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Abs t rac t .  A number of lattice-theoretic fixed point rules are generalised 
to category theory and applied to the const'ruction of isomorphisms be- 
tween list structures. 

1 I n t r o d u c t i o n  

Category theoreticians view a preordered set as a particular sort of category 
in which there is at most one arrow between any pair of objects. According to 
this view, several concepts of lattice theory are instances of concepts of category 
theory as shown in table 1. 

Lattice theory is an instance of 
concept the category theory concept 

preorder category 
monotonic function functor 
(pointwise) ordering natural transformation 
between functions between functors 
supremum colimit 
least initial 
Galois connection adjunction 
prefix point algebra 
closure operator  monad 

T a b l e  1. Lattice theory versus category theory 

An alternative viewpoint, advocated by Lambek [10], is that  lattice theory is 
a valuable source of inspiration for novel results in category theory. Indeed, it is 
our view that  for the purposes of advancing programming methodology category 
theory may profitably be regarded as "coherently constructive lattice theory TM. 

1 It has been remarked that we should say "preorder" theory rather than "lattice" 
theory. From the point of view of computing science, however, a category without 
sums and products has little relevance. Thus, it is indeed lattice theory that is our 
source of inspiration. 
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That is to say, arrows between objects of a category may be seen as "witnesses" 
to a preordering between the objects. Category theory is thus "constructive" 
because it is a theory about how to construct such witnesses rather than a 
theory solely about their existence. Category theory is "coherently constructive" 
because it is also a theory about the relations between such witnesses (i.e. the 
existence of commuting diagrams and naturality properties). Adopting this view 
of category theory, the theory's contribution to programming methodology can 
be likened to the contribution of constructive type theory, viz. the emphasis on 
program construction as a by-product of the manipulation of types. 

This paper is a contribution to the practical application of these ideas. In 
the paper we develop a number of "fixed-point rules" in category theory each 
of which is inspired by (and generalises) a fixed-point rule in lattice theory. 
We then apply these rules to the construction of a number of elementary but 
fundamental isomorphisms between list structures. A number of the rules we 
derive appear to be new but a more important contribution may be to have 
collected them together and illustrated their application in equational reasoning 
about list structures. 

2 Notation and Terminology 

In this section we give a brief summary of our notational conventions. 
Suppose C is a category. Then, we write xEC to denote that x is an object 

c 
of the category C, and f E x ~-- y when f is an arrow in C with codomain x 
and domain y. The identity arrow on object x is denoted by id, .  The identity 
endofunctor on category C is denoted by Idc, or just Id if it is clear which 
category is intended. Typically, the composition of arrows f and g is denoted 
by fog (irrespective of the category), whereby 

f E x~---y A g E y~---z =~ fog E x~---z . 

For functors F and G,  however, we denote their composition by F o G .  Applica- 
tion of functor F to (object or arrow) x is denoted with an infix dot: thus, F . x .  

The category of functors to category C from category 79 is denoted Fun(C, 79). 
Given a functor F E C ~ / )  and a category E, we can construct two functors 
(F.)  E Fun(C, E)~Fun(~D, E) and ( .F)  E Fun(C, D)*--Fun(E, C). The definition of 
( F .  ) is as follows. For every functor GEFun(:D, E) we have: 

( F . ) . G  = F . G  . 

Application of ( F .  ) to the natural transformation 7/E G~--H, where G , H  are 
in Fun(7), E),  is denoted by F.~/ and defined pointwise by 

(F.~?)= = F.~?= for each object x in E. 

Similarly, for every functor GEFun(E,C) we have: 

( . F ) . G  = GoF . 
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Application of ( *F ) to the natural  transformation y E G*--H, where G,H are 
in Fun(s  is denoted by 7/*F and defined pointwise by 

(~I*F)= = ~}F.= for each object x in 7). 

The s tandard notation is FT} and ~}F. One advantage of explicitly denoting the 
composition is that  we can use multiple-character identifiers to name natural  
transformations and functors. This we do often, with the general convention that  
sans serif identifiers are constants denoting (specific) natural  transformations. 

Application of functors always takes precedence over composition of arrows 
unless parentheses dictate otherwise. For example, F*~ o r*G is (F*~)o (T.G) 
according to this convention, where the pointwise composition of natural  trans- 
formations is denoted by the usual arrow composition. We assume familiarity 
with the algebraic properties of such expressions. Where such properties are used 
we refer to them with the hint "Godement 's  rules". 

We shall have occasion to refer to the arrow category Arr.C of C. The objects 
of Arr.C are the arrows in C and the arrows of Arr.C are commuting squares 
in C, i.e. 

( V , r 1 4 9  f A!,.C g - -  f o e =  ~ o g  . 

Note that ,  for functors F and G to C from 7), a natural  t ransformation 
?7 �9 F<--G is a functor to Arr.C from 7) , defined on arrows by ~}.f = (F . f ,  G . f ) .  
In fact these two notions are equivalent: any functor to Arr.C from 7) is a nat- 
ural t ransformation between its components. This also justifies the dot notation 
y . H  , introduced above, as a composition of functors. 

Following Malcolm [15, 16] and Fokkinga [6] we denote the unique arrow in 
a category C to an object x from an initial object a by the "banana bracket 
notation" CC ; x =: a ) .  Tha t  is, a is initial in C if and only if, for all arrows 
f and all objects x in C, 

f � 9  c a -- f - - ~ C ; x = :  a) . 

The  notion in category theory that  corresponds to the notion of a prefix point 
in lattice theory is known as an aJgebra 2. Suppose C is a category and F is an 
endofunctor on C. An F-algebra is an arrow in C of type x ~ F . x  for some 
object x of C . The codomain of an F-algebra is referred to as the carrier of 
the algebra. The  category C will be called the base category. 

The F-algebras are organised into a category AIg.F as follows. The objects 
are the F-algebras and the arrows ~ to F-algebra f from F-algebra g are 
characterised by the equation: 

�9 f AIg.F g _ ~ �9 cod. f  c cod.g A f o F .~  = ~ o g . 

2 The definition we are about to give is weaker than that given in [13] and [12], the 
terminological confusion that this leads to having been deplored by Lambek [11]. 
Nevertheless it seems to have become standard among computing scientists. See~ for 
example, [14]. 



162 

(Here cod denotes the codomain functor to the base category from AIg.F .) 
Alternatively, the category AIg.F may be defined as the subcategory of Amg 
consisting of arrows of the form (~, F.~).  The codomain functor on AIg.F is 
then the (suitably restricted) "first component" functor to g from Amg.  

An initial F-algebra is an initial object in the category AIg.F. Existence of 
initial F-algebras is harder to predict than the existence of least prefix points. 
Generalisations to category theory of the Knaster-Tarski theorem have been 
considered by Lambek [10, 11] (and others). For our purposes it will suffice to 
assume that all the initial algebras we require do indeed exist. In particular, we 
will often assume that a given endofunctor, F ,  has a canonical initial algebra, 
denoted by muF.  The carrier (i.e. codomain) of this canonical algebra will be 
denoted by # F .  So, muF E # F  ~- F . # F .  This choice of notation facilitates 
comparison of our categorical fixed point theorems with the lattice theoretic 
theorems that they generalise. 

Using the banana-bracket notation, the unique arrow to F-algebra a from 
initial F-algebra f~ is denoted (AIg.F; a =: ~ .  We usually abbreviate this 
to ~F; a =: /~ .  Sometimes, when there is absolutely no question of what is 
intended, we omit the first argument and write ~a =: fib �9 

Adjunctions are sometimes defined in terms of the unit and counit [13] of 
the adjunction and sometimes in terms of a natural isomorphism between horn- 
sets [8]. In the case of the latter definition it is useful to have a name for the 
two components of the isomorphism: we use the terms lower and upper adjun- 
gate and we denote them using the floor and ceiling operators as suggested by 
Fokkinga [6] . Thus, if F E C*-/) and G E :D~g are adjoint functors, F being 

c 7~ 
the lower adjoint, and f E X ~ F .y ,  then rf]x,y E G.x ~ - -  y .  Similarly, if 

g 
g E G.x ~ y then [gJ~,yEx ~ F.y .  

Finally, the inverse of an isomorphism f (between two objects in a category) 
will be denoted by fu .  

3 F i x e d  P o i n t  C a l c u l u s  

In this section we present four basic fixed point theorems, and several theorems 
that are each the result of combining two or more of the basic theorems. The 
basic fixed point theorems that we present are respectively: the fusion rule, the 
rolling rule, the abstraction theorem and the diagonal rule. 

The fusion rule combines the concept of an initial algebra with the concept 
of an adjunction. The rolling rule generalises the property (commonly known 
to category theoreticians as "Lambek's lemma" [10]) that initial F-algebras are 
fixed points of F .  (Its namesake in lattice theory generalises the property that a 
least prefix point of monotonic function f is a fixed point of f .) The rolling rule 
is too elementary to be called "important" in its own right but it is extremely 
useful in combination with the other rules. An instance is the exchange rule 
which is a combination of the rolling rule with the fusion rule. The exchange 
rule is so called because it states when two lower adjoints may be exchanged in 
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the construction of initial algebras. A second instance of the rolling rule is the 
iterated square theorem. 

The abstraction theorem, combines the concept of an initial algebra with the 
concept of parameterisation. The last basic fixed point rule, the diagonal rule, 
captures the basic principle of decomposing the construction of an initial algebra 
into the construction of a succession of such algebras. 

In lattice theory, the fusion rule appears in a slightly different form in the 
work of Cousot and Cousot [4], the abstraction theorem and exchange rules seem 
to be novel, and the rolling and diagonal rules seem to be "folklore" (i.e. we do 
not know to whom they should be credited, but they are widely known). Most 
are straightforward exercises to anyone versed in lattice theory but we know of 
no publicatipn in which all are stated, let alone (a subset of) their applications 
presented. ' 

In category theory, the fusion rule has been derived independently by Her- 
mida and Jacobs [9]; the abstraction theorem and exchange rules seem to be 
novel. The rolling rule (in the form given here) has been derived by Lambert 
Meertens in unpublished discussion notes. The diagonal rule is stated and proved 
for w -categories in [14] but we are not aware of any publication stating the the- 
orem at the same level of generality as here. 

In lattice theory, the abstraction and fusion theorem can be easily combined 
to prove a theorem dubbed "beautiful" by Dijkstra and Scholten [5, p. 159]. In 
category theory, the same combination of the abstraction and fusion theorems 
leads to a similarly "beautiful" theorem, an important special instance of which 
is that w -cocontinuity is preserved by the process of constructing initial algebras 
[17, p.289]. The derivation of this theorem is used as an illustration of our view 
of category theory as coherently constructive lattice theory in [2]. 

Categorical fixed point rules have previously been studied by Freyd [7]. Freyd 
defines a category to be algebraically complete if all endofunctors on the category 
have initial algebras. He then proves that the product of two algebraically com- 
plete categories is algebraically complete and observes a rolling rule as a corollary. 
An intermediate result is the iterated square theorem mentioned earlier. These 
two theorems, included here for purposes of comparison, are corollaries of our ba- 
sic theorems. Indeed, because Freyd makes the blanket assumption of algebraic 
completeness, we are able to establish stronger versions of Freyd's theorems. In 
particular our rolling and diagonal rules are stronger than what can be derived 
from Freyd's theorems. See section 3.5 for further discussion. 

For space reasons we omit proofs of all the rules. Complete proofs are given 
in [1]. 

3.1 The  Fusion T h e o r e m  

The fusion theorem is in fact an immediate corollary of the following theorem: 

T h e o r e m  1 Let (F E C*-/), F ~ E D~-C) be an adjunction and let G E :D~-:D 
and H E C~-C be functors. Assume also that swap E F~ ~- H ~  is a natural 
isomorphism. Then, there is an adjunction between the categories AIg.H and 
AIg.G. 
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Specifics Let unit and counit denote the unit and co-unit, and L J and [ 1 
denote the adjungates, of the adjunction (F EC~-/), F~ E T~--C). Then swap 
gives rise to an isomorphism adjswap E FUoH ~ G~ defined by 

adjswap= = ~(H,counit oswapu~ . 

The functor K E AIg.H~AIg.G defined by 

K.g = F.g o swapcod.g , where g E Aig.G, 

K.~o = F.cp , where ~ is an arrow in AIg.G 

is a lower adjoint and the upper adjoint is the functor K~ E AIg.G~A]g.H de- 
fined by 

K ~.h = F ~.h o adjswaPcod.h , where h E AIg.H 

K~.r = F~.r , where r is an arrow in AIg.H 

The left adjungate of this adjunction is defined on arrows r in AIg.H by [r . 
The right adjungate is defined similarly. 
[] 

T h e o r e m  2 (Fusion Rule)  With the same assumptions as in theorem 1 and 
the additional assumption that AIg.G has an initial object muG,  we have that 

F.muG o swap~ a 

is an initial object in the category AIg.H. So, for every initial H-algebra, mul l ,  

F.muG o swap~ a ~ mull . 

As a consequence we also have an isomorphism in the base category, i.e. 

F.#G ~ # H  . 

Specifics In both isomorphisms 

(IF.muG o swap, G =: muH~ 

is the arrow to F.#G from #H and 

r(IF~.muH o adjswap~ H =: muG~lmuu,mu a 

is its inverse. 
D 

Although we don't give proofs of the fixed point rules the details given in the 
"specifics" section of each theorem can be seen as a trace of the proofs: Each 
isomorphism is constructed by a "mutual containment" argument whereby the 
arrows witness the individual containments and each component of the arrows 
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witnesses a step in the proof. Occurrences of composition, for example, witness 
the use of transitivity of the ordering relation and occurrences of the banana 
brackets witness the minimality of the given algebra. The proof of the fusion 
theorem consists thus of a constructive proof of the inclusions F.#G ~_ #H and 
#H ~_ F.I~G followed by a verification of the fact that the witnesses are inverses 
of each other. 

In subsequent applications of the fusion theorem we will not need to know the 
details of the witnesses to the isomorphism, all that we need to know being that 
the isomorphisms exist. Let us therefore abbreviate ~F.muG o swap~ c =:  muH~ 
to fUSeF,G,H.swap. The rule we use in future applications is thus (assuming the 
conditions of the fusion theorem are satisfied): 

(3) fuseF,C,H.swap E F . # G  ~- p H  . 

3.2 Rolling, Square and Exchange Rules 

Theorem 4 (Rolling Rule) Let F E C~Z) and G E D ~ C  be functors. Sup- 
pose that mu(G.F) is an initial (G*F)-algebra. Then F.mu(G*F) is an initial 
(FoG)-algebra. Thus, for every initial (F~ mu(F~ , 

F.mu(G.F) ~- mu(F~ . 

As a consequence we also have an isomorphism in the base category, i.e. 

F.I~( G. F) ~- I~( F.G) . 

Specifics In both isomorphisms 

CF.mu(G.F) =: mu(F.a)D 

is the arrow to F.#(G.F) from #(F.G) and 

mu(F.G)o F.(G.mu(F.G) =: mu(G~ 

is its inverse. 
[] 

Letting rOIIF,c denote ~F.mu(G.F) =: mu(F.G)~ we thus have: 

(5) rollF,a E F.#(G.F) ~- #(F.G) 

Substituting F for G we find that mu(F2)oF.~F2; F.mu(F 2) =: mu(F2)~ 
is an F-algebra (where F 2 denotes F~ ). Freyd [7] observes that this is an ini- 
tial F-algebra, thus establishing the existence of an initial F-algebra given the 
existence of an initial F2-algebra. He calls this theorem the iterated square the- 
orem. He also observes that the existence of an initial F-algebra guarantees the 
existence of an initial F2-algebra provided that the category has products. The 
corresponding theorems in lattice theory are that a prefix point of (monotonic 
endofunction) F is a prefix point of F 2 , and that x ~ F.x is a prefix point of F 
whenever x is a prefix point of F 2 (in a preorder having infima). In particular, 
# ( F  2) ~ # F  . The precise statement of Freyd's theorem is as follows. 
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T h e o r e m  6 ( I t e r a t ed  square)  Let F be an endofunctor of C such that 
mu(F 2) exists. Then mu(F 2) o F.~F2; F.mu(F 2) =: m,(F2)~ is an initial F- 
algebra, ~AIg.F 2 ; f o F . f  =: mu(F2)~ being the unique arrow from which to 
F-algebra f .  Moreover, if the category g has products, an initial F-algebra, 
muF,  induces an initial F2-algebra, namely muF o F.muF. 

[] 

The final theorem in this section combines the rolling rule with the fusion 
theorem. 

T h e o r e m  7 (Exchange  Rule) Given are the functors F E g ~ D ,  G E 7:)~g 
and H E D ~ g  such that G and H are lower adjoints in adjunctions. Further- 
more, we have the isomorphism mirror E H . F . G  ~- GoF.H.  Finally, we assume 
that an initial F.G algebra, mu(FoG), and an initial F . H  algebra, mu(F .H) ,  
exist. Then 

#(F.G) ~- # (F .H)  . 

Specifics In this isomorphism 

(~r011F,G o F.fUSeH,(FOG),(GOF).mirror =: mu(F.H)~ 

is the witness to #(F~ from #(F*H) and 

(~rollF,H oF.fuseG,(FOH),(HOF).(mirroru) =: mu(F.G)]) 

is its inverse. 
[] 

Note that the exchange rule does not give an isomorphism between algebras, 
only between the carriers. 

Denoting the witness to the isomorphism to #(F.G) from ~(F~ by 
eXChF,G,H.mirror, we have the rule that 

(8) exchF,C,,H.mirror e. #(F.G) ~- # (F .H)  , 

provided of course that F ,  G, H and mirror satisfy the conditions in the 
exchange rule. 

There is a second exchange rule in which the order of F and G, and F and 
H ,  is reversed. A third rule, involving four functors instead of three, combines 
both. The exchange rule given here is the one that we use in section 4. 

3.3 The  Abs t r ac t ion  T h e o r e m  

A standard way of constructing functors inductively uses abstraction from an 
argument of a binary functor. Let @ E D ~-- C • D be a binary functor. Then @ 
induces a binary functor (for an arbitrary category g ) 

E Fun(T),g)~- Fun(C,g)xFun(T),g) 
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by defining it as the composition of (~~ with the embedding ~ of the category 
Fun(C,g)xFun(:D,E) in Fun(CxZ),g) ,  where  Ae E s  is t he  diagonal 
functor. Thus 

FE3G= @ ~  /kE and ~/E3u= @ . ( r h u ) ~  Ac  

In particular, for an object x and object or arrow ~ , 

(9) (F(~G).~ = F.~GG.~ and (~(~u)= = ~/=@u~ . 

Since every section x@ of @ , defined by (xO).d = x| and (x@).f = id=(gf, 
is an endofunctor on :D, we may consider their algebras. Assuming the existence 
of initial x@-algebras, for all x ,  and fixing them to 

mu(x@) E /z(xe)  *- x@#(x•) 

we can construct the initial algebra functor mu~ E Arr.79 ~ C by defining 

(10) f * = ( m u ( y @ ) o f ( ~ i d ~ ( = e ) = :  mu(x@)]) , 

c 
for f E y  ~-- x ,  

(11) mue.x = mu(x@) and mue. f = ( f * ,  f@f * )  . 

The corresponding carrier functor, cod �9 mu e , (i.e. the codomain functor after 
the initial algebra functor) is the well known map functor which we denote by 
w e . Tha t  is, for all o b j e c t s  x and y and all arrows f E x ~ y ,  

(12) w e . x  = #(x@) and we .  f = f* 

In the case of (cons) lists, for example, we define the list functor as w e where 
the functor @ maps the pair (x,y) to l l + y x x .  

The abstraction theorem states that  a map functor is itself an initial algebra. 
More precisely, since mu e E Arr.79r and mue. f = ( w e . f ,  ( I d ~ w e ) . f )  it 
follows from our earlier discussion of the correspondence between functors to 
arrow categories and natural  transformations that  the initial algebra functor is 
a natural  transformation: mu e E w e ~ Id~w e , and thus it is an (Id~)-algebra. 
The theorem states that  rnue is an initial (Id~)-algebra. In words: abstracting 
from the parameter  in an initial algebra yields an initial algebra. 

T h e o r e m  13 ( A b s t r a c t i o n  T h e o r e m )  Let @ E / ) ~ C x / )  be a binary 
functor written as infix operator.  Assume also the existence of a canonical initial 
algebra rnu(x(9) with codomain #(x@) for each object x in C. Define the 
initial algebra functor rnu e as in (12). Then rnu e is an initial algebra for Id(B 
(for arbi t rary  g ); moreover, if rnu(Id(~) denotes a particular initial Id(~-algebra 
having codomain /~(Id(~), then 

mu(Id(~)~mu e and # ( I d ( ~ ) - w  e . 
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Specifics In both isomorphisms, between mu( Id~)  and mu e and their carri- 
ers, 

~mu$ = :  mu(tdd~)]) 

is the arrow to We from #(Id6) and the natural transformation ~ defined by 

c~ = ( [ (mu(Id~))~ = :  mu(z@)]) for each object z in C 

is its inverse. 
[] 

Note that  the abstraction theorem can be generalised by replacing the functor 
Id by some functor F E C*---E and by defining the binary infix functor | as 
x| = F.x @ y .  With the corresponding assumptions on | we have 

(14) mu( Id~)  = m u ( F ~ )  -~ mu| and w~*F = # (F~)  ~- w| 

The witness is denoted by abS(F,@) so that  our calculation rule is: 

(15) abs(F,r E vo~oF'~#(F~) .  

3.4 T h e  D i a gona l  R u l e  

T h e o r e m  16 (Diagona l  R u l e )  Let ~ E C ~ C xC be a binary functor. As- 
sume that  for each object x in C an initial object, mu(x@), exists in AIg.(x~).  
Define functor w 3 as in (10) and (12) and denote the unary functor Id~ld by 

. Then, if rnu~ is an initial object in AIg.~, 

([mu@ = :  mu((p,6)e)]) 

is an initial object in the category AIg.w. So, for every initial w-algebra, mUD, 

( [mu$ =: m,,((~@)e)])  ~ muw . 

Conversely, if mu~v is an initial object in AIg.w then 

m u d  o mu((/~w)e) o id,,~, �9 (muw)u 

is an initial object in the category AIg.~. So, for every initial ~-algebra, m u ~ ,  

muw o m u ( ( # w ) e )  o ida= e (muD)u -~ mu~  . 

As a consequence we also have an isomorphism in the base category: / ~  ~- # w ,  
i.e. 

~ ( x H  x e x )  ~ ~ ( x H  ~ ( y ~  x e y ) )  . 

3 For convenience we omit the subscript on w.  
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Specifics In all three isomorphisms 

=: =: ,,,uwD 

is the arrow to #(~ from #w and 

muwo (mu((/~w)~) o m u w ~ i d ~ . ~  

is its inverse. 
[] 

=: m"$D 

As with the fusion and rolling rules we do not need the specific details of 
the witnessing isomorphisms. Introducing the abbreviation diag$ for the iso- 
morphism to #w from # ~ ,  the rule we apply in subsequent calculations is 
thus: 

(17) diagr E ~ ( x ~ # ( y ~ x @ y ) ) ~ - ~ ( x ~ x ( V x )  . 

3.5 M u t u a l  Recur s ion  

In the previous sections we have presented the four basic rules of the categorical 
fixed point calculus: the fusion rule, the rolling rule, the abstraction theorem and 
the diagonal rule. The topic of this section is the relationship between our basic 
rules, in particular the rolling rule and the diagonal rule, with Freyd's discussion 
of algebraically complete categories [7]. 

Before commencing the discussion let us first emphasise that the diagonal 
rule has three parts: (a) the existence of an initial ~-algebra given an initial 
w-algebra, (b) the existence of an initial w-algebra given an initial ~-algebra 
and (c) the isomorphism in the base category of the carriers of the two types of 
initial algebra. 

Now, adapting Freyd's terminology, a preorder is algebraically complete if 
every monotonic endofunction on the preorder has a least prefix point. A well- 
known theorem (often attributed to Beki~ [3]) is that the product of two al- 
gebraically complete preorders is algebraically complete. Specifically, suppose 
C and /) are algebraically complete preorders and F E C x T ) , - C x I )  . De- 
compose F into two binary functions | E C ~ 7 ) x C  and | E / ) ~ C x : D  in 
such a way that F.(x, y) = (y| xQy).  Then a least prefix point of F is 
( ~ ( x ~ p . x |  # ( y~q . y |  where p.x = #(x| and q.y = #(y| We have 
shown in [18] that this mutual recursion theorem is a corollary of the diago- 
nal rule and (lattice-theoretic) iterated square theorem. The same proof can be 
transformed to a proof of Freyd's theorem that the product of two algebraically 
complete categories is algebraically complete. See [1] for full details. 

Rather than deriving the mutual recursion theorem from the diagonal and 
rolling rules, Freyd first establishes the mutual recursion theorem and then ob- 
serves the rolling rule as a special case. His rolling rule is however weaker since 
he demands the existence of both an initial (F*G)-aigebra and an initial (G~ 
algebra. Our rule only assumes the existence of one in order to guarantee the 
existence of the other. 
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This way of deriving a rolling role appears also in texts on programming 
language semantics. (See for example [20].) It is also quite easy to see that  
part (c) of the diagonal rule (the isomorphism between the carriers of the two 
types of initial algebra) is a consequence of the mutual recursion theorem (define 
y| to be y and x| to be x| This does not mean, however, that  the 
diagonal rule is in any way weaker than the mutual recursion theorem. On the 
contrary, our rule is sharper in that  it gives sharper conditions on the existence 
of initial algebras in a product category than Freyd's blanket assumption of the 
algebraic completeness of the component categories --using parts (a) and (b) 
of the diagonal rule--  and we are not aware of any way of deriving those parts 
from Freyd's mutual recursion theorem. 

In summary, the rolling and diagonal rules given here give tighter conditions 
on the existence of initial algebras and have Freyd's mutual recursion theorem 
as corollary. 

4 A p p l i c a t i o n s  

In lattice theory the four basic fixed point rules amount to a very effective 
equational a fixed point calculus. (For a variety of examples see [18].) The cate- 
gorical fixed point rules amount to a very effective equational and constructive 
fixed point calculus. That  is to say, isomorphisms between type structures can be 
obtained as a by-product of equational arguments in the lattice-theoretic fixed 
point calculus. In this section we illustrate the method by deriving a number of 
isomorphisms between list structures. In each case a calculation in lattice theory 
is augmented with "witnesses" in a mechanical way. 

In the calculations natural transformations (and isomorphisms) of n - a r y  
functors play a dominant role and we need some notational conventions to deal 
with constant arguments. To that  end we consider the product of categories 
(responsible for n-ar i ty)  to be associative and we use the connector " be- 
tween functors to construct functors to an n -a ry  codomaln. For example, . 
for HiET)i~--C the functor H = H o z ~ H I ~ H 2  E T)oXT)IXT)2*--C is defined 
by H.x = (H0.x, Hi.x, H2.x) for objects as well as arrows. The usual product 
of (three) functors is denoted by ( F ,  G ,  H ). 

Let ~/ be a natural transformation between, say, ternary functors F and 
G and let H be a functor to their ternary domain, then ~/*H is a natural 
transformation between F.H and GoH. A suitable H may change the arity. 
For example, the flmctor H -- K.a A K.b AId , where K.a denotes the constant 
a functor, fixes the arguments a and b thus turning a unary functor into 
a ternary functor; similarly, H '  = K.a a (Id, Id) fixes only a . Instead of ~oH 
and ~ . H '  we prefer the more suggestive notations ~?a,b,_ and ~?a .... respectively. 

An example in the next section is a natural isomorphism leapF between 
binary functors, say @ and |  Then leapF, is a natural transformation between 
6 and 6 and, by the convention above, 

( leapF. ) td ,_  = ( l e a p F . ) � 9  (K . Id  ,', id) , 

4 Involving equalities only as opposed to proofs of equality via mutual containment. 
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( ( leapF.) .  (K.Id ,', id) )a = leapF. ( Id / ,  G) and 

( leapF, (Id ,', G))a = leapF,,,a.,~ �9 

4.1 L e a p f r o g  R u l e s  

There are several ways that  lists can be defined: "cons" lists where elements are 
added ("consed" in Lisp terminology) to the beginning of a list , "snoc" lists 
where elements are added ("snocked" , the reverse of "cons") to the end of a list 
, and "join" lists where two lists are "joined" together. We consider only cons 
and snoc lists. 

The  cons list functor is the map functor :v e (see (12) and (10)) where 

x@y = l l + ( x x y )  , 

and the snoc list functor is the map functor w e where 

x @ y  = l I + ( y x x )  . 

In order to be able to consider both at once we abstract from their definitions in 
this section and consider the situation in which we are given a (unary) functor 
F and a binary functor |  (replacing ]1+ and x ,  respectively), such that  x|  
and |  are lower adjoints for every object x .  We then define two map functors 
by 

P -= WFO@ and F = wfoeoM �9 

where the binary to binary functor M interchanges the coordinates. 
The cons list functor is an instantiation of both F and .~ by choosing 

F = 11+ and | = x and | = x �9 ~ respectively. Similarly, the snoc list func- 
tot  is an instantiation of fi" and F for the same F and interchanged choices 
for | . 

Our first application of the fixpoint rules states that  -~ and _P are isomorphic 
functors provided that  F obeys a so-called "leapfrog" property with respect to 
| . When reading the proofs we recommend that  the "witnesses" are ignored 
the first time around. (That  is, ignore everything marked by a bullet and all 
membership information.) Stripped of this information the proof obtained is the 
lattice-theoretic proof. 

T h e o r e m  18 Suppose Id6 and ~ld are lower adjoints and we have the 
following natural  isomorphism (i.e. natural in the parameters a and b ) 

leapF~, b E F.(a|174 -~ a|174 . 

Define the map functor .P to be w e  and the map functor _P to be We where 

= F o |  and E 3 = F o |  . 

Then P ~ _P . 
(It is useful to have a catchy name for important  properties. We call the 

existence of the isomorphism leapF in the above theorem a leapfrog property 
because the parameter  a "leapfrogs" from one side to the other of the  functor 
F . )  
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r { abstraction; . a = abstd,eo/3o(abs~r } 

/3 E #(Id(~)-~#(Id6) 

= { Id(~ = (Fo) ~ Id6 and Id6 = (F~176 Did } 

/3 e #((F~176 ( I d 6 ) ) ~ # ( ( F . ) � 9  (Did)) 

4:: { exch.ange rule, Ida and Did are lower adjoints 

�9 /3 -- exchF.,ld6,61d. 7 } 

7 e (61d)o(F~176 -~ (Id6)~176 

r { ((@ld)o(F~ = (F~ (Id@G))@ld 

((td6),(F,),(6td)).G = td6(F~ (G61d)) 

(See the discussion preceding this subsection.) 

3' = (leapF~ 

Thus, 

[ ]  

abSld,r o exchF~176 (abslce)~ E -P ~- P . 

The construction of F from F can be repeatedly applied giving F ,  etc. 
Our next application shows that this process preserves the leapfrog property 
provided that | is also associative (up to isomorphism). 

T h e o r e m  19 (Leapfrog Prese rva t ion)  Suppose F is a functor and @ is 
a binary functor such that a| and | are lower adjoints for every object a.  
Define the map functor F to be ~uFO | . Suppose we have two natural isomor- 
phisms 

and 

Then 

ass~,b,~ E (aQb)| ~- a|174 

leapFa, b E F. (a |174  ~- a |174 . 

T'.(a| |  ~ a|  . 

P r o o f  Letting G = F ~ 1 7 4  , H = F * ( b Q a ) |  and L = a | 1 7 6 1 7 4  for 
brevity in the subscripts of fuse we have: 
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ol �9 F. (a |174  ~- a |174  

_= { definition of F } 

�9 ( |  (a|174 ~ ( a |  (b|174 

A ~y 

A ~ E a | 1 7 4 1 7 4  ~- a | 1 7 4  

r { asSp,q,_ E (p|174 ~ p| �9 q| 

assp,_,q E @q "p| ~- p| �9 | 

�9 ~ = ( |  �9 F �9 assa,b,_) 

�9 r = a| ~ (F  �9 aSSb,a,_) 

�9 | 1 7 4 1 7 4 1 7 4 1 7 6 1 7 4 1 7 6 1 7 4  

~= { definition leapF } 

= (leapF~,_)~174 

We conclude that  

invent intermediate # ( ( a | 1 7 6 1 7 4  ; �9 a = ~o~,u } 

�9 ( |  ((a|174 -~ #((a| �9 F ~  (b| 

e (a |176  ((b|174 ~ #((a| ~ F ~  (b@)) 

fusion; �9 ~ -- fuSe| and ? = fusea| } 

E | 1 7 6 1 7 6 1 7 4 1 7 4  ~- a | 1 7 6 1 7 4 1 7 6 1 7 4  

a| 

and 

o ~ o (a@ �9 F * assb,_,a) 

} 

fuse|174 F �9 OSSa,b,_) o (( leapF~,).(b|  o (a| * F ~ aSSb,_,a)) 

o (fuse~|174 �9 ( F ~  aSSb,~,_)))u 

witnesses the isomorphism of F.(a| | a and a | F.(b| . 
[] 

Note that  in order to combine theorems 18 and 19 to show that  (for example) 

F and F are isomorphic we need to show that  the isomorphism constructed 
in the latter theorem is natural in the parameters a and b. For general F 
this is a likely to be an impossible task but in section 4.3 we argue why this is 
immediately the case for the "Kleene" functors. 

4 . 2  L i s t s  

In this section, we prove isomorphisms between certain list structures and simul- 
taneously construct the witnesses. The first two are simple instantiations of the 
leapfrog rules presented in the last subsection. 

Formally, we assume that  the base category is a bicartesian, exponential 
category [8]. The specific details of this assumption are as follows. First, denoting 
the product of a and b by axb  and their sum by a+b (both of which axe 
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assumed to exist), we assume for all objects y the functors y x  and x y ,  i.e. 
the functor x with the left or right argument fixed to y ,  have upper adjoints. 
Second, denoting the terminal object of the base category by 11 , we assume the 
existence of the following isomorphisms. For all objects a ,  b and c ,  

luni ta E 11xa ~ a , 

runita E a x l l  ~ a , 

sumassa,b,c E (a+b)+c  ~- a+(b.-t-c) , 

proass~,b,c e ( a •  ~- a x ( b x c )  , 

rdist~,b,c E ( a + b ) x c  ~ ( a x c ) + ( b x c )  , 

Idista,b,~ E a x ( b + c )  ~- ( a x b ) + ( a x c )  . 

In order to instantiate the fusion theorem it suffices to know that  the lower 
adjungate of the adjunction with xy  as lower adjoint (and exponentiation as 
upper adjoint) is the operation known as "currying" to functional programmers,  
the upper adjungate is "uncurrying",  and the counit is function evaluation. 

E x a m p l e  20 Defining the Conslist functor and the Snoclist functor by 

Clist = a~--~#(y ~ 11 + a x y ) ,  Slist = a~--*#(y H ~ + y x a )  

we have the functor isomorphism 

Clist - Slist . 

P r o o f  Instantiate in theorem 18: 

F :=  I I +  , | : =  x , a s s  :=  proass 

and 

l e a p F ~ ,  b : =  r d i s t ~ , ~ x b , ~ o ( ( l u n i t ~ o  . u . u r u n l t ~ ) + p r o a s s ~ , b , ~ )  o I d l s t ~ , ~ , b x ~  

[ ]  

From now on we consider cons lists only; the cons list functor will be denoted 
by an asterisk. That  is, we assume the functor * is defined'to be the map functor 

w e (see (12) and (10)) where 

x G y  = 11+(xxy) . 

In contrast  to normal functor applications we will omit the dot when the functor 
�9 is applied to an object. 

E x a m p l e  2 1  

a x  * (bxa)  -~ * ( a x b ) x a  . 
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P r o o f  Instantiate in theorem 19: 

F : =  11+ , | : =  x , a s s  

and 

[ ]  

: =  proass 

l e a p F . ,  b : =  r d i s t l , . x b , .  ( ( l u n i t .  . u  . u o o r u m t ~ ) + p r o a s s . , b , ~ )  o I d l s t . , 1 , bx "  

Note that  we can apply the leapfrog theorem once again with F instantiated 
to * (provided naturali ty is proven; see the last section). In language theory 
nothing new is obtained - -  because ~, and * are equal. In category theory we 
do obtain a new theorem - -  because ~ and * are not even isomorphic. Thus the 
leapfrog theorem has an infinite number of applications! (The equality between 
~, and * in language theory boils down to the equality between x and x + x  

/ 

which isn't constructively valid.) 
The final example has been chosen for its relative difficulty, and its practical 

relevance. We call it the list decomposi t ion problem. An instance is the so-called 
"lines-unlines" problem: given a sequence of two types of characters, delimiters 
and non-delimiters, write a program to divide the sequence into (possibly empty) 
"lines" of non-delimiters seperated by single delimiters. Construct in addition 
the inverse of the program. 

In the following calculation we employ a notation whereby the witnesses to 
isomorphisms are included in the hints marked by a bullet ( " .  "). Specifically a 
proof step of the form 

F 

{ h int ,  �9 a } 

G 

is short for 

a E F - - G ~  h int  

The list composition problem, expressed as an isomorphism between datatypes, 
boils down to showing that  the star decomposition theorem of regular languages 
is constructively valid. 

E x a m p l e  22 (Lis t  D e c o m p o s i t i o n )  

�9 ax  �9 (bx �9 a) ~- * (b+a) . 

P r o o f  

�9 a x  �9 (bx  �9 a) 

= { definition of * } 
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�9 a x # ( y ~  l l + ( b x , a ) x y )  

-- { Godement's rules, �9 id,a x fuse.((ll+),(proas%,,a,_)) } 

�9 a x #(y ~-~ l l + b x ( , a x y ) )  

{ rolling rule, * roIl,~x,F 

where F denotes the functor y ~ 11 + b x y } 

#(y~--~ *ax ( l l  +bxy ) )  

{ fusion rule, �9 fuse.((listfusea,_),F) } 

I.t(y~-~ l.t(z ~ (ll + b x y )  + a x z ) )  

{ diagonal rule, �9 diag~ , where y@z = ( l l + b x y ) + a x z  

#(y ~ (ll + b x y ) + a x y )  

{ fusion rule, 

#(y ~ 11 

{ 

*(b+a) . 

We conclude that,  

�9 u 

�9 fuse.((sumassl .... ) . ( b x ,  a x ) o  (ll-t-).(rd,Stb,~,_)) 

-t- (b+a)xy)  

definition of * } 

id.~ x fuse.((11 +).(proas%,.~,_)) 

o rol l .~x,F 

o fuse.((listfuse~,_) ~  

o diag$ 

fuse.((sumassl .... )~  a x )  . u o , o ( ( ~ + ) . ( ~ d , m  . . . .  ))) 

e , a •  �9 (b• �9 a) ~ �9 (b+~)  

where F = y H 11+bxy and y@z = (~l + b x y ) + a x z  . 
[] 

4.3 " T h e o r e m s  for  F ree"  

In the list decomposition example we have proved an isomorphism in the base 
category for all instantiations of the objects a and b. Formally, however, we 
have not shown that  we have an isomorphism between the binary functors whose 
object parts are 

a,b~-.~ *a• *(b• *a)  , 
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and 

a,b~--~ * (b+a) . 

We have yet to prove that the constructed isomorphisms are natural in the 
parameters a and b. The same remark can be made about the list leapfrog 
example. Yet it is well known that naturality is what Wadler [19] has dubbed 
a "theorem for free". In this section we briefly explain why this theorem is "for 
free" and, specifically, the role of the abstraction theorem in that claim. 

The key is to note that all statements about a bicartesian exponential cat- 
egory can be lifted to statements about a functor category by pointwise pa- 
rameterisation [13, theorem 1, p. l l l] .  Specifically, assume that a bicartesian, 
exponential category C is given, with coproduct and product operators + and 
x . As discussed in the preamble to the abstraction theorem, these oPerators 
can be lifted to 4- and x for arbitrary domain categories 8 ;  i.e. -~ and x 
are binary operators on the category Fun . They are, in fact, the coproduct 
and the product in Fun: by the parameterised limit theorem it follows that 
( F+G,iOIF,a, inrF,a ) is the coproduct of F and G,  where (inlf,a), = inlF.x,a., 
and similarly for inrF,a. In the same way x is the binary product functor on 
Fun and also the adjoints of F ~  and x F  can be defined. The category Fun is 
thus a bicartesian, exponential category where, for instance, 

sumass f , a ,g  E ( F 4 - G ) + H  ~- F4- (G4-H)  

is given by 

sumassF,G,H = sumass* (F  a G a H) . 

That is, 

( s u m a s s F , G , H  )= = sumassF.x ,G.x ,H.x  �9 

The abstraction theorem admits a similar result for �9 and for map functors in 
general. 

Suppose F is a functor. Define functor @ by a@y = 71 + F.a x y .  Then 
we observe that 

* .F  

= { definition �9 and composition } 

at---* #(a@) 

= { abstraction theorem } 

tt(G ~-* lOnG) 

= { ( I d 6 a ) . x  = x �9 G . x  = 11+(F .x  x a . x )  

= (K.]I q -FxG) .x ,  extensionality } 

t t(G ~ K.11 4- F x G )  . 
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If we now define the functor /, on objects F by # ( G  ~-* K.11-i-F;<G) we can 
reformulate this observation as 

(23) * . F = @ F  . 

The list decomposition theorem now becomes a theorem in the functor cate- 
gory whereby each functor is replaced by its "dotted" version. Tha t  is, the list 
decomposition theorem constructs an isomorphism decompF,a satisfying 

decompF, e E ~,F;<~(Gx~F) ~- i,(F-i-G) . 

Moreover, we can now use abstraction to obtain the required isomorphism be- 
tween the two functors  rather  than a collection of isomorphisms between objects. 

a,b~-* �9 a x  �9 (bx �9 a) 

= { Introducing the functors Exl and E x r ,  

where Exl.( a, b ) =  a and Exr.(  a, b ) =  b } 

a,b~-~ * Exl . (a,  b) x �9 (Exr . (a ,  b) x �9 Exl .(a,  b)) 

= { abstraction } 

( *. Exl ) >< (*. ( Exr  x ( *. Exl ) ) ) 

= { abstraction: (23) } 

;~ Exl  >( ~ ( Exr  ~< i, Exl) 

-~ { theorem 22 �9 decompEzl,Ezr } 

i,( Exr  4 Exl) 

= { abstraction } 

a,b~-* * (b+a) . 

If full details of the definition of decOmPExl,Ezr are required then we would have 
to instantiate the witnesses in the statement of (22) in the following way: 

a,b := Ex l ,Exr  , 

and 

+ ,  x , .  := $,;~,* 

11 := K . I t  . 

Simplification would then yield the witness obtained earlier. 

A c k n o w l e d g e m e n t  We are grateful to the referees for pointing out Freyd's 
work to us. 
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