perelmuter-
Shparlinski [PS].

Theorem 2.9. (Perelmuter-Shparlinski) Let χ be a non-principal multiplicative
character of Fq and let g ∈ Fq be a generating element, i.e. Fq = Fp(g). For any
integral interval I ⊂ [1, p],

∣∣ ∑

t∈I

χ(g + t)
∣∣ ≤ c(n)

√
p log p.

If maxj Hj < p
1
2+ ε

10 , we apply Burgess’ method. The bounding of the multi-
plicative energy is a variant of Garaev’s argument ([G]) with later refinement due
to Katz-Shen ([KS1], [KS2]) to obtain an explicit sum-product theorem in Fp.

Lemma 2.10. Let ω1, . . . , ωn be an arbitrary basis, and let the box B be as defined
in (2.0). Assume

max
j

Hj <
1
2
(
√

p− 1).

Then
E(B, B) < Cn(log p)|B| 114 .

Remark 2.10.1. The lemma saves 1
4 over the trivial bound |B|3.

§3. Character sums with polynomial argument.

It follows from Weil’s inequality that if χ is a multiplicative character modulo p
of order d, and f(x) is a polynomial that is not a d-th power modulo p, then
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∣∣∣
N+H∑

x=N

χ
(
f(x)

)∣∣∣ < Cp
1
2 log p,

where C depends on the degree of f . However, no analogue of Burgess’ inequality
is known. There is the following weaker variant by Burgess. [Bu5]

Theorem 3.1. (Burgess) Let f(x) be a non-linear polynomial that is a product of
rational linear factors and not a perfect d-th power. Let p ≡ 1 mod d and χ a d-th
order character mod p. Then if

p
1
4+ε < H < p

1
2 ,

we have ∣∣∣
∑

N<x≤N+H

χ
(
f(x)

)∣∣∣ < H − cH2p−
1
2 ,

where c depends on ε, d and f .

Corollary 3.2. Let f , χ, and p be as in Theorem 3.1. Then there are x1, x2 ∈
[N, N + H] such that

f(xi) 6= 0 mod p, and χ
(
f(x1)

) 6= χ
(
f(x2)

)
.

As for character sums over binary quadratic forms, Burgess has the following
non-trivial uniform estimate. [Bu4]

Theorem 3.3. (Burgess) Let χ be a nontrivial multiplicative character mod p.
Suppose x2 + axy + by2 ∈ Fp[x, y] is not a perfect square, and I, J ⊂ [1, p − 1] are
intervals. If

|I|, |J | > p
1
3+ε, (3.1)

then ∣∣∣
∑

x∈I,y∈J

χ(x2 + axy + by2)
∣∣∣ < p−δ|I||J |,

where δ = δ(ε) > 0.

In the next theorem we improve Burgess’ result from 1
3 to 1

4 .

Theorem 3.4. Under the assumption as in the theorem above, if |I|, |J | > p
1
4+ε,

then there is a non-trivial bound.

The proof has two cases.

Case 1. x2 + axy + by2 is irreducible mod p. Let ω = 1
2 (−a +

√
a2 − 4b). Then

ω ∈ Fp2 \ Fp. Take B to be the box

B = {x + ωy : x ∈ I, y ∈ J} ⊂ Fp2 .

Now the theorem follows from the estimate in Fp2 on sum of the character χ1

∑

x∈I,y∈J

χ1(x + ωy) =
∑

z∈B

χ1(z).

Case 2. x2 + axy + by2 = (x− λ1y)(x− λ2y) with λ1 6= λ2 in Fp. The argument is
similar to Case 1 by replacing Fp2 with Fp × Fp.



8

Assuming p large enough, there are applications of character sums to quadratic
non-residues in sets with more structure. For example, we take a fixed nonzero
integer k and let

f(x) = x2 + k.

If k = −r2, r ∈ Z, then Corollary 1.3 implies that for some j < p
1

4
√

e
+ε, jr and

(j + 2)r do not have the same quadratic residuacity and f(x) is quadratic non-

residue mod p for some x < p
1

4
√

e
+ε

.

In general, Burgess [Bu2] proved the following theorem.

Theorem 3.5. (Burgess) (
x2 + k

p

)
= −1

for some
x = O

(
p

2
3
√

e
+ε)

.

We have the following improvement.
(
[F],[C3]

)

Theorem 3.6. (
x2 + k

p

)
= −1

for some
x = O

(
p

1
2
√

e
+ε)

.

The argument has the same approach as Burgess’, starting with

Lemma 3.7. ( Burgess) Let
n = x2 + ky2.

Then there is a representation

n = u2
∏

1≤i≤r

(v2
i + k)αi ,

where r, u, v1, . . . , vr ∈ Z+; u, v1, . . . , vr ≤ n and αi = ±1.

This reduces the problem to character estimates of binary forms.

Remark 3.8. One may be more specific about the role of k in Theorem 3.6. In
view of Lemma 3.7, we gets x ¿ k1/

√
ep1/2

√
e+ε. See Problems 8 and 9.

§4. Other related character sums.

Definition 4.1. Let q = pn be a prime power such that q ≡ 1 mod 4. The
undirected Paley Graph of order q, G = (V, E) is defined by

V = Fq

and
E =

{{a, b} ∈ Fq × Fq : a− b is a square in F∗q
}
.

Problem 4.2. What is the size of the largest clique in G?
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The problem asks for the size of the largest subset S ⊂ Fq such that for any
a, b ∈ S, a− b is a square. A. Blokhuis [Bl] proved that if q = p2n and p 6= 2, then
the clique number is pn. For q = p prime, it is conjectured that the clique number
is ∼ log p. A relevant character sum problem is the following.

Problem 4.3. Let χ be the quadratic character mod p (or any non-trivial charac-
ter). Prove that for some γ = γ(δ) > 0

∣∣∣
∑

x∈A,y∈B

χ(x + y)
∣∣∣ < p−γ |A| |B|

holds, for arbitrary subsets A,B ⊂ Fp of size

|A| > pδ, |B| > pδ

and p large enough.

Karacuba has the following relevant results [Kar3].

Theorem 4.4. ( Karacuba) Let χ be a non-trivial multiplicative character mod p.
If |A| > p

1
2+δ, |B| > pδ, then

∣∣∣
∑

x∈A,y∈B

χ(x + y)
∣∣∣ ¿ p−0.05δ2 |A| |B|.

Remark. It is unknown if there is non-trivial bound on the character sum
∑

x∈A,y∈B χ(x+

y) for |A| = |B| ∼ p
1
2 , not even for the special case when A = B = H < F∗p.

Considering special sets, Karacuba [Kar1] also proved

Theorem 4.5. (Karacuba) Let χ be a non-trivial multiplicative character mod p,
I ⊂ [1, p) be an interval and S ⊂ [1, p) an arbitrary set, such that

|I|, |S| > p
1
3+ε.

Then ∑

y∈I

∣∣∣
∑

x∈S

χ(x + y)
∣∣∣ < p−δ|I| |S|

Remark 4.5.1. Related results were obtained by Friedlander and Iwaniec [FI] but
under more restrictive assumptions on S that it is well-spaced.

We have the following slight improvement [C1].

Theorem 4.6. Theorem 4.5 holds under the hypothesis that

|I|, |S| > p
7
22+ε.

The proof uses the following estimate on multiplicative energy.

Proposition 4.7. Take k ∈ Z, k ≥ 2 and I = [0, p
1
k ] an interval. Let D ⊂ Fp be a

p
1
k -separated set and A = D + I = {d + i : d ∈ D, i ∈ I}. Then

E(A, I) < p
4

log log p |D| 1
k−1 |I| |A|.
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There are more bounds on character sum over sets with more structures.

Theorem 4.8. (Karacuba) [Kar3] [Kar4] Let τk(n) be the number of solutions of
the equation n = n1 . . . nk with ni ∈ Z+, ni ≥ 2, and let

TN =
∑

n≤N

τk(n) χ(a + n), (a, p) = 1.

(i) If N > p
1
2+ε, then |TN | < N1−δ.

(ii) If 0 < |a| ≤ √
p, and

N > p
1
2− 1

2(k+1)+ε,

then
|TN | < N1−δ.

The following is our result of type (ii) without restriction on a.

Theorem 4.9. Let TN be defined as in Theorem 4.8. Assume

N > p ρk+ε

with ρk = 3
8 + k

4 − 1
4

√
k2 − k + 9

4 . Then

|TN | < N1−δ for some δ = δ(k, ε) > 0.

Theorem 4.9 follows from the following result in [C1].

Theorem 4.10. Let I ⊂ Fp be an interval with |I| = pβ and let D ⊂ Fp be a
pβ-spaced set with |D| = pσ. Assume

2β + σ − βσ

1− β
>

1
2

+ δ

for some δ > 0. Then
∣∣∣

∑

x∈I,y∈D
χ(x + y)

∣∣∣ < p−
δ2
12 |I| |D|

for a non-principal multiplicative character χ.

Corollary 4.11. Let a ∈ Z be arbitrary such that (a, p) = 1 and let

R1 =
∑

x2+y2≤N

χ(x2 + y2 + a).

Assume

N > p ρ2+ε, ρ2 =
1
8
(7−

√
17) = 0.359...

Then
|R1| < N1−δ.

§5. Character sums over subspaces.
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Theorem 5.1. Let q = pn, and let V be a subspace of Fq over Fp. Assume

(1). dimV ≥ ρn, where ρ < 1
2 is a constant.

(2). maxξ∈ F∗q |V ∩ ξG| < |V |1−ε, when n is even. Here G is the subfield of Fq

with |G| = √
q.

(3). n < p (log p)−4, where C is a sufficiently large constant.

Then ∣∣∣
∑

x∈V

χ(x)
∣∣∣ <

(
log p

)−δ |V |

for some δ > 0. In particular, V contains a quadratic non residue.

Lemma 5.2. Let q = pn, and let V be a subspace of Fq over Fp satisfying

max
G

max
ξ∈F∗q

|V ∩ ξG| < |V |1−ε, (5.1)

where G < Fq is a proper subfield. Then the multiplicative energy of V is bounded
by

E(V, V ) < c|V |3−δ, (5.2)

where c, δ are absolute constants.

Proof. By the Balog-Szemerédi-Gowers Lemma and Theorem 4.3 in [BKT]. ¤

Let χ be a non-trivial multiplicative character of Fq. Our goal is to estimate
∣∣ ∑

x∈V

χ(x)
∣∣. (5.3)

Thus
∣∣ ∑

x∈V

χ(x)
∣∣ =

1
p |V ∗|

∣∣∣
∑

x,∈V, y∈V ∗
t∈Fp

χ(x + yt)
∣∣∣ =

1
p |V ∗|

∑
η(u)

∣∣∣
∑

t∈Fp

χ(u + t)
∣∣∣, (5.4)

where
η(u) =

∣∣{(x, y) ∈ V × V : xy−1 = u
∣∣.

It follows from the lemma and the definition of η(u) that
∑

u

η(u)2 = E(V, V ) ≤ |V |3−δ. (5.5)

Applying Hölder’s inequality twice, we have
∣∣ ∑

x∈V

χ(x)
∣∣

≤ 1
|V |p

[∑
η(u)

]1− 1
r

[∑
η(u)2

] 1
2r

︸ ︷︷ ︸
A

[ ∑

u∈Fq

∣∣∣
∑

t∈Fp

χ(u + t)
∣∣∣
2r] 1

2r

.

︸ ︷︷ ︸
B

By (5.5),

A ≤ |V |2(1− 1
r )|V | 3−δ

2r . (5.6)
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For expression B, we write
∑

u∈Fq

∣∣∣
∑

t∈Fp

χ(u + t)
∣∣∣
2r

≤
∑

t1,...,t2r∈Fp

∣∣∣
∑

u∈Fq

χ
( (u + t1) · · · (u + tr)

(u + tr+1) · · · (u + t2r)

)∣∣∣. (5.7)

Case 1. One of the ti is not repeated. By Weil’s inequality, the contribution in
(5.7) is bounded by

2rp2r√q.

Case 2. Each ti appears at least twice. We estimate the number of such 2r-tuples
(t1, . . . , t2r) as follows. By assumption, there exist I ⊂ {1, . . . , 2r}, |I| ≤ r, and a
system (ti)i∈I ∈ FI

p such that tj ∈ {ti : i ∈ I}. The corresponding count gives

∑

s≤r

(
2r
s

)
pss2r−s ≤ r2r

[ ∑

s≤r

(
2r
s

) ] [
max
s≤r

(p

s

)s
]

≤ r2r4r
(p

r

)r

= (4rp)r,

assuming
p > er. (5.8)

Thus in Case 2, the contribution to (5.7) is at most

(4rp)r · q.
Hence

(B) < (2r)
1
2r p q

1
4r + (4rp)

1
2 q

1
2r . (5.9)

From (5.6) and (5.9),
∣∣ ∑

x∈V

χ(x)
∣∣ ≤ 1

|V | p |V |
2(1− 1

r )|V | 3−δ
2r

(
p q

1
4r + 2r

1
2 p

1
2 q

1
2r

)

= |V |
{

q
1
4r |V |− 1+δ

2r + 2
(r

p

) 1
2 |V |− 1+δ

2r q
1
2r

}
. (5.10)

Assume

dim V >
(
1− δ

4

)n

2
. (5.11)

Thus |V | > q
1
2 (1− δ

4 ) and from (5.10)

∣∣ ∑

x∈V

χ(x)
∣∣ <

[
p−

nδ
8r + 2

(r

p

) 1
2
p

n
4r

]
|V |. (5.12)

It remains to choose r optimally.

Take

r = n
log p

log p
n

.

Assume
n <

p

(log p)4
(5.13)
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and p large so that (5.8) holds in particular.

The first factor in (5.12) becomes
(n

p

) δ
8

+
( log p

log p
n

) 1
2
(n

p

) 1
4 .

(n

p

) δ
4

<
(

log p
)−δ

for δ ≤ 1
2 .

Thus we obtain that ∣∣∣
∑

x∈V

χ(x)
∣∣∣ <

(
log p

)−δ |V |

provided (5.11) and (5.13) hold.

§6. Problems.

Let Fpn be a finite field and let θ be a generator of Fpn over Fp. Denote M the
module over Fp generated by 1, θ, . . . , θm−1.

Problem 1. Estimate Sm =
∑

y∈M χ(y) nontrivially.

By the bound of Katz [Ka] that
∣∣∣ ∑

t∈Fp
χ(θ + t)

∣∣∣ ≤ (n− 1)
√

p implies

|Sm| < npm− 1
2 .

However, their bound becomes trivial for n >
√

p. On the other hand, Burgess
[Bu6] showed

Sm = O(pm(1−δ))
for m > n( 1

4 + ε), where δ = δ(ε).

One may hope to obtain an estimate Sm under weaker conditions on m.

To generalize Problem 1, we let V < Fpn be an arbitrary m-dimensional subspace
of Fpn over Fp.

Problem 2. Obtain new estimate on
∑

y∈V χ(y).

Theorem 5.1 is what we are able to prove.

Note that the Davenport-Lewis technique gives nothing here as one can not
amplify by multiplication with the base field Fp. Also note that Perelmuter-
Shparlinski’ result requires n > C

√
p log p.

As for character sums over sum sets, we have the following problems.

Problem 3. Obtain a nontrivial estimate on∑

x∈A,y∈B

χ(x + y)

for A,B ⊂ Fp arbitrary, and |A|, |B| ∼ √
p.

Problem 4. (Sarnak) In Problem (3), consider A = B = H < F∗p with |H| ∼ √
p.

Problem 5. (Bourgain) Obtain nontrivial bound on
∑

x∈H

χ(a + x)
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for H < F∗p, |H| ∼
√

p, and a ∈ F∗p.

Consider the following sums

S1 =
∑

x∈I

∣∣∣
∑

y∈A

χ(x + y)
∣∣∣

S2 =
∑

x∈I

∣∣∣
∑

y∈A

χ(1 + xy)
∣∣∣,

where I is the interval [0, pα] and A ⊂ [0, pβ ] arbitrary with |A| ∼ pβ .

If α + β > 1
2 + ε, one may obtain

|S1|, |S2| < p−δ(ε)|I| |A|.

Problem 6. Obtain estimate of |S1| and |S2| for α + β = 1
2 , α, β > ε.

An estimate for sums of the type S2 is relevant to the following problem due to
Vinogradov and Karacuba on the ”shifted primes”.

Problem 7. (Vinogradov) Obtain nontrivial bounds on
∑

q<N, q prime

χ(a + q),

where a 6= 0 is given, N ∼ √
p.

A bound Np−δ was obtained by Karacuba for N > p
1
2+ε.

Problem 8. Obtain nontrivial bound (uniform in a) for
∑

x∈I

χ(x2 + a),

where |I| ∼ √
p.

Problem 9. Prove that

min{x ∈ [1, p] : a + x2 is a quadratic nonresidue } <
√

p

for p large enough and a ∈ F∗p arbitrary (uniform in a).

We note that Theorem 3.6 gives the bound p
1

2
√

e
+ε with a 6= 0 given.

Problem 10. (Shparlinski) Prove that

min{x ∈ [1, p] : (x + a)(x + b) is a quadratic nonresidue } < p1/2−η

for some fixed η and uniformly over a 6= b.
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