Categorical Fixed Point Calculus

Roland Backhouse, Marcel Bijsterveld,
Rik van Geldrop and Jaap van der Woude

Department of Mathematics and Computing Science, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. A number of lattice-theoretic fixed point rules are generalised
to category theory and applied to the construction of isomorphisms be-
tween list structures.

1 Introduction

Category theoreticians view a preordered set as a particular sort of category
in which there is at most one arrow between any pair of objects. According to
this view, several concepts of lattice theory are instances of concepts of category
theory as shown in table 1.

Lattice theory is an instance of
concept the category theory concept
preorder category

monotonic function [functor
(pointwise) ordering[natural transformation
between functions |between functors

supremum colimit
least initial
Galois connection |adjunction
prefix point algebra

closure operator monad

Table 1. Lattice theory versus category theory

An alternative viewpoint, advocated by Lambek [10], is that lattice theory is
a valuable source of inspiration for novel results in category theory. Indeed, it is
our view that for the purposes of advancing programming methodology category
theory may profitably be regarded as “coherently constructive lattice theory!”.

! It has been remarked that we should say “preorder” theory rather than “lattice”
theory. From the point of view of computing science, however, a category without
sums and products has little relevance. Thus, it is indeed lattice theory that is our
source of inspiration.

160

That is to say, arrows between objects of a category may be seen as “witnesses”
to a preordering between the objects. Category theory is thus “constructive”
because it is a theory about how to construct such witnesses rather than a
theory solely about their existence. Category theory is “coherently constructive”
because it is also a theory about the relations between such witnesses (i.e. the
existence of commuting diagrams and naturality properties). Adopting this view
of category theory, the theory’s contribution to programming methodology can
be likened to the contribution of constructive type theory, viz. the emphasis on
program construction as a by-product of the manipulation of types.

This paper is a contribution to the practical application of these ideas. In
the paper we develop a number of “fixed-point rules” in category theory each
of which is inspired by (and generalises) a fixed-point rule in lattice theory.
We then apply these rules to the construction of a number of elementary but
fundamental isomorphisms between list structures. A number of the rules we
derive appear to be new but a more important contribution may be to have
collected them together and illustrated their application in equational reasoning
about list structures.

2 Notation and Terminology

In this section we give a brief summary of our notational conventions.

Suppose C is a category. Then, we write 2€C to denote that z is an object
of the category C,and fezx & y when f is an arrow in C with codomain z
and domain y. The identity arrow on object z is denoted by id, . The identity
endofunctor on category C 'is denoted by Idc, or just Id if it is clear which
category is intended. Typically, the composition of arrows f and g is denoted
by feg (irrespective of the category), whereby

fE€x—yAgeEy—z = fog€xe1z .

For functors F' and G, however, we denote their composition by FsG . Applica-
tion of functor F' to (object or arrow) z is denoted with an infix dot: thus, F.z .
The category of functors to category C from category D is denoted Fun(C,D).
Given a functor FeC+~D and a category £, we can construct two functors
(Fs)€Fun(C,€&)«Fun(D,£) and (sF) € Fun(&, D)«Fun(&,C) . The definition of
(Fe) is as follows. For every functor G€Fun(D,€) we have:

(Fe).G = FsG .

Application of (F's) to the natural transformation 1€ G—H , where G,H are
in Fun(D,£), is denoted by Fsp and defined pointwise by

(Fen), = F.p, for each object z in £.
Similarly, for every functor GeFun(£,C) we have:

(+F).G = GoF .

161

Application of (*F') to the natural transformation n€ G—H , where G,H are
in Fun(€,C), is denoted by n*F and defined pointwise by

(n*F); = nr, for each object z in D.

The standard notation is F'p and nF . One advantage of explicitly denoting the
composition is that we can use multiple-character identifiers to name natural
transformations and functors. This we do often, with the general convention that
sans serif identifiers are constants denoting (specific) natural transformations.

Application of functors always takes precedence over composition of arrows
unless parentheses dictate otherwise. For example, FenoreG is (Fen)o(7+G)
according to this convention, where the pointwise composition of natural trans-
formations is denoted by the usual arrow composition. We assume familiarity
with the algebraic properties of such expressions. Where such properties are used
we refer to them with the hint “Godement’s rules”.

We shall have occasion to refer to the arrow category Arr.C of C. The objects
of Arr.C are the arrows in C and the arrows of Arr.C are commuting squares
in C,i.e.

(p)ef &< g = fop=gpog .
Note that, for functors F and G to C from D, a natural transformation
n€ F«G is afunctor to Arr.C from D , defined on arrows by 7.f = (F.f, G.f).
In fact these two notions are equivalent: any functor to Arr.C from D is a nat-
ural transformation between its components. This also justifies the dot notation
n*H , introduced above, as a composition of functors.

Following Malcolm [15, 16] and Fokkinga [6] we denote the unique arrow in
a category C to an object z from an initial object a by the “banana bracket
notation” (C; z =: a). That is, @ is initial in C if and only if, for all arrows
f and all objects z in C,

fE.’L‘*-C—a,Efz(IC;:L‘=:aD .

The notion in category theory that corresponds to the notion of a prefix point
in lattice theory is known as an algebra®. Suppose C is a category and F is an
endofunctor on C. An F -algebra is an arrow in C of type z+— F.x for some
object z of C . The codomain of an F-algebra is referred to as the carrier of
the algebra. The category C will be called the base category.

The F-algebras are organised into a category Alg.F as follows. The objects
are the F-algebras and the arrows ¢ to F-algebra f from F-algebra g are
characterised by the equation:

cpefMg = ¢€cod.f<£-cod.g A foF.p=pog .

? The definition we are about to give is weaker than that given in [13] and [12], the
terminological confusion that this leads to having been deplored by Lambek [11].
Nevertheless it seems to have become standard among computing scientists. See, for
example, [14].

162

(Here cod denotes the codomain functor to the base category from Alg.F' .)
Alternatively, the category Alg.F may be defined as the subcategory of Arr.C
consisting of arrows of the form (¢, F.¢). The codomain functor on Alg.F is
then the (suitably restricted) “first component” functor to ¢ from Arr.C.

An initial F -algebra is an initial object in the category Alg.F . Existence of
initial F-algebras is harder to predict than the existence of least prefix points.
Generalisations to category theory of the Knaster-Tarski theorem have been
considered by Lambek [10, 11} (and others). For our purposes it will suffice to
assume that all the initial algebras we require do indeed exist. In particular, we.
will often assume that a given endofunctor, F, has a canonical initial algebra,
denoted by muF . The carrier (i.e. codomain) of this canonical algebra will be
denoted by pF . So, muF € puF « F.uF . This choice of notation facilitates
comparison of our categorical fixed point theorems with the lattice theoretic
theorems that they generalise.

Using the banana-bracket notation, the unique arrow to F-algebra o from
initial F-algebra § is denoted (Alg.F'; a =:). We usually abbreviate this
to (F; o =: B). Sometimes, when there is absolutely no question of what is
intended, we omit the first argument and write (o =: g).

Adjunctions are sometimes defined in terms of the unit and counit [13] of
the adjunction and sometimes in terms of a natural isomorphism between hom-
sets [8]. In the case of the latter definition it is useful to have a name for the
two components of the isomorphism: we use the terms lower and upper adjun-
gate and we denote them using the floor and ceiling operators as suggested by
Fokkinga, [6] . Thus, if FEC—D and Ge€ D« are adjoint functors, F being

the lower adjoint, and f €z £ Fy,then [fl,, € Gz L. y . Similarly, if

geGz 2 y then |gl., €z £ Fy.
Finally, the inverse of an isomorphism f (between two objects in a category)
will be denoted by fu.

3 Fixed Point Calculus

In this section we present four basic fixed point theorems, and several theorems
that are each the result of combining two or more of the basic theorems. The
basic fixed point theorems that we present are respectively: the fusion rule, the
rolling rule, the abstraction theorem and the diagonal rule.

The fusion rule combines the concept of an initial algebra with the concept
of an adjunction. The rolling rule generalises the property (commonly known
to category theoreticians as “Lambek’s lemma” [10]) that initial F-algebras are
fixed points of F'. (Its namesake in lattice theory generalises the property that a
least prefix point of monotonic function f is a fixed point of f.) The rolling rule
is too elementary to be called “important” in its own right but it is extremely
useful in combination with the other rules. An instance is the exchange rule
which is a combination of the rolling rule with the fusion rule. The exchange
rule is so called because it states when two lower adjoints may be exchanged in

163

the construction of initial algebras. A second instance of the rolling rule is the
iterated square theorem.

The abstraction theorem, combines the concept of an initial algebra with the
concept of parameterisation. The last basic fixed point rule, the diagonal rule,
captures the basic principle of decomposing the construction of an initial algebra
into the construction of a succession of such algebras.

In lattice theory, the fusion rule appears in a slightly different form in the
work of Cousot and Cousot [4], the abstraction theorem and exchange rules seem
to be novel, and the rolling and diagonal rules seem to be “folklore” (i.e. we do
not know to whom they should be credited, but they are widely known). Most
are straightforward exercises to anyone versed in lattice theory but we know of
no publication in which all are stated, let alone (a subset of) their applications
presented. '

In category theory, the fusion rule has been derived independently by Her-
mida and Jacobs [9]; the abstraction theorem and exchange rules seem to be
novel. The rolling rule (in the form given here) has been derived by Lambert
Meertens in unpublished discussion notes. The diagonal rule is stated and proved
for w-categories in [14] but we are not aware of any publication stating the the-
orem at the same level of generality as here.

In lattice theory, the abstraction and fusion theorem can be easily combined
to prove a theorem dubbed “beautiful” by Dijkstra and Scholten [5, p. 159]. In
category theory, the same combination of the abstraction and fusion theorems
leads to a similarly “beautiful” theorem, an important special instance of which
is that w -cocontinuity is preserved by the process of constructing initial algebras
[17, p.289)]. The derivation of this theorem is used as an illustration of our view
of category theory as coherently constructive lattice theory in [2].

Categorical fixed point rules have previously been studied by Freyd [7]. Freyd
defines a category to be algebraically complete if all endofunctors on the category
have initial algebras. He then proves that the product of two algebraically com-
plete categories is algebraically complete and observes a rolling rule as a corollary.
An intermediate result is the iterated square theorem mentioned earlier. These
two theorems, included here for purposes of comparison, are corollaries of our ba-
sic theorems. Indeed, because Freyd makes the blanket assumption of algebraic
completeness, we are able to establish stronger versions of Freyd’s theorems. In
particular our rolling and diagonal rules are stronger than what can be derived
from Freyd’s theorems. See section 3.5 for further discussion.

For space reasons we omit proofs of all the rules. Complete proofs are given
in [1].

3.1 The Fusion Theorem
The fusion theorem is in fact an immediate corollary of the following theorem:

Theorem 1 Let (FeC+D, F* € D~C) be an adjunction and let G€ DD
and H €C—C be functors . Assume also that swap € FeG = H+F is a natural

isomorphism. Then, there is an adjunction between the categories Alg.H and
Alg.G.

164

Specifics Let unit and counit denote the unit and co-unit, and | | and [
denote the adjungates, of the adjunction (FeCe~D, F! € D—C). Then swap
gives rise to an isomorphism adjswap € FleH = G+F¥ defined by

adjswap, = |(HecounitoswapueF*),] .

The functor K € Alg.H+Alg.G defined by
K.g = F.goswap,g, ,wheregeAlg.G,
K.o = F.p , where @ is an arrow in Alg.G

is a lower adjoint and the upper adjoint is the functor K¢ Alg.G—Alg.H de-
fined by

K*h = F' hoadjswap,,y), ,where hcAlg.H
K'9 = F'.y , where ¢ is an arrow in Alg.H

The left adjungate of this adjunction is defined on arrows ¢ in Alg.H by |¢].
The right adjungate is defined similarly.
a

Theorem 2 (Fusion Rule) With the same assumptions as in theorem 1 and
the additional assumption that Alg.G has an initial object muG, we have that

F.muG o swap,

is an initial object in the category Alg.H . So, for every initial H-algebra, muH ,
F.muG o swap, = muH .

As a consequence we also have an isomorphism in the base category, i.e.
FuG=uH .

Specifics In both isomorphisms
(F.muG o swap,; =: muH)

is the arrow to F.uG from pH and
[(F'.muH o adjswap,;; =: MUG)|mutt,muc

is its inverse.
]

Although we don’t give proofs of the fixed point rules the details given in the
“specifics” section of each theorem can be seen as a trace of the proofs: Each
isomorphism is constructed by a “mutual containment” argument whereby the
arrows witness the individual containments and each component of the arrows

165

witnesses a step in the proof. Occurrences of composition, for example, witness
the use of transitivity of the ordering relation and occurrences of the banana
brackets witness the minimality of the given algebra. The proof of the fusion
theorem consists thus of a constructive proof of the inclusions F.uG 3 pH and
uH J F.uG followed by a verification of the fact that the witnesses are inverses
of each other. ‘

In subsequent applications of the fusion theorem we will not need to know the
details of the witnesses to the isomorphism, all that we need to know being that
the isomorphisms exist. Let us therefore abbreviate (F.muG o swap,; =: muH)
to fuser g, ir.swap . The rule we use in future applications is thus (assuming the
conditions of the fusion theorem are satisfied):

(3) fusep,g,m.swap € F.uG = uH .

3.2 Rolling, Square and Exchange Rules

Theorem 4 (Rolling Rule) Let F€C—D and G€D—C be functors. Sup-
pose that mu(GeF’) is an initial (GeF)-algebra. Then F.mu(G+F) is an initial
(F+G)-algebra. Thus, for every initial (FeG)-algebra, mu(F*G) ,

F.mu(GeF) = mu(F+G) .
As a consequence we also have an isomorphism in the base category, i.e.
F.u(GeF) = u(FeG) .
Specifics In both isomorphisms
(F.mu(GeF) =: mu(F+G))
is the arrow to F.u(G*F) from p(F+*G) and
mu(FeG)o F.(G.mu(FeG) =: mu(G+F))

is its inverse.
.

Letting rollp ¢ denote (F.mu(GeF) =: mu(F*G)) we thus have:
(5) rollpg € F.u(GeF) = u(FeG) .

Substituting F' for G we find that mu(F2)o F.(F%; F.mu(F?)=: mu(F?))
is an F-algebra (where F2? denotes FeF). Freyd [7] observes that this is an ini-
tial F-algebra, thus establishing the existence of an initial F-algebra given the
existence of an initial F2?-algebra. He calls this theorem the iterated square the-
orem. He also observes that the existence of an initial F-algebra guarantees the
existence of an initial F2-algebra provided that the category has products. The
corresponding theorems in lattice theory are that a prefix point of (monotonic
endofunction) F is a prefix point of F?, and that 1 F.x is a prefix point of F
whenever z is a prefix point of F? (in a preorder having infima). In particular,
w(F?)= uF . The precise statement of Freyd’s theorem is as follows.

166

Theorem 6 (Iterated square) Let F be an endofunctor of C such that
mu(F?) exists. Then mu(F?)o F.(F?; F.mu(F?)=: mu(F?)) is an initial F-
algebra, (Alg.F?; foF.f =: mu(F?)) being the unique arrow from which to
F-algebra f. Moreover, if the category C has products, an initial F-algebra,
muF, induces an initial F2-algebra, namely muF o F.muF'.

O

The final theorem in this section combines the rolling rule with the fusion
theorem.

Theorem 7 (Exchange Rule) Given are the functors F€C+~D, Ge D~
and H € D+C such that G and H are lower adjoints in adjunctions. Further-
more, we have the isomorphism mirror € HeF'eG = GeF+H . Finally, we assume
that an initial F'*G algebra, mu(FG), and an initial FeH algebra, mu(FeH),
exist. Then

W(FeG) & u(FeH) .
Specifics In this isomorphism

(rolip,g o Ffusey (reg),(ger)-mirror =: mu(FeH))
is the witness to u(F'G) from u(FeH) and

(rollp, i o Ffuseq (pemy, (o py-(mirrory) =: mu(F@))

is its inverse.
(]
Note that the exchange rule does not give an isomorphism between algebras,
only between the carriers.

Denoting the witness to the isomorphism to p(F+G) from w(FeH) by
exchp g, g.mirror, we have the rule that

(8) exchp,g pm.mirror € u(FeG) = p(FeH) ,

provided of course that F', G, H and mirror satisfy the conditions in the
exchange rule.

There is a second exchange rule in which the order of F' and G, and F and
H | is reversed. A third rule, involving four functors instead of three, combines
“both. The exchange rule given here is the one that we use in section 4.

3.3 The Abstraction Theorem

A standard way of constructing functors inductively uses abstraction from an
argument of a binary functor. Let @ € D« CxD be a binary functor. Then &
induces a binary functor (for an arbitrary category £)

& € Fun(D, &) — Fun(C,E)xFun(D, &)

167

by defining it as the composition of @e with the embedding *A¢ of the category
Fun(C,&)xFun(D,£) in Fun(CxD,£), where. Ag € ExXE «— & is.the diagonal
functor. Thus

F&G = @ o(F,G)s g and ndv= @ ¢(n,v) A¢
In particular, for an object z and object or arrow £ ,
(9) (F&G).£=Ft0GE and (ndv), = 7,0V, .

Since every section z® of @ , defined by (z®).d = z®d and (z®).f =id.®f,
is an endofunctor on D, we may consider their algebras. Assuming the existence
of initial x&-algebras, for all z, and fixing them to

mu(z®) € u(z®) — zd pu(zd)
we can construct the initial algebra functor mug € Arr. D —C by defining
(10) f* = (mu(y®) o f@idyee) =: mu(z®)) ,
for fey £ T,
(11) mug.z = mu(z®) and mug.f = (f*, f&f*) .

The corresponding carrier functor, cod * mug , (i.e. the codomain functor after
the initial algebra functor) is the well known map functor which we denote by
wg . That is, for all objects . and y and all arrows fex—y,

(12) wg.x = p(z®) and we.f = f* .

In the case of (cons) lists, for example, we define the list functor as wg where
the functor & maps the pair (z,y) to L+yxz.

The abstraction theorem states that a map functor is itself an initial algebra.
More precisely, since mug € Arr.D«—C and mug.f = (wg.f, Iddwg).f) it
follows from our earlier discussion of the correspondence between functors to
arrow categories and natural transformations that the initial algebra functor is
a natural transformation: mug € wg « Id®wg , and thus it is an (Idd)-algebra.
The theorem states that mug is an initial (Id&)-algebra. In words: abstracting
from the parameter in an initial algebra yields an initial algebra.

Theorem 13 (Abstraction Theorem) Let @ € D+—CxD be a binary
functor written as infix operator. Assume also the existence of a canonical initial
algebra mu(z®) with codomain u(z®) for each object z in C. Define the
initial algebra functor mug as in (12). Then mug is an initial algebra for Id®
(for arbitrary €); moreover, if mu(ld®) denotes a particular initial Idé-algebra
having codomain (ld®), then

mu(ld®) = mug and p(ldd)=wg .

168

Specifics In both isomorphisms, between mu(ld®) and mug and their carri-
ers,

(mug =: mu(ldd))
is the arrow to wg from u(ld®) and the natural transformation o defined by
a, = ((mu(ld®)), =: mu(z®)) for each object z in C

is its inverse.

]

Note that the abstraction theorem can be generalised by replacing the functor
Id by some functor FF€C«& and by defining the binary infix functor ® as
Ry = F.x @y . With the corresponding assumptions on ® we have

(14) mu(d®) = mu(F&) 2 mug and wgeF = pu(Fo) = wg.
The witness is denoted by abs(y) so that our calculation rule is:

(15) abS(p@) € ‘LU@’FE/],(F@).

3.4 The Diagonal Rule

Theorem 16 (Diagonal Rule) Let @ € C+CxC be a binary functor. As-
sume that for each object = in C an initial object, mu(z®) , exists in Alg.(z®) .
Define functor w3 as in (10) and (12) and denote the unary functor Idéld by
® . Then, if mud is an initial object in Alg.®,

(mud =: mu((ud)9))

is an initial object in the category Alg.w . So, for every initial w-algebra, muw ,
(mud =: mu((ud)®)) = muw .

Conversely, if muco is an initial object in Alg.co then
mutw o mu((p@)®) o id,m O (muw)u

is an initial object in the category Alg.® . So, for every initial &-algebra, mud ,
muw o mu((uw)®) °© id,m ® (Mmuw)v = mud .

As a consequence we also have an isomorphism in the base category: ud = yw,
i.e.

wa— zoz) = p(z = ply - z0y)) -

3 For convenience we omit the subscript on w.

169

Specifics In all three isomorphisms
((mud =: mu((pd)®)) =: muw)
is the arrow to ud from pw and
muw o (Mu((p@)®) e MUE B idw uw =: Mud)

is its inverse.
0

As with the fusion and rolling rules we do not need the specific details of
the witnessing isomorphisms. Introducing the abbreviation diagg for the iso-
morphism to pw from ud, the rule we apply in subsequent calculations is
thus:

(17) diagg € p(z p(y— z@y)) = p(z— zoz) .

3.5 Mutual Recursion

In the previous sections we have presented the four basic rules of the categorical
fixed point calculus: the fusion rule, the rolling rule, the abstraction theorem and
the diagonal rule. The topic of this section is the relationship between our basic
rules, in particular the rolling rule and the diagonal rule, with Freyd’s discussion
of algebraically complete categories [7].

Before commencing the discussion let us first emphasise that the diagonal
rule has three parts: (a) the existence of an initial ®-algebra given an initial
w-algebra, (b) the existence of an initial w-algebra given an initial &-algebra
and (c) the isomorphism in the base category of the carriers of the two types of
initial algebra.

Now, adapting Freyd’s terminology, a preorder is algebraically complete if
every monotonic endofunction on the preorder has a least prefix point. A well-
known theorem (often attributed to Beki¢ [3]) is that the product of two al-
gebraically complete preorders is algebraically complete. Specifically, suppose
C and D are algebraically complete preorders and F € CxD«—CxD . De-
compose F into two binary functions ©® € C—~Dx(and ® € D—CxD in
such a way that F.(z,y) = (y©z, z®y). Then a least prefix point of F is
(u(z—p.zOT) , p(y—q.y®y)) where p.x = u(z®) and ¢.y = pu(y®) . We have
shown in [18] that this mutual recursion theorem is a corollary of the diago-
nal rule and (lattice-theoretic) iterated square theorem. The same proof can be
transformed to a proof of Freyd’s theorem that the product of two algebraically
complete categories is algebraically complete. See [1} for full details.

Rather than deriving the mutual recursion theorem from the diagonal and
rolling rules, Freyd first establishes the mutual recursion theorem and then ob-
serves the rolling rule as a special case. His rolling rule is however weaker since
he demands the existence of both an initial (FeG)-algebra and an initial (G*F)-
algebra. Our rule only assumes the existence of one in order to guarantee the
existence of the other.

170

This way of deriving a rolling role appears also in texts on programming
language semantics. (See for example {20].) It is also quite easy to see that
part (c) of the diggonal rule (the isomorphism between the carriers of the two
types of initial algebra) is a consequence of the mutual recursion theorem (define
y®z to be y and z®y to be z@y). This does not mean, however, that the
diagonal rule is in any way weaker than the mutual recursion theorem. On the
contrary, our rule is sharper in that it gives sharper conditions on the existence
of initial algebras in a product category than Freyd’s blanket assumption of the
algebraic completeness of the component categories —using parts (a) and (b).
of the diagonal rule— and we are not aware of any way of deriving those parts
from Freyd’s mutual recursion theorem.

In summary, the rolling and diagonal rules given here give tighter conditions
on the existence of initial algebras and have Freyd’s mutual recursion theorem
as corollary.

4 Applications

In lattice theory the four basic fixed point rules amount to a very effective
equational 4 fixed point calculus. (For a variety of examples see [18].) The cate-
gorical fixed point rules amount to a very effective equational and constructive
fixed point calculus. That is to say, isomorphisms between type structures can be
obtained as a by-product of equational arguments in the lattice-theoretic fixed
point calculus. In this section we illustrate the method by deriving a number of
isomorphisms between list structures. In each case a calculation in lattice theory
is augmented with “witnesses” in a mechanical way.

In the calculations natural transformations (and isomorphisms) of n-ary
functors play a dominant role and we need some notational conventions to deal
with constant arguments. To that end we consider the product of categories
(responsible for n-arity) to be associative and we use the connector & be-
tween functors to construct functors to an n-ary codomain. For example, .
for H;€D;«C the functor H = Hya Hy a Hy € DyxDyxDg «C 1is defined
by H.xz = (Hy.xz,H;.xz,Hy.xz) for objects as well as arrows. The usual product
of (three) functors is denoted by (F,G,H).

Let n be a natural transformation between, say, ternary functors F and
G and let H be a functor to their ternary domain, then n*H is a natural
transformation between FeH and Ge¢H . A suitable H may change the arity.
For example, the functor H = K.a » K.b 2 |d , where K.a denotes the constant
a functor, fixes the arguments ¢ and b thus turning a unary functor into
a ternary functor; similarly, H' = K.a & (id,|d) fixes only a . Instead of n*H
and n*H' we prefer the more suggestive notations 7,5, and 7,,__ respectively.

An example in the next section is a natural isomorphism leapF between
binary functors, say © and ®.Then leapFe is a natural transformation between
& and ® and, by the convention above,

(leapFe)ia,_ = (leapFe) e (K.ld 2 id) ,

4 Involving equalities only as opposed to proofs of equality via mutual containment.

171

((leapFe) ¢ (K.Id & id))g = leapF+(Ild 2 G) and
(leapFe(ld 2 G))a = leapF, g.o -

4.1 Leapfrog Rules

There are several ways that lists can be defined: “cons” lists where elements are
added (“consed” in Lisp terminology) to the beginning of a list , “snoc” lists
where elements are added (“snocked” , the reverse of “cons”) to the end of a list
, and “join” lists where two lists are “joined” together. We consider only cons
and snoc lists.

The cons list functor is the map functor wg (see (12) and (10)) where

z®y = 1+(xxy) ,
and the snoc list functor is the map functor wg where
zoy = L+(yxz) .

In order to be able to consider both at once we abstract from their definitions in
this section and consider the situation in which we are given a (unary) functor
F and a binary functor ®, (replacing 1+ and x , respectively), such that z®
and ®z are lower adjoints for every object x. We then define two map functors
by

ﬁ = WFrey and F = Wregen -

where the binary to binary functor X interchanges the coordinates.

The cons list functor is an instantiation of both F' and F' by choosing
F =1+ and ® = x and ® = X * > respectively. Similarly, the snoc list func-
tor is an instantiation of F and F for the same F and interchanged choices
for ® .

Our first application of the fixpoint rules states that £ and F' are isomorphic
functors provided that F obeys a so-called "leapfrog” property with respect to
® . When reading the proofs we recommend that the “witnesses” are ignored
the first time around. (That is, ignore everything marked by a bullet and all
membership information.} Stripped of this information the proof obtained is the
lattice-theoretic proof.

Theorem 18 Suppose Id® and ®Id are lower adjoints and we have the
following natural isomorphism (i.e. natural in the parameters a and b)

leapF,, € F.(a®b)®a = a® F.(b®a) .

Define the map functor F' to be wq and the map functor F' to be wg where
D=Fe®R and ©6=FeRex .
Then FF .
(It is useful to have a catchy name for important properties. We call the
existence of the isomorphism leapF in the above theorem a leapfrog property

because the parameter a “leapfrogs” from one side to the other of the functor
F.)

172
Proof

acFxF
&= { abstraction; & o = absig,gofBe(absigg)y }
8 € u(1dd) = u(1dd)
{ 1dd = (Fo)sld® and 1d& = (Fe)eld }
B € p((Fe)+ (1d®)) = p((F*)+ (01d))
& { exchange rule, [d® and ®Id are lower adjoints

o A= eXChF°,Id®,®ld-7 }
7 € (®Id)e(Fe)e(Id®) = (Id®)s(Fs)s(Rid)
<= { (®ld)e(Fe)+(ld®)).G = (F (1d®G))®Id
((ld®)e(Fe)o(®1d)).G = Id®(F * (G®Id))
(See the discussion preceding this subsection.) }
v = (leapFe)yq, .
Thus,

absia,@ © exCh pe 1ye o14-(I€apFe)ia,_o (absiw,g)v € F 2 F .

The construction of F' from F can be repeatedly applied giving E, etc.
Our next application shows that this process preserves the leapfrog property
provided that ® is also associative (up to isomorphism).

Theorem 19 (Leapfrog Preservation) Suppose F is a functor and @ is
a binary functor such that a® and ®a are lower adjoints for every object a.
Define the map functor F' to be wreg . Suppose we have two natural isomor-
phisms

assg . € (a®b)v®c = a®(b®c)
and

leapF, , € F.(a®b)®a = a® F.(b®a) .
Then

F.(a®b)®a = a® F.(bRa) .

Proof Letting G=Fe(a®b)® , H=Fe¢(b®a)® and L =a®@*F+b® for
brevity in the subscripts of fuse we have:

173

a € F.(a®b)®a = a® F.(bQa)
= { definition of £}
a € (®a).u(F * (a®b)®) = (a®).u(F * (b®a)®)
& { invent intermediate p((a®)eFe*(bQ)) ; @ a=foqu }
B € (®a).u(F +((a®b)®)) = p((a®)* F * (bB))
A v € (a®).u(F +((b8a)®)) = pu((a®)* F +(b®))
<= { fusion; © 3 = fusega,g,1.¢ and v = fusesg m,0-¥ }
p € ®a°1~"‘-(a®b)® ZaQe FebRe®@a
A Y EaR*Fe(bRa)® X aResFebRea®
< { assp,q, € (P®¢)® = p®e¢® and
asspy, ¢ € Qq*PR = pR*Qq
J ¢ =(®a*Feassyp)olo(a®e Feassy o)
. Y =a®e(Feassp,) }
£ €E R FeoaRebR = aRe FeRQa*b®
<= { definition leapF }
£ = (leapF,)+(b®)
We conclude that

fusega,G,L-((®a* Feass,p,)o ((IeapFa,_)O(b®)) o(a®e Feassy ,))

o (fuse,p,u,L.(a® ¢ (Foassyq,)))v

witnesses the isomorphism of F.(a®b)®a and a® F.(boa) .
a

Note that in order to combine theorems 18 and 19 to show that (for example)

F and F are isomorphic we need to show that the isomorphism constructed
in the latter theorem is natural in the parameters a and b. For general F
this is a likely to be an impossible task but in section 4.3 we argue why this is
immediately the case for the “Kleene” functors.

4.2 Lists

In this section, we prove isomorphisms between certain list structures and simul-
taneously construct the witnesses. The first two are simple instantiations of the
leapfrog rules presented in the last subsection.

Formally, we assume that the base category is a bicartesian, exponential
category [8]. The specific details of this assumption are as follows. First, denoting
the product of @ and b by axb and their sum by a+b (both of which are

174

assumed to exist), we assume for all objects y the functors yx and xy, i.e.
the functor x with the left or right argument fixed to vy, have upper adjoints.
Second, denoting the terminal object of the base category by 1 , we assume the
existence of the following isomorphisms. For all objects a,b and ¢,

lunit, € Ixa=a ,

runity € axll =2 q |

sumass, . € (a+b)+c = a+(b+c) ,
proass, , . € (axb)xc = ax(bxc) ,
rdiste s, € (a+b)xc = (axc)+(bxc)
Idistqp,c € ax(b+c) = (axb)+(axc) .

In order to instantiate the fusion theorem it suffices to know that the lower
adjungate of the adjunction with xy as lower adjoint (and exponentiation as
upper adjoint) is the operation known as “currying” to functional programmers,
the upper adjungate is “uncurrying”, and the counit is function evaluation.

Example 20 Defining the Conslist functor and the Snoclist functor by
Clist = a— p(y — 1 +axy), Slist=a— pu(y— L+yxa)

we have the functor isomorphism
Clist = Slist .

Proof Instantiate in theorem 18:
F =1+, ® := X ,ass := proass

and

. - « .U
leapF, , := rdisty,axs,a© ((lunity o runit,)+proass, , ,) o ldist, 3 ,y, -

From now on we consider cons lists only; the cons list functor will be denoted
by an asterisk. That is, we assume the functor * is defined to be the map functor
‘g (see (12) and (10)) where

@y = L+(zxy) .

In contrast to normal functor applications we will omit the dot when the functor
* is applied to an object.

Example 21

ax x (bxa) = x (axb)xa .

175

Proof Instantiate in theorem 19:
F =1+, ® := x ,ass := proass
and

. . o u .
leapF, ;, := rdlstl,axb,ao((lumtaorumta)+proassa,b’a)oIdlst:,,l,bxa .

Note that we can apply the leapfrog theorem once again with F instantiated
to * (provided naturality is proven; see the last section). In language theory
nothing new is obtained — because * and * are equal. In category theory we
do obtain a new theorem — because * and * are not even isomorphic. Thus the
leapfrog theorem has an infinite number of applications! (The equality between
* and * in language theory boils down to the equality between z and z+z
which isn’t constructively valid.) ’

The final example has been chosen for its relative difficulty, and its practical
relevance. We call it the list decomposition problem. An instance is the so-called
“lines-unlines” problem: given a sequence of two types of characters, delimiters
and non-delimiters, write a program to divide the sequence into (possibly empty)
“lines” of non-delimiters seperated by single delimiters. Construct in addition
the inverse of the program.

In the following calculation we employ a notation whereby the witnesses to
isomorphisms are included in the hints marked by a bullet (“e). Specifically a
proof step of the form

F
= { hint, ¢ a }
G
is short for
a€F 2 G < hint

The list composition problem, expressed as an isomorphism between datatypes,
boils down to showing that the star decomposition theorem of regular languages
is constructively valid.

Example 22 (List Decomposition)
xax * (bX *a) 2 * (b+a) .

Proof

*xaX * (bX * a)

= { definition of * }

176

*¥a X p(y — 1+ (bx xa)xy)

E { Godement’s rules, o id., X fuse.((1+)e(proass, ,,)) }
*a X p(y — L+ bx(xaxy))
= { rolling rule, e roll,.x F
where F denotes the functor y — 1 +bxy }
u(y— *ax(ll+bxy))
= { fusion rule, o fuse.((listfuse,_)*F) }
ply— p(z — (1+bxy)+axz))
= { diagonal rule, e diagg , where y®z = (1 +bxy)+axz }
u(y = (1 +bxy)+axy)

R

{ fusion rule,
o fuse.((sumassy, _)e(bx, ax)o(11+)-(rdist;"a,_)) }
u(y — 1+ (b+a)xy)
{ definition of * }
*(b+a) .

We conclude that,

idya X fuse.((1+)e(proass, ,,))
o rollyax,F
o fuse.((listfuse,,) F)
o diagg
o fuse.((sumassy,__)e(bx, ax)e ((]1+)o(rdist:,a,_)))
€ xax *(bx xa) = * (b+a) .

where F' = y+— 1+bxy and y®z = (1 +bxy)+axz .
O

4.3 “Theorems for Free”

In the list decomposition example we have proved an isomorphism in the base
category for all instantiations of the objects a and b. Formally, however, we
have not shown that we have an isomorphism between the binary functors whose
object parts are

abr> *xax x (bx xa) ,

177

and
a,b— * (b+a) .

We have yet to prove that the constructed isomorphisms are natural in the
parameters @ and b. The same remark can be made about the list leapfrog
example. Yet it is well known that naturality is what Wadler [19] has dubbed
a “theorem for free”. In this section we briefly explain why this theorem is “for
free” and, specifically, the role of the abstraction theorem in that claim.

The key is to note that all statements about a bicartesian exponential cat-
egory can be lifted to statements about a functor category by pointwise pa-
rameterisation [13, theorem 1, p.111]. Specifically, assume that a bicartesian,
exponential category C is given, with coproduct and product operators + and
% . As discussed in the preamble to the abstraction theorem, these operators
can be lifted to + and x for arbitrary domain categories & ;ie. + and X
are binary operators on the category Fun . They are, in fact, the coproduct
and the product in Fun: by the parameterised limit theorem it follows that
(F+G,inlp g,inrp g) is the coproduct of F and G, where (inlp,g)z = inlF2,c.e
and similarly for inrp ¢ . In the same way x is the binary product functor on
Fun and also the adjoints of Fx and xF can be defined. The category Fun is
thus a bicartesian, exponential category where, for instance,

sumassp,g,y € (F+G)+H & F+(G+H)
is given by

sumassp g,y = sumass*(FaGa H) .
That is,

(sumassp,q,H)s = SUMASSF.3,G.z,Hae -

The abstraction theorem admits a similar result for * and for map functors in
general.

Suppose F' is a functor. Define functor @ by a®by = 11 + F.axy. Then
we observe that

xo [

= { definition * and composition }
a— pu(ad)

= { abstraction theorem }
1(G— lddG)

= { (d6G).z =20G.x = 1+(Fz x G.z)
= (K.1+ FxG).z, extensionality }
WG - K1+ FxG) .

178

If we now define the functor * on objects F' by u(G — K.1+4+ FxG) we can
reformulate this observation as

(23) %oF = iF .

The list decomposition theorem now becomes a theorem in the functor cate-
gory whereby each functor is replaced by its “dotted” version. That is, the list
decomposition theorem constructs an isomorphism decompy ; satisfying

decompy ¢ € *Fx¥(Gx*F) = ¥(F+G) .

Moreover, we can now use abstraction to obtain the required isomorphism be-
tween the two functors rather than a collection of isomorphisms between objects.

a,b— xax x (bx *a)
= { Introducing the functors Ezl and Ezr,
where FEzl.(a,b) = a and Ezr.(a,b)=b }
a,b— x Ezl.(a,b) x * (Ezr.(a,b) X * Fzl.(a,b))
= { abstraction }
(xo Exl) x (x*(Ezr x (x*Ezxl)))
= { abstraction: (23) }
* Bzl x #(Ezr x % Exl)

1%

{ theorem 22 o decompg, g, }
*(Ezr+Exl)

{ abstraction }

a,b— % (b+a) .

If full details of the definition of decompg,, g, are required then we would have
to instantiate the witnesses in the statement of (22) in the following way:

ab := Ezl,Exr |

and

Simplification would then yield the witness obtained earlier.

Acknowledgement We are grateful to the referees for pointing out Freyd’s
work to us.

179

References

1

. R. C. Backhouse, M. Bijsterveld, R.van Geldrop, and J.C.S.P. van der
Woude. Category theory as coherently constructive lattice theory. De-
partment of Mathematics and Computing Science, Eindhoven University
of Technology. 1995. Working document. Available via world-wide web at
http://www.win.tue.nl/win/cs/wp/papers.

. R.C. Backhouse and M. Bijsterveld. Category theory as coherently constructive
lattice theory: an illustration. Technical report, Department of Computing Sci-
ence, Eindhoven University of Technology, 1994. Available via world-wide web at’
http://www.win.tye.nl/win/cs/wp/papers.

3. H. Bekié. Programming Languages and Their Definition, volume 177 of LNCS.

Springer-Verlag, 1984. Selected papers edited by C.B. Jones.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Conference Record of the Sizth Annual ACM Symposium on Principles
of Programming Languages, pages 269-282, San Antonio, Texas, January 1979.
E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin, 1990.

6. Maarten M. Fokkinga. Calculate categorically! Formal Aspects of Computing,

4:673-692, 1992.

7. Peter Freyd. Algebraically complete categories. In G. Rosolini A. Carboni,

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M.C. Pedicchio, editor, Category Theory, Proceedings, Como 1990, volume 1488
of Lecture Notes in Mathematics, pages 95-104. Springer-Verlag, 1990.

P.J. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1990.

Claudio A. Hermida and Bart Jacobs. An algebraic view of structural induction.
To appear. Conference Proceedings of Computer Science Logic, 1994.

J. Lambek. A fixpoint theorem for complete categories. Mathematische Zeitschrift,
103:151-161, 1968.

J. Lambek. Least fixpoints of endofunctors of cartesian closed categories. Mathe-
matical Structures in Computer Science, 3:229-257, 1993.

J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic, vol-
ume 7 of Studies in Advanced Mathematics. Cambridge University Press, 1986.

S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, 1971.

D.J. Lehman and M.B. Smyth. Algebraic specification of data types: A synthetic
approach. Math. Syst. Theory, 14(2):97-140, 1981.

G. Malcolm. Algebraic data types and program transformation. PhD thesis,
Groningen University, 1990.

G. Malcolm. Data structures and program transformation. Science of Computer
Programming, 14(2-3):255-280, October 1990.

E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts
and Monographs in Computer Science. Springer-Verlag, Berlin, 1986.

Eindhoven University of Technology Mathematics of Program Construction Group.
Fixed point calculus. Information Processing Letters, 53(3):131-136, February
1995.

P. Wadler. Theorems for free! In 4’th Symposium on Functional Programming
Languages and Computer Architecture, ACM, London, September 1989.

20. G. Winskel. The Formal Semantics of Porgramming Languages. MIT Press, 1993.

