
Categorical Fixed Point Calculus

Roland Backhouse, Marcel Bijsterveld,
Rik van Geldrop and Ja~p van der Woude

Department of Mathematics and Computing Science, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abs t rac t . A number of lattice-theoretic fixed point rules are generalised
to category theory and applied to the const'ruction of isomorphisms be-
tween list structures.

1 I n t r o d u c t i o n

Category theoreticians view a preordered set as a particular sort of category
in which there is at most one arrow between any pair of objects. According to
this view, several concepts of lattice theory are instances of concepts of category
theory as shown in table 1.

Lattice theory is an instance of
concept the category theory concept

preorder category
monotonic function functor
(pointwise) ordering natural transformation
between functions between functors
supremum colimit
least initial
Galois connection adjunction
prefix point algebra
closure operator monad

T a b l e 1. Lattice theory versus category theory

An alternative viewpoint, advocated by Lambek [10], is that lattice theory is
a valuable source of inspiration for novel results in category theory. Indeed, it is
our view that for the purposes of advancing programming methodology category
theory may profitably be regarded as "coherently constructive lattice theory TM.

1 It has been remarked that we should say "preorder" theory rather than "lattice"
theory. From the point of view of computing science, however, a category without
sums and products has little relevance. Thus, it is indeed lattice theory that is our
source of inspiration.

160

That is to say, arrows between objects of a category may be seen as "witnesses"
to a preordering between the objects. Category theory is thus "constructive"
because it is a theory about how to construct such witnesses rather than a
theory solely about their existence. Category theory is "coherently constructive"
because it is also a theory about the relations between such witnesses (i.e. the
existence of commuting diagrams and naturality properties). Adopting this view
of category theory, the theory's contribution to programming methodology can
be likened to the contribution of constructive type theory, viz. the emphasis on
program construction as a by-product of the manipulation of types.

This paper is a contribution to the practical application of these ideas. In
the paper we develop a number of "fixed-point rules" in category theory each
of which is inspired by (and generalises) a fixed-point rule in lattice theory.
We then apply these rules to the construction of a number of elementary but
fundamental isomorphisms between list structures. A number of the rules we
derive appear to be new but a more important contribution may be to have
collected them together and illustrated their application in equational reasoning
about list structures.

2 Notation and Terminology

In this section we give a brief summary of our notational conventions.
Suppose C is a category. Then, we write xEC to denote that x is an object

c
of the category C, and f E x ~-- y when f is an arrow in C with codomain x
and domain y. The identity arrow on object x is denoted by id, . The identity
endofunctor on category C is denoted by Idc, or just Id if it is clear which
category is intended. Typically, the composition of arrows f and g is denoted
by fog (irrespective of the category), whereby

f E x~---y A g E y~---z =~ fog E x~---z .

For functors F and G, however, we denote their composition by F o G . Applica-
tion of functor F to (object or arrow) x is denoted with an infix dot: thus, F . x .

The category of functors to category C from category 79 is denoted Fun(C, 79).
Given a functor F E C ~ /) and a category E, we can construct two functors
(F.) E Fun(C, E)~Fun(~D, E) and (.F) E Fun(C, D)*--Fun(E, C). The definition of
(F .) is as follows. For every functor GEFun(:D, E) we have:

(F .) . G = F . G .

Application of (F .) to the natural transformation 7/E G~--H, where G , H are
in Fun(7), E), is denoted by F.~/ and defined pointwise by

(F.~?)= = F.~?= for each object x in E.

Similarly, for every functor GEFun(E,C) we have:

(. F) . G = GoF .

161

Application of (*F) to the natural transformation y E G*--H, where G,H are
in Fun(s is denoted by 7/*F and defined pointwise by

(~I*F)= = ~}F.= for each object x in 7).

The s tandard notation is FT} and ~}F. One advantage of explicitly denoting the
composition is that we can use multiple-character identifiers to name natural
transformations and functors. This we do often, with the general convention that
sans serif identifiers are constants denoting (specific) natural transformations.

Application of functors always takes precedence over composition of arrows
unless parentheses dictate otherwise. For example, F*~ o r*G is (F*~)o (T.G)
according to this convention, where the pointwise composition of natural trans-
formations is denoted by the usual arrow composition. We assume familiarity
with the algebraic properties of such expressions. Where such properties are used
we refer to them with the hint "Godement 's rules".

We shall have occasion to refer to the arrow category Arr.C of C. The objects
of Arr.C are the arrows in C and the arrows of Arr.C are commuting squares
in C, i.e.

(V , r 1 4 9 f A!,.C g - - f o e = ~ o g .

Note that , for functors F and G to C from 7), a natural t ransformation
?7 �9 F<--G is a functor to Arr.C from 7) , defined on arrows by ~}.f = (F . f , G . f) .
In fact these two notions are equivalent: any functor to Arr.C from 7) is a nat-
ural t ransformation between its components. This also justifies the dot notation
y . H , introduced above, as a composition of functors.

Following Malcolm [15, 16] and Fokkinga [6] we denote the unique arrow in
a category C to an object x from an initial object a by the "banana bracket
notation" CC ; x =: a) . Tha t is, a is initial in C if and only if, for all arrows
f and all objects x in C,

f � 9 c a -- f - - ~ C ; x = : a) .

The notion in category theory that corresponds to the notion of a prefix point
in lattice theory is known as an aJgebra 2. Suppose C is a category and F is an
endofunctor on C. An F-algebra is an arrow in C of type x ~ F . x for some
object x of C . The codomain of an F-algebra is referred to as the carrier of
the algebra. The category C will be called the base category.

The F-algebras are organised into a category AIg.F as follows. The objects
are the F-algebras and the arrows ~ to F-algebra f from F-algebra g are
characterised by the equation:

�9 f AIg.F g _ ~ �9 cod. f c cod.g A f o F .~ = ~ o g .

2 The definition we are about to give is weaker than that given in [13] and [12], the
terminological confusion that this leads to having been deplored by Lambek [11].
Nevertheless it seems to have become standard among computing scientists. See~ for
example, [14].

162

(Here cod denotes the codomain functor to the base category from AIg.F .)
Alternatively, the category AIg.F may be defined as the subcategory of Amg
consisting of arrows of the form (~, F.~). The codomain functor on AIg.F is
then the (suitably restricted) "first component" functor to g from Amg.

An initial F-algebra is an initial object in the category AIg.F. Existence of
initial F-algebras is harder to predict than the existence of least prefix points.
Generalisations to category theory of the Knaster-Tarski theorem have been
considered by Lambek [10, 11] (and others). For our purposes it will suffice to
assume that all the initial algebras we require do indeed exist. In particular, we
will often assume that a given endofunctor, F , has a canonical initial algebra,
denoted by muF. The carrier (i.e. codomain) of this canonical algebra will be
denoted by # F . So, muF E # F ~- F . # F . This choice of notation facilitates
comparison of our categorical fixed point theorems with the lattice theoretic
theorems that they generalise.

Using the banana-bracket notation, the unique arrow to F-algebra a from
initial F-algebra f~ is denoted (AIg.F; a =: ~ . We usually abbreviate this
to ~F; a =: /~ . Sometimes, when there is absolutely no question of what is
intended, we omit the first argument and write ~a =: fib �9

Adjunctions are sometimes defined in terms of the unit and counit [13] of
the adjunction and sometimes in terms of a natural isomorphism between horn-
sets [8]. In the case of the latter definition it is useful to have a name for the
two components of the isomorphism: we use the terms lower and upper adjun-
gate and we denote them using the floor and ceiling operators as suggested by
Fokkinga [6] . Thus, if F E C*-/) and G E :D~g are adjoint functors, F being

c 7~
the lower adjoint, and f E X ~ F .y , then rf]x,y E G.x ~ - - y . Similarly, if

g
g E G.x ~ y then [gJ~,yEx ~ F.y .

Finally, the inverse of an isomorphism f (between two objects in a category)
will be denoted by fu .

3 F i x e d P o i n t C a l c u l u s

In this section we present four basic fixed point theorems, and several theorems
that are each the result of combining two or more of the basic theorems. The
basic fixed point theorems that we present are respectively: the fusion rule, the
rolling rule, the abstraction theorem and the diagonal rule.

The fusion rule combines the concept of an initial algebra with the concept
of an adjunction. The rolling rule generalises the property (commonly known
to category theoreticians as "Lambek's lemma" [10]) that initial F-algebras are
fixed points of F . (Its namesake in lattice theory generalises the property that a
least prefix point of monotonic function f is a fixed point of f .) The rolling rule
is too elementary to be called "important" in its own right but it is extremely
useful in combination with the other rules. An instance is the exchange rule
which is a combination of the rolling rule with the fusion rule. The exchange
rule is so called because it states when two lower adjoints may be exchanged in

163

the construction of initial algebras. A second instance of the rolling rule is the
iterated square theorem.

The abstraction theorem, combines the concept of an initial algebra with the
concept of parameterisation. The last basic fixed point rule, the diagonal rule,
captures the basic principle of decomposing the construction of an initial algebra
into the construction of a succession of such algebras.

In lattice theory, the fusion rule appears in a slightly different form in the
work of Cousot and Cousot [4], the abstraction theorem and exchange rules seem
to be novel, and the rolling and diagonal rules seem to be "folklore" (i.e. we do
not know to whom they should be credited, but they are widely known). Most
are straightforward exercises to anyone versed in lattice theory but we know of
no publicatipn in which all are stated, let alone (a subset of) their applications
presented. '

In category theory, the fusion rule has been derived independently by Her-
mida and Jacobs [9]; the abstraction theorem and exchange rules seem to be
novel. The rolling rule (in the form given here) has been derived by Lambert
Meertens in unpublished discussion notes. The diagonal rule is stated and proved
for w -categories in [14] but we are not aware of any publication stating the the-
orem at the same level of generality as here.

In lattice theory, the abstraction and fusion theorem can be easily combined
to prove a theorem dubbed "beautiful" by Dijkstra and Scholten [5, p. 159]. In
category theory, the same combination of the abstraction and fusion theorems
leads to a similarly "beautiful" theorem, an important special instance of which
is that w -cocontinuity is preserved by the process of constructing initial algebras
[17, p.289]. The derivation of this theorem is used as an illustration of our view
of category theory as coherently constructive lattice theory in [2].

Categorical fixed point rules have previously been studied by Freyd [7]. Freyd
defines a category to be algebraically complete if all endofunctors on the category
have initial algebras. He then proves that the product of two algebraically com-
plete categories is algebraically complete and observes a rolling rule as a corollary.
An intermediate result is the iterated square theorem mentioned earlier. These
two theorems, included here for purposes of comparison, are corollaries of our ba-
sic theorems. Indeed, because Freyd makes the blanket assumption of algebraic
completeness, we are able to establish stronger versions of Freyd's theorems. In
particular our rolling and diagonal rules are stronger than what can be derived
from Freyd's theorems. See section 3.5 for further discussion.

For space reasons we omit proofs of all the rules. Complete proofs are given
in [1].

3.1 The Fusion T h e o r e m

The fusion theorem is in fact an immediate corollary of the following theorem:

T h e o r e m 1 Let (F E C*-/), F ~ E D~-C) be an adjunction and let G E :D~-:D
and H E C~-C be functors. Assume also that swap E F~ ~- H ~ is a natural
isomorphism. Then, there is an adjunction between the categories AIg.H and
AIg.G.

164

Specifics Let unit and counit denote the unit and co-unit, and L J and [1
denote the adjungates, of the adjunction (F EC~-/), F~ E T~--C). Then swap
gives rise to an isomorphism adjswap E FUoH ~ G~ defined by

adjswap= = ~(H,counit oswapu~ .

The functor K E AIg.H~AIg.G defined by

K.g = F.g o swapcod.g , where g E Aig.G,

K.~o = F.cp , where ~ is an arrow in AIg.G

is a lower adjoint and the upper adjoint is the functor K~ E AIg.G~A]g.H de-
fined by

K ~.h = F ~.h o adjswaPcod.h , where h E AIg.H

K~.r = F~.r , where r is an arrow in AIg.H

The left adjungate of this adjunction is defined on arrows r in AIg.H by [r .
The right adjungate is defined similarly.
[]

T h e o r e m 2 (Fusion Rule) With the same assumptions as in theorem 1 and
the additional assumption that AIg.G has an initial object muG, we have that

F.muG o swap~ a

is an initial object in the category AIg.H. So, for every initial H-algebra, mul l ,

F.muG o swap~ a ~ mull .

As a consequence we also have an isomorphism in the base category, i.e.

F.#G ~ # H .

Specifics In both isomorphisms

(IF.muG o swap, G =: muH~

is the arrow to F.#G from #H and

r(IF~.muH o adjswap~ H =: muG~lmuu,mu a

is its inverse.
D

Although we don't give proofs of the fixed point rules the details given in the
"specifics" section of each theorem can be seen as a trace of the proofs: Each
isomorphism is constructed by a "mutual containment" argument whereby the
arrows witness the individual containments and each component of the arrows

165

witnesses a step in the proof. Occurrences of composition, for example, witness
the use of transitivity of the ordering relation and occurrences of the banana
brackets witness the minimality of the given algebra. The proof of the fusion
theorem consists thus of a constructive proof of the inclusions F.#G ~_ #H and
#H ~_ F.I~G followed by a verification of the fact that the witnesses are inverses
of each other.

In subsequent applications of the fusion theorem we will not need to know the
details of the witnesses to the isomorphism, all that we need to know being that
the isomorphisms exist. Let us therefore abbreviate ~F.muG o swap~ c =: muH~
to fUSeF,G,H.swap. The rule we use in future applications is thus (assuming the
conditions of the fusion theorem are satisfied):

(3) fuseF,C,H.swap E F . # G ~- p H .

3.2 Rolling, Square and Exchange Rules

Theorem 4 (Rolling Rule) Let F E C~Z) and G E D ~ C be functors. Sup-
pose that mu(G.F) is an initial (G*F)-algebra. Then F.mu(G*F) is an initial
(FoG)-algebra. Thus, for every initial (F~ mu(F~ ,

F.mu(G.F) ~- mu(F~ .

As a consequence we also have an isomorphism in the base category, i.e.

F.I~(G. F) ~- I~(F.G) .

Specifics In both isomorphisms

CF.mu(G.F) =: mu(F.a)D

is the arrow to F.#(G.F) from #(F.G) and

mu(F.G)o F.(G.mu(F.G) =: mu(G~

is its inverse.
[]

Letting rOIIF,c denote ~F.mu(G.F) =: mu(F.G)~ we thus have:

(5) rollF,a E F.#(G.F) ~- #(F.G)

Substituting F for G we find that mu(F2)oF.~F2; F.mu(F 2) =: mu(F2)~
is an F-algebra (where F 2 denotes F~). Freyd [7] observes that this is an ini-
tial F-algebra, thus establishing the existence of an initial F-algebra given the
existence of an initial F2-algebra. He calls this theorem the iterated square the-
orem. He also observes that the existence of an initial F-algebra guarantees the
existence of an initial F2-algebra provided that the category has products. The
corresponding theorems in lattice theory are that a prefix point of (monotonic
endofunction) F is a prefix point of F 2 , and that x ~ F.x is a prefix point of F
whenever x is a prefix point of F 2 (in a preorder having infima). In particular,
(F 2) ~ # F . The precise statement of Freyd's theorem is as follows.

166

T h e o r e m 6 (I t e r a t ed square) Let F be an endofunctor of C such that
mu(F 2) exists. Then mu(F 2) o F.~F2; F.mu(F 2) =: m,(F2)~ is an initial F-
algebra, ~AIg.F 2 ; f o F . f =: mu(F2)~ being the unique arrow from which to
F-algebra f . Moreover, if the category g has products, an initial F-algebra,
muF, induces an initial F2-algebra, namely muF o F.muF.

[]

The final theorem in this section combines the rolling rule with the fusion
theorem.

T h e o r e m 7 (Exchange Rule) Given are the functors F E g ~ D , G E 7:)~g
and H E D ~ g such that G and H are lower adjoints in adjunctions. Further-
more, we have the isomorphism mirror E H . F . G ~- GoF.H. Finally, we assume
that an initial F.G algebra, mu(FoG), and an initial F . H algebra, mu(F .H) ,
exist. Then

#(F.G) ~- # (F .H) .

Specifics In this isomorphism

(~r011F,G o F.fUSeH,(FOG),(GOF).mirror =: mu(F.H)~

is the witness to #(F~ from #(F*H) and

(~rollF,H oF.fuseG,(FOH),(HOF).(mirroru) =: mu(F.G)])

is its inverse.
[]

Note that the exchange rule does not give an isomorphism between algebras,
only between the carriers.

Denoting the witness to the isomorphism to #(F.G) from ~(F~ by
eXChF,G,H.mirror, we have the rule that

(8) exchF,C,,H.mirror e. #(F.G) ~- # (F .H) ,

provided of course that F , G, H and mirror satisfy the conditions in the
exchange rule.

There is a second exchange rule in which the order of F and G, and F and
H , is reversed. A third rule, involving four functors instead of three, combines
both. The exchange rule given here is the one that we use in section 4.

3.3 The Abs t r ac t ion T h e o r e m

A standard way of constructing functors inductively uses abstraction from an
argument of a binary functor. Let @ E D ~-- C • D be a binary functor. Then @
induces a binary functor (for an arbitrary category g)

E Fun(T),g)~- Fun(C,g)xFun(T),g)

167

by defining it as the composition of (~~ with the embedding ~ of the category
Fun(C,g)xFun(:D,E) in Fun(CxZ),g) , where Ae E s is t he diagonal
functor. Thus

FE3G= @ ~ /kE and ~/E3u= @ . (r h u) ~ Ac

In particular, for an object x and object or arrow ~ ,

(9) (F(~G).~ = F.~GG.~ and (~(~u)= = ~/=@u~ .

Since every section x@ of @ , defined by (xO).d = x| and (x@).f = id=(gf,
is an endofunctor on :D, we may consider their algebras. Assuming the existence
of initial x@-algebras, for all x , and fixing them to

mu(x@) E /z(xe) *- x@#(x•)

we can construct the initial algebra functor mu~ E Arr.79 ~ C by defining

(10) f * = (m u (y @) o f (~ i d ~ (= e) = : mu(x@)]) ,

c
for f E y ~-- x ,

(11) mue.x = mu(x@) and mue. f = (f * , f@f *) .

The corresponding carrier functor, cod �9 mu e , (i.e. the codomain functor after
the initial algebra functor) is the well known map functor which we denote by
w e . Tha t is, for all o b j e c t s x and y and all arrows f E x ~ y ,

(12) w e . x = #(x@) and we . f = f*

In the case of (cons) lists, for example, we define the list functor as w e where
the functor @ maps the pair (x,y) to l l + y x x .

The abstraction theorem states that a map functor is itself an initial algebra.
More precisely, since mu e E Arr.79r and mue. f = (w e . f , (I d ~ w e) . f) it
follows from our earlier discussion of the correspondence between functors to
arrow categories and natural transformations that the initial algebra functor is
a natural transformation: mu e E w e ~ Id~w e , and thus it is an (Id~)-algebra.
The theorem states that rnue is an initial (Id~)-algebra. In words: abstracting
from the parameter in an initial algebra yields an initial algebra.

T h e o r e m 13 (A b s t r a c t i o n T h e o r e m) Let @ E /) ~ C x /) be a binary
functor written as infix operator. Assume also the existence of a canonical initial
algebra rnu(x(9) with codomain #(x@) for each object x in C. Define the
initial algebra functor rnu e as in (12). Then rnu e is an initial algebra for Id(B
(for arbi t rary g); moreover, if rnu(Id(~) denotes a particular initial Id(~-algebra
having codomain /~(Id(~), then

mu(Id(~)~mu e and # (I d (~) - w e .

168

Specifics In both isomorphisms, between mu(Id~) and mu e and their carri-
ers,

~mu$ = : mu(tdd~)])

is the arrow to We from #(Id6) and the natural transformation ~ defined by

c~ = ([(mu(Id~))~ = : mu(z@)]) for each object z in C

is its inverse.
[]

Note that the abstraction theorem can be generalised by replacing the functor
Id by some functor F E C*---E and by defining the binary infix functor | as
x| = F.x @ y . With the corresponding assumptions on | we have

(14) mu(Id~) = m u (F ~) -~ mu| and w~*F = # (F~) ~- w|

The witness is denoted by abS(F,@) so that our calculation rule is:

(15) abs(F,r E vo~oF'~#(F~) .

3.4 T h e D i a gona l R u l e

T h e o r e m 16 (Diagona l R u l e) Let ~ E C ~ C xC be a binary functor. As-
sume that for each object x in C an initial object, mu(x@), exists in AIg.(x~).
Define functor w 3 as in (10) and (12) and denote the unary functor Id~ld by

. Then, if rnu~ is an initial object in AIg.~,

([mu@ = : mu((p,6)e)])

is an initial object in the category AIg.w. So, for every initial w-algebra, mUD,

([mu$ =: m,,((~@)e)]) ~ muw .

Conversely, if mu~v is an initial object in AIg.w then

m u d o mu((/~w)e) o id,,~, �9 (muw)u

is an initial object in the category AIg.~. So, for every initial ~-algebra, m u ~ ,

muw o m u ((# w) e) o ida= e (muD)u -~ mu~ .

As a consequence we also have an isomorphism in the base category: / ~ ~- # w ,
i.e.

~ (x H x e x) ~ ~ (x H ~ (y ~ x e y)) .

3 For convenience we omit the subscript on w.

169

Specifics In all three isomorphisms

=: =: ,,,uwD

is the arrow to #(~ from #w and

muwo (mu((/~w)~) o m u w ~ i d ~ . ~

is its inverse.
[]

=: m"$D

As with the fusion and rolling rules we do not need the specific details of
the witnessing isomorphisms. Introducing the abbreviation diag$ for the iso-
morphism to #w from # ~ , the rule we apply in subsequent calculations is
thus:

(17) diagr E ~ (x ~ # (y ~ x @ y)) ~ - ~ (x ~ x (V x) .

3.5 M u t u a l Recur s ion

In the previous sections we have presented the four basic rules of the categorical
fixed point calculus: the fusion rule, the rolling rule, the abstraction theorem and
the diagonal rule. The topic of this section is the relationship between our basic
rules, in particular the rolling rule and the diagonal rule, with Freyd's discussion
of algebraically complete categories [7].

Before commencing the discussion let us first emphasise that the diagonal
rule has three parts: (a) the existence of an initial ~-algebra given an initial
w-algebra, (b) the existence of an initial w-algebra given an initial ~-algebra
and (c) the isomorphism in the base category of the carriers of the two types of
initial algebra.

Now, adapting Freyd's terminology, a preorder is algebraically complete if
every monotonic endofunction on the preorder has a least prefix point. A well-
known theorem (often attributed to Beki~ [3]) is that the product of two al-
gebraically complete preorders is algebraically complete. Specifically, suppose
C and /) are algebraically complete preorders and F E C x T) , - C x I) . De-
compose F into two binary functions | E C ~ 7) x C and | E /) ~ C x : D in
such a way that F.(x, y) = (y| xQy). Then a least prefix point of F is
(~ (x ~ p . x | # (y~q . y | where p.x = #(x| and q.y = #(y| We have
shown in [18] that this mutual recursion theorem is a corollary of the diago-
nal rule and (lattice-theoretic) iterated square theorem. The same proof can be
transformed to a proof of Freyd's theorem that the product of two algebraically
complete categories is algebraically complete. See [1] for full details.

Rather than deriving the mutual recursion theorem from the diagonal and
rolling rules, Freyd first establishes the mutual recursion theorem and then ob-
serves the rolling rule as a special case. His rolling rule is however weaker since
he demands the existence of both an initial (F*G)-aigebra and an initial (G~
algebra. Our rule only assumes the existence of one in order to guarantee the
existence of the other.

170

This way of deriving a rolling role appears also in texts on programming
language semantics. (See for example [20].) It is also quite easy to see that
part (c) of the diagonal rule (the isomorphism between the carriers of the two
types of initial algebra) is a consequence of the mutual recursion theorem (define
y| to be y and x| to be x| This does not mean, however, that the
diagonal rule is in any way weaker than the mutual recursion theorem. On the
contrary, our rule is sharper in that it gives sharper conditions on the existence
of initial algebras in a product category than Freyd's blanket assumption of the
algebraic completeness of the component categories --using parts (a) and (b)
of the diagonal rule-- and we are not aware of any way of deriving those parts
from Freyd's mutual recursion theorem.

In summary, the rolling and diagonal rules given here give tighter conditions
on the existence of initial algebras and have Freyd's mutual recursion theorem
as corollary.

4 A p p l i c a t i o n s

In lattice theory the four basic fixed point rules amount to a very effective
equational a fixed point calculus. (For a variety of examples see [18].) The cate-
gorical fixed point rules amount to a very effective equational and constructive
fixed point calculus. That is to say, isomorphisms between type structures can be
obtained as a by-product of equational arguments in the lattice-theoretic fixed
point calculus. In this section we illustrate the method by deriving a number of
isomorphisms between list structures. In each case a calculation in lattice theory
is augmented with "witnesses" in a mechanical way.

In the calculations natural transformations (and isomorphisms) of n - a r y
functors play a dominant role and we need some notational conventions to deal
with constant arguments. To that end we consider the product of categories
(responsible for n-ar i ty) to be associative and we use the connector " be-
tween functors to construct functors to an n -a ry codomaln. For example, .
for HiET)i~--C the functor H = H o z ~ H I ~ H 2 E T)oXT)IXT)2*--C is defined
by H.x = (H0.x, Hi.x, H2.x) for objects as well as arrows. The usual product
of (three) functors is denoted by (F , G , H).

Let ~/ be a natural transformation between, say, ternary functors F and
G and let H be a functor to their ternary domain, then ~/*H is a natural
transformation between F.H and GoH. A suitable H may change the arity.
For example, the flmctor H -- K.a A K.b AId , where K.a denotes the constant
a functor, fixes the arguments a and b thus turning a unary functor into
a ternary functor; similarly, H ' = K.a a (Id, Id) fixes only a . Instead of ~oH
and ~ . H ' we prefer the more suggestive notations ~?a,b,_ and ~?a respectively.

An example in the next section is a natural isomorphism leapF between
binary functors, say @ and | Then leapF, is a natural transformation between
6 and 6 and, by the convention above,

(leapF.) td ,_ = (l e a p F .) � 9 (K . Id ,', id) ,

4 Involving equalities only as opposed to proofs of equality via mutual containment.

171

((leapF.) . (K.Id ,', id))a = leapF. (Id / , G) and

(leapF, (Id ,', G))a = leapF,,,a.,~ �9

4.1 L e a p f r o g R u l e s

There are several ways that lists can be defined: "cons" lists where elements are
added ("consed" in Lisp terminology) to the beginning of a list , "snoc" lists
where elements are added ("snocked" , the reverse of "cons") to the end of a list
, and "join" lists where two lists are "joined" together. We consider only cons
and snoc lists.

The cons list functor is the map functor :v e (see (12) and (10)) where

x@y = l l + (x x y) ,

and the snoc list functor is the map functor w e where

x @ y = l I + (y x x) .

In order to be able to consider both at once we abstract from their definitions in
this section and consider the situation in which we are given a (unary) functor
F and a binary functor | (replacing]1+ and x , respectively), such that x|
and | are lower adjoints for every object x . We then define two map functors
by

P -= WFO@ and F = wfoeoM �9

where the binary to binary functor M interchanges the coordinates.
The cons list functor is an instantiation of both F and .~ by choosing

F = 11+ and | = x and | = x �9 ~ respectively. Similarly, the snoc list func-
tot is an instantiation of fi" and F for the same F and interchanged choices
for | .

Our first application of the fixpoint rules states that -~ and _P are isomorphic
functors provided that F obeys a so-called "leapfrog" property with respect to
| . When reading the proofs we recommend that the "witnesses" are ignored
the first time around. (That is, ignore everything marked by a bullet and all
membership information.) Stripped of this information the proof obtained is the
lattice-theoretic proof.

T h e o r e m 18 Suppose Id6 and ~ld are lower adjoints and we have the
following natural isomorphism (i.e. natural in the parameters a and b)

leapF~, b E F.(a|174 -~ a|174 .

Define the map functor .P to be w e and the map functor _P to be We where

= F o | and E 3 = F o | .

Then P ~ _P .
(It is useful to have a catchy name for important properties. We call the

existence of the isomorphism leapF in the above theorem a leapfrog property
because the parameter a "leapfrogs" from one side to the other of the functor
F .)

P r o o f

172

r { abstraction; . a = abstd,eo/3o(abs~r }

/3 E #(Id(~)-~#(Id6)

= { Id(~ = (Fo) ~ Id6 and Id6 = (F~176 Did }

/3 e #((F~176 (I d 6)) ~ # ((F .) � 9 (Did))

4:: { exch.ange rule, Ida and Did are lower adjoints

�9 /3 -- exchF.,ld6,61d. 7 }

7 e (61d)o(F~176 -~ (Id6)~176

r { ((@ld)o(F~ = (F~ (Id@G))@ld

((td6),(F,),(6td)).G = td6(F~ (G61d))

(See the discussion preceding this subsection.)

3' = (leapF~

Thus,

[]

abSld,r o exchF~176 (abslce)~ E -P ~- P .

The construction of F from F can be repeatedly applied giving F , etc.
Our next application shows that this process preserves the leapfrog property
provided that | is also associative (up to isomorphism).

T h e o r e m 19 (Leapfrog Prese rva t ion) Suppose F is a functor and @ is
a binary functor such that a| and | are lower adjoints for every object a.
Define the map functor F to be ~uFO | . Suppose we have two natural isomor-
phisms

and

Then

ass~,b,~ E (aQb)| ~- a|174

leapFa, b E F. (a |174 ~- a |174 .

T'.(a| | ~ a| .

P r o o f Letting G = F ~ 1 7 4 , H = F * (b Q a) | and L = a | 1 7 6 1 7 4 for
brevity in the subscripts of fuse we have:

173

ol �9 F. (a |174 ~- a |174

_= { definition of F }

�9 (| (a|174 ~ (a | (b|174

A ~y

A ~ E a | 1 7 4 1 7 4 ~- a | 1 7 4

r { asSp,q,_ E (p|174 ~ p| �9 q|

assp,_,q E @q "p| ~- p| �9 |

�9 ~ = (| �9 F �9 assa,b,_)

�9 r = a| ~ (F �9 aSSb,a,_)

�9 | 1 7 4 1 7 4 1 7 4 1 7 6 1 7 4 1 7 6 1 7 4

~= { definition leapF }

= (leapF~,_)~174

We conclude that

invent intermediate # ((a | 1 7 6 1 7 4 ; �9 a = ~o~,u }

�9 (| ((a|174 -~ #((a| �9 F ~ (b|

e (a |176 ((b|174 ~ #((a| ~ F ~ (b@))

fusion; �9 ~ -- fuSe| and ? = fusea| }

E | 1 7 6 1 7 6 1 7 4 1 7 4 ~- a | 1 7 6 1 7 4 1 7 6 1 7 4

a|

and

o ~ o (a@ �9 F * assb,_,a)

}

fuse|174 F �9 OSSa,b,_) o ((leapF~,).(b| o (a| * F ~ aSSb,_,a))

o (fuse~|174 �9 (F ~ aSSb,~,_)))u

witnesses the isomorphism of F.(a| | a and a | F.(b| .
[]

Note that in order to combine theorems 18 and 19 to show that (for example)

F and F are isomorphic we need to show that the isomorphism constructed
in the latter theorem is natural in the parameters a and b. For general F
this is a likely to be an impossible task but in section 4.3 we argue why this is
immediately the case for the "Kleene" functors.

4 . 2 L i s t s

In this section, we prove isomorphisms between certain list structures and simul-
taneously construct the witnesses. The first two are simple instantiations of the
leapfrog rules presented in the last subsection.

Formally, we assume that the base category is a bicartesian, exponential
category [8]. The specific details of this assumption are as follows. First, denoting
the product of a and b by axb and their sum by a+b (both of which axe

174

assumed to exist), we assume for all objects y the functors y x and x y , i.e.
the functor x with the left or right argument fixed to y , have upper adjoints.
Second, denoting the terminal object of the base category by 11 , we assume the
existence of the following isomorphisms. For all objects a , b and c ,

luni ta E 11xa ~ a ,

runita E a x l l ~ a ,

sumassa,b,c E (a+b)+c ~- a+(b.-t-c) ,

proass~,b,c e (a • ~- a x (b x c) ,

rdist~,b,c E (a + b) x c ~ (a x c) + (b x c) ,

Idista,b,~ E a x (b + c) ~- (a x b) + (a x c) .

In order to instantiate the fusion theorem it suffices to know that the lower
adjungate of the adjunction with xy as lower adjoint (and exponentiation as
upper adjoint) is the operation known as "currying" to functional programmers,
the upper adjungate is "uncurrying", and the counit is function evaluation.

E x a m p l e 20 Defining the Conslist functor and the Snoclist functor by

Clist = a~--~#(y ~ 11 + a x y) , Slist = a~--*#(y H ~ + y x a)

we have the functor isomorphism

Clist - Slist .

P r o o f Instantiate in theorem 18:

F := I I + , | : = x , a s s := proass

and

l e a p F ~ , b : = r d i s t ~ , ~ x b , ~ o ((l u n i t ~ o . u . u r u n l t ~) + p r o a s s ~ , b , ~) o I d l s t ~ , ~ , b x ~

[]

From now on we consider cons lists only; the cons list functor will be denoted
by an asterisk. That is, we assume the functor * is defined'to be the map functor

w e (see (12) and (10)) where

x G y = 11+(xxy) .

In contrast to normal functor applications we will omit the dot when the functor
�9 is applied to an object.

E x a m p l e 2 1

a x * (bxa) -~ * (a x b) x a .

175

P r o o f Instantiate in theorem 19:

F : = 11+ , | : = x , a s s

and

[]

: = proass

l e a p F . , b : = r d i s t l , . x b , . ((l u n i t . . u . u o o r u m t ~) + p r o a s s . , b , ~) o I d l s t . , 1 , bx "

Note that we can apply the leapfrog theorem once again with F instantiated
to * (provided naturali ty is proven; see the last section). In language theory
nothing new is obtained - - because ~, and * are equal. In category theory we
do obtain a new theorem - - because ~ and * are not even isomorphic. Thus the
leapfrog theorem has an infinite number of applications! (The equality between
~, and * in language theory boils down to the equality between x and x + x

/

which isn't constructively valid.)
The final example has been chosen for its relative difficulty, and its practical

relevance. We call it the list decomposi t ion problem. An instance is the so-called
"lines-unlines" problem: given a sequence of two types of characters, delimiters
and non-delimiters, write a program to divide the sequence into (possibly empty)
"lines" of non-delimiters seperated by single delimiters. Construct in addition
the inverse of the program.

In the following calculation we employ a notation whereby the witnesses to
isomorphisms are included in the hints marked by a bullet (" . "). Specifically a
proof step of the form

F

{ h int , �9 a }

G

is short for

a E F - - G ~ h int

The list composition problem, expressed as an isomorphism between datatypes,
boils down to showing that the star decomposition theorem of regular languages
is constructively valid.

E x a m p l e 22 (Lis t D e c o m p o s i t i o n)

�9 ax �9 (bx �9 a) ~- * (b+a) .

P r o o f

�9 a x �9 (bx �9 a)

= { definition of * }

176

�9 a x # (y ~ l l + (b x , a) x y)

-- { Godement's rules, �9 id,a x fuse.((ll+),(proas%,,a,_)) }

�9 a x #(y ~-~ l l + b x (, a x y))

{ rolling rule, * roIl,~x,F

where F denotes the functor y ~ 11 + b x y }

#(y~--~ *ax (l l +bxy))

{ fusion rule, �9 fuse.((listfusea,_),F) }

I.t(y~-~ l.t(z ~ (ll + b x y) + a x z))

{ diagonal rule, �9 diag~ , where y@z = (l l + b x y) + a x z

#(y ~ (ll + b x y) + a x y)

{ fusion rule,

#(y ~ 11

{

*(b+a) .

We conclude that,

�9 u

�9 fuse.((sumassl) . (b x , a x) o (ll-t-).(rd,Stb,~,_))

-t- (b+a)xy)

definition of * }

id.~ x fuse.((11 +).(proas%,.~,_))

o rol l .~x,F

o fuse.((listfuse~,_) ~

o diag$

fuse.((sumassl)~ a x) . u o , o ((~ +) . (~ d , m )))

e , a • �9 (b• �9 a) ~ �9 (b+~)

where F = y H 11+bxy and y@z = (~l + b x y) + a x z .
[]

4.3 " T h e o r e m s for F ree"

In the list decomposition example we have proved an isomorphism in the base
category for all instantiations of the objects a and b. Formally, however, we
have not shown that we have an isomorphism between the binary functors whose
object parts are

a,b~-.~ *a• *(b• *a) ,

177

and

a,b~--~ * (b+a) .

We have yet to prove that the constructed isomorphisms are natural in the
parameters a and b. The same remark can be made about the list leapfrog
example. Yet it is well known that naturality is what Wadler [19] has dubbed
a "theorem for free". In this section we briefly explain why this theorem is "for
free" and, specifically, the role of the abstraction theorem in that claim.

The key is to note that all statements about a bicartesian exponential cat-
egory can be lifted to statements about a functor category by pointwise pa-
rameterisation [13, theorem 1, p. l l l] . Specifically, assume that a bicartesian,
exponential category C is given, with coproduct and product operators + and
x . As discussed in the preamble to the abstraction theorem, these oPerators
can be lifted to 4- and x for arbitrary domain categories 8 ; i.e. -~ and x
are binary operators on the category Fun . They are, in fact, the coproduct
and the product in Fun: by the parameterised limit theorem it follows that
(F+G,iOIF,a, inrF,a) is the coproduct of F and G, where (inlf,a), = inlF.x,a.,
and similarly for inrF,a. In the same way x is the binary product functor on
Fun and also the adjoints of F ~ and x F can be defined. The category Fun is
thus a bicartesian, exponential category where, for instance,

sumass f , a ,g E (F 4 - G) + H ~- F4- (G4-H)

is given by

sumassF,G,H = sumass* (F a G a H) .

That is,

(s u m a s s F , G , H)= = sumassF.x ,G.x ,H.x �9

The abstraction theorem admits a similar result for �9 and for map functors in
general.

Suppose F is a functor. Define functor @ by a@y = 71 + F.a x y . Then
we observe that

* .F

= { definition �9 and composition }

at---* #(a@)

= { abstraction theorem }

tt(G ~-* lOnG)

= { (I d 6 a) . x = x �9 G . x = 11+(F .x x a . x)

= (K.]I q -FxG) .x , extensionality }

t t(G ~ K.11 4- F x G) .

178

If we now define the functor /, on objects F by # (G ~-* K.11-i-F;<G) we can
reformulate this observation as

(23) * . F = @ F .

The list decomposition theorem now becomes a theorem in the functor cate-
gory whereby each functor is replaced by its "dotted" version. Tha t is, the list
decomposition theorem constructs an isomorphism decompF,a satisfying

decompF, e E ~,F;<~(Gx~F) ~- i,(F-i-G) .

Moreover, we can now use abstraction to obtain the required isomorphism be-
tween the two functors rather than a collection of isomorphisms between objects.

a,b~-* �9 a x �9 (bx �9 a)

= { Introducing the functors Exl and E x r ,

where Exl.(a, b) = a and Exr.(a, b) = b }

a,b~-~ * Exl . (a, b) x �9 (Exr . (a , b) x �9 Exl .(a, b))

= { abstraction }

(*. Exl) >< (*. (Exr x (*. Exl)))

= { abstraction: (23) }

;~ Exl >(~ (Exr ~< i, Exl)

-~ { theorem 22 �9 decompEzl,Ezr }

i,(Exr 4 Exl)

= { abstraction }

a,b~-* * (b+a) .

If full details of the definition of decOmPExl,Ezr are required then we would have
to instantiate the witnesses in the statement of (22) in the following way:

a,b := Ex l ,Exr ,

and

+ , x , . := $,;~,*

11 := K . I t .

Simplification would then yield the witness obtained earlier.

A c k n o w l e d g e m e n t We are grateful to the referees for pointing out Freyd's
work to us.

179

References

1. R.C. Backhouse, M. Bijsterveld, R. van Geldrop, and J.C.S.P. van der
Woude. Category theory as coherently constructive lattice theory. De-
partment of Mathematics and Computing Science, Eindhoven University
of Technology. 1995. Working document. Available via world-wide web at
http ://www. win. tue. nl/win/cs/wp/papers.

2. R.C. Backhouse and M. Bijsterveld. Category theory as coherently constructive
lattice theory: an illustration. Technical report, Department of Computing Sci-
ence, Eindhoven University of Technology, 1994. Available via world-wide web a t
http ://www. win. t~e. nl/win/cs/wp/papers.

3. H. Beki~. Programming Languages and Their Definition, volume 177 of LNCS.
Springer-Verlag, 1984. Selected papers edited by C.B. Jones.

4. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Conference Record of the Sixth Annual ACM Symposium on Principles
of Programming Languages, pages 269-282, San Antonio, Texas, January 1979.

5. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin, 1990.

6. Maarten M. Fokkinga. Calculate categorically! Formal Aspects of Computing,
4:673-692, 1992.

7. Peter Freyd. Algebraically complete categories. In G. Rosolini A. Carboni,
M.C. Pedicchio, editor, Category Theory, Proceedings, Como 1990, volume 1488
of Lecture Notes in Mathematics, pages 95-104. Springer-Verlag, 1990.

8. P.J. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1990.
9. Claudio A. Hermida and Bart Jacobs. An algebraic view of structural induction.

To appear. Conference Proceedings of Computer Science Logic, 1994.
10. J. Lambek. A fixpoint theorem for complete categories. Mathematisehe Zeitsehrift,

103:151-161, 1968.
11. J. Lambek. Least fixpoints of endofunctors of cartesian closed categories. Mathe-

matical Structures in Computer Science, 3:229-257, 1993.
12. J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic, vol-

ume 7 of Studies in Advanced Mathematics. Cambridge University Press, 1986.
13. S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate

Texts in Mathematics. Springer-Verlag, 1971.
14. D.J. Lehman and M.B. Smyth. Algebraic specification of data types: A synthetic

approach. Math. Syst. Theory, 14(2):97-140, 1981.
15. G. Malcolm. Algebraic data types and program transformation. PhD thesis,

Groningen University, 1990.
16. G. Malcolm. Data structures and program transformation. Science of Computer

Programming, 14(2-3):255-280, October 1990.
17. E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts

and Monographs in Computer Science. Springer-Verlag, Berlin, 1986.
18. Eindhoven University of Technology Mathematics of Program Construction Group.

Fixed point calculus. Information Processing Letters, 53(3):131-136, February
1995.

19. P. Wadler. Theorems for free! In $ 'th Symposium on Functional Programming
Languages and Computer Architecture, ACM, London, September 1989.

20. G. Winskel. The Formal Semantics of Porgramming Languages. MIT Press, 1993.

