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Abstract

This thesis examines some problems related to Chaitin’s Ω number. In the first section, we describe

several new minimalist prefix-free machines suitable for the study of concrete algorithmic information

theory; the halting probabilities of these machines are all Ω numbers. In the second part, we show that

when such a sequence is the result given by a measurement of a system, the system itself can be shown

to satisfy an uncertainty principle equivalent to Heisenberg’s uncertainty principle. This uncertainty

principle also implies Chaitin’s strongest form of incompleteness.

In the last part, we show that Ω can be written as an infinite product over halting programs; that

there exists a “natural,” or base-free formulation that does not (directly) depend on the alphabet of

the universal prefix-free machine; that Tadaki’s generalized halting probability is well-defined even for

arbitrary univeral Turing machines and the plain complexity; and finally, that the natural generalized

halting probability can be written as an infinite product over primes and has the form of a zeta function

whose zeros encode halting information. We conclude with some speculation about physical systems in

which partial randomness could arise, and identify many open problems.
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Introduction

Truth and light are intimately related. The parable of Maxwell’s demon beautifully illustrates that

information about a system allows one to extract energy from the system, that truth can be exchanged

for light and vice-versa.

The bits of the halting probability of a universal prefix-free machine, Chaitin’s Ω, are pure information

[20, 28]; the first few thousand bits of any of the machines we discuss here contain, in principle, the answers

to all of the Clay Millenium problems [33], including such important ones as Riemann’s hypothesis.

This thesis explores some of the properties of the algorithmic complexity, both plain and prefix-free,

of halting probabilities. Since there are only two prefix-free languages we know of in the literature, in

chapter one, we propose a few minimalist prefix-free machines suitable for study. In chapters two and

three, we go on to examine some formal relationships between physical quantities and random sequences.

In chapter two, we consider the case where a completely random sequence describes a delta function

with respect to some continuous basis—an eigenstate of a quantum system. We show by information-

theoretic arguments that the accuracy to which the delta function is measured and the complexity of the

initial prefix of the string are noncommuting observables, and that such an uncertainty relation leads to

a particularly concise proof of Chaitin’s strongest incompleteness result, that there are infinitely many

unprovable true statements.

In chapter three, we show that Ω can be written as an infinite product as well as an infinite sum; that

there exists a base-independent, or “natural,” formulation of Ω; that the concept of partial randomness

extends to plain complexity; and that when we combine these three concepts, we find that the natural

generalized halting probability of a universal Turing machine is a zeta function. This zeta function is

identical to Riemann’s zeta function with the exception that the product is taken over “halting primes.”

We conclude with some observations about quantum systems and several open questions. Specifically,

we note the interpretation of Riemann’s zeta function as a partition function of a quantum system, and

find that the natural generalized halting probability can be interpreted as the limiting expectation value

of a computably enumerable series of observables on this system.
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1
Very simple prefix-free machines for

concrete AIT

In 1948, Shannon published his seminal paper on information theory [58]. In Shannon’s model, there is a

sender, a receiver, and a (probably noisy) channel, or pipe. The sender transmits strings of bits over the

channel, and the receiver records them on arrival. To let the receiver know when to stop listening, the

message must have a certain pre-arranged structure. The message may end with a binary equivalent of

“over and out,” or perhaps the length of the message is sent first. What matters is that as soon as the

last bit is sent, the reciever can calculate that that bit was the end of the message; such structures are

known as instantaneous codes.

Not all instantaneous codes are created equal: some can send the same information with far fewer bits

than others. The sender and receiver can agree on a dictionary that associates common strings with short

encodings and infrequent strings with longer ones. If the message is typical, this will save considerably

on the message size. If the message is atypical, there’s more information in it, more that is unexpected.

The shortest possible message size is related to the amount of information the string contains relative to

the chosen dictionary, the string’s complexity.

In the mid-1960’s, Kolmogorov [48], Solomonoff [59], and Chaitin [19] independently proposed the

idea of using programs to describe the complexity of strings. This gave birth to the field of algorithmic

information theory (AIT) [22]. The Kolmogorov complexity KU (s) of a string s is the length of the

shortest program in the programming language U whose output is s. Solomonoff proposed a weighted

sum over the programs, but it was dominated by the shortest program, so his approach and Kolmogorov’s

are roughly equivalent. Chaitin added the restriction that the programs themselves must be codewords in

an instantaneous code, giving rise to prefix-free AIT. In this model, complexities become true probabilities,

and Shannon’s information theory applies directly.

Given a prefix-free domain, there is the natural distribution P (x) = 2−|x|, where |x| is the length

of x in bits. One can then ask the question, “What is the probability, given this distribution of inputs,

that a program will output some string and halt?” Chaitin discovered that the bits of this “halting

3



4 Very simple prefix-free machines for concrete AIT

probability”, after an initial computable prefix, are pure information [28]: the length of the shortest

program that computes the first n bits of the halting probability and stops is at least n− c bits long. To

calculate one more bit, you have to add at least one more bit to your program; there is no description of

the strings of bits shorter than the strings themselves, modulo some fixed constant. The bits also contain

all the information about whether each program will halt or not; Chaitin called this halting probability

an Omega number.

With the advent of accessible computers, Chaitin proposed studying concrete AIT—theorems about

specific programming languages, with positive integers as error terms rather than the phrase “some fixed

constant.” To study concrete prefix-free AIT, Chaitin proposed two universal languages, or machines:

one was a variant of LISP [28]; the other an 11-instruction “register machine” [24]. We know of no other

universal prefix-free machines in the literature. LISP is a complex language, and the register machine,

while small, is far from minimal. To foster the study of concrete AIT, we propose a few new minimalist

prefix-free machines.

1.1 Definitions

Fix an alphabet Σ. The set of all finite strings of elements of Σ is denoted Σ∗. A Turing machine M

is a partial recursive function M : Σ∗ → Σ∗, where “partial” means that M may be undefined on some

inputs; this handles the cases where the program runs forever.

A Turing machine M is called a prefix-free machine if its domain

dom(M) ≡ {x ∈ Σ∗ : M(x) halts}

is prefix-free, i.e. for all x, y ∈ dom(M), either x is a prefix of y, y is a prefix of x, or x is identical to y.

For any x ∈ Σ∗ and prefix-free machine M , the program-size complexity of x with respect to M is

defined as

HM (x) ≡ min{|w| : M(w) = x}.

A prefix-free machine U is called universal with respect to a set of machines S ifHU (x) ≤ HM (x)+O(1)

for any x ∈ Σ∗ and for any M ∈ S.

It is helpful to consider a prefix-free machine in Shannon’s original sender-pipe-receiver model. Bor-

rowing terminology from concurrent programming, the pipe is a shared resource. The input to the

machine is held by the sender, a producer. The sender tries to put its bits into the pipe; it blocks if there

are more bits to send and the pipe is full. When there are no more bits to send, the sender halts. The

prefix-free machine is the receiver, a consumer. From time to time it tries to get bits out of the pipe,

and blocks if the pipe is empty. The entire computation is said to halt if the sender halts, the prefix-free

machine halts, and the pipe is empty. Codewords are those inputs x for which the computation halts, i.e.

x ∈ dom(M).

This model makes it easy to see why the domain of a prefix-free machine is prefix-free: any extension

of a codeword would cause the sender to block, a condition called overflow; any prefix of it would cause

the prefix-free machine to block, a condition called underflow. A universal prefix-free machine usually

reads in a self-delimiting program description, the prefix, and then simulates that program acting on the

remainder of the input. If the input does not contain a proper program description, the universal machine

blocks; we call this condition a syntax error.

A blank-endmarker machine (BEM) B is a prefix-free machine in which one symbol of Σ—the blank

endmarker, hereafter denoted �—is reserved. All but the last symbol of the codeword are taken from the
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alphabet (Σ−{�}), and the codeword is terminated with �. B will request input until it reads the symbol

�, after which no more input will be requested. It is this blank endmarker that allows the codewords to

be prefix-free: removing the endmarker will cause an underflow; any symbols following an endmarker will

cause an overflow.

We may construct a BEM M ′ from an arbitrary Turing machine M defined on the alphabet Σ as

follows. First, define the alphabet Σ′ ≡ Σ ∪ {�} over which M ′ operates. Next, define dom(M ′) ≡
{x � |x ∈ dom(M)}, i.e. we append the symbol � to each string on which M halts. No prefix or extension

of a codeword is in the domain of M ′, since every codeword in the domain has exactly one � as the last

symbol.

A universal BEM is a BEM defined on the alphabet Σ′ that is universal with respect to all such

BEMs.

Theorem 1. A universal BEM BU exists.

Proof. Let 0n denote the concatenation of n 0 symbols. Then BU can read in in the self-delimiting prefix

0n1 and simulate Bn on the remainder of the input. �

Theorem 2. No BEM is universal with respect to all prefix-free machines defined on Σ′.

Proof. For a BEM to be universal over a set S, it must be able to represent the domain of machines in

S with only a constant increase in the length of the codewords. However, this is impossible.

Consider the following prefix-free machine C: inputs are concatenations of a self-delimiting program

p and a string x ∈ Σ′∗. The program p, when executed, outputs the length of the string, n = |x|. The

machine C first reads p, then executes it to get n, and then reads x. Finally, C outputs the string x.

The number of n-symbol strings |Σ′|n = (|Σ|+ 1)n. On the other hand, the number of (n+ c)-symbol

strings available to a BEM is only |Σ|n+c, because it may only use the symbol � once at the end of the

codeword. Since (|Σ|+ 1)n grows faster than |Σ|n+c, there is no constant c such that |Σ|n+c ≥ (|Σ|+ 1)n

for all n. �

We define the relation “universal-with-respect-to” and denote it �. Let Σn ≡ {0, 1, . . . , (n− 1)} and

Σ′n ≡ {0, 1, . . . , (n− 1), �}. For all n ≥ 2 we have the following:

Theorem 3. Let An be prefix-free machine that is universal with respect to all prefix-free machines

defined over Σn, Bn be a BEM that is universal with respect to all BEMs defined over Σ′n, and Cn be a

prefix-free machine that is universal with respect to all prefix-free machines defined over Σ′n. Then

1. Cn � Bn � An, but

2. Bn 6� Cn

3. and An 6� Bn.

Proof. The first part of (1) holds because BEMs are prefix-free machines and Cn was chosen to be

universal with respect to that set.

The second part of (1) holds because Bn can simulate A′n, the BEM constructed from An: it reads a

self-delimiting program for An and begins simulating it. If the program requests an input and Bn reads

�, then Bn loops forever, simulating the underflow condition. If the program halts, then Bn reads one

more symbol, x; if x 6= �, then Bn loops forever, simulating overflow. If the program loops forever on its

own, then so does Bn. Thus the domain of Bn is the same as that of An modulo the final �.
Item (2) is theorem 2.

Finally, (3) holds because An is not allowed to use �. It must use a self-delimiting description of the

input string, and the shortest self-delimiting version of a string x grows like |x|+ log∗|x|+O(1) [8], which

violates the error bound for universality. �
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1.2 Some minimalist machines

In this section, we review four languages that greatly influenced our designs, and point out why these are

not universal prefix-free machines.

1.2.1 Lambda calculus

Lambda calculus formed the basis of Church’s 1936 negative answer [31, 32] to Hilbert’s Entschei-

dungsproblem (decision problem): is there an algorithm for deciding whether first-order statements are

universally valid? He showed first that stating the equivalence of two lambda terms was a first-order

predicate, and then that there is no recursive (or computable) function that can compute whether two

terms are equivalent. Turing independently proved the same result the same year [68], and when he heard

of Church’s result, was quickly able to show that his machines compute the same class of functions as

Church’s lambda terms.

Everything in lambda calculus is a function; there are no built-in types, data structures, branching

instructions, or constants, and the only operation is functional composition, or application. Functions

take functions as input and return functions as output. To denote his functions, Church used a slightly

different notation than most mathematicians are used to: rather than

f(x, y, z) = 〈definition of f in terms of x, y, z〉,

Church wrote∗

f = λxyz.〈definition of f in terms of x, y, z〉.

Application is denoted by concatenation or parentheses, and is left-associative: f = λxy.y(xx)y is the

same as f(x, y) = (y(x(x)))(y).

There is a universal basis consisting of the two functions (or combinators)

S = λxyz.xz(yz) and K = λxy.x

That is, the function represented by a lambda term may also be represented by a combination of these

combinators. For example, the identity function I = SKK:

SKKv = (λxyz.xz(yz))KKv

= Kv(Kv)

= (λxy.x)v(Kv)

= v

In fact, there is an algorithm called lambda abstraction that reduces any lambda term to a combination

of S and K, and I combinators† that eliminates the need for any variables. To abstract away all the

variables in a term, begin with the innermost variable v and apply the following rules, then repeat for

the remaining variables.

1. abstract(XY ) = S(abstract(X))(abstract(Y ))

2. abstract(v) = I

∗Strictly speaking, even the equals operator is just syntactic sugar: lambda terms are anonymous functions.
†The combinator I is included merely for convenience; it can, of course, be replaced by SKK.
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3. if a term X does not depend on v, then abstract(X) = KX

For example, the reverse-application combinator is λxy.yx. Abstracting λy yeilds λx.SI(Kx); ab-

stracting λx yeilds S(K(SI))(S(KK)I).

A term is said to be in normal form if the variable to be applied has not been bound to a value. For

example, λxy.y is a normal form, but (λxy.y)S gets reduced to the normal form λy.y, and (λy.y)K gets

reduced to the normal formK. Reducing a term to normal form is equivalent to a Turing machine reaching

a halting state. Some lambda terms do not have normal forms; these correspond to computations that

never finish. For example, the term (λx.xx)(λx.xx) reduces to itself; it is the lambda-calculus equivalent

of an infinite loop.

The output of a lambda calculus computation is the normal form of the term, if it exists. Since normal

forms can be enumerated à la Gödel, there are bijections from normal forms to natural numbers and to

binary strings. For the purposes of this paper, where we define machines to be partial recursive functions

from binary strings to binary strings, it is convenient to choose the latter.

Lambda calculus’ alphabet consists of parentheses, the symbols for the lambda operator and the dot,

and symbols for variables. Though one rarely needs more than twenty-six variables, the formalism allows

for subscripts; therefore, digits for subscripts and an end-of-subscript marker are also included. Let k be

the number of symbols in the alphabet.

Since there infinitely many prefix-free machines that halt on each string x, lambda calculus needs to

be able to encode an arbitrary string with only a constant overhead in order to be a universal prefix-free

machine. When a bit string increases by one symbol, the number of representable strings increases by a

factor of k. However, because of the well-formedness requirement that parentheses balance in a lambda

term, the number of codewords with one more symbol increases by a smaller factor. Any encoding of

strings necessarily suffers from a slight expansion, and so lambda calculus fails to reach the constant

overhead bound.

There are more requirements for a well-formed lambda term that we are ignoring here. We perform

an exact analysis of a less restrictive case where we have only one parenthesis symbol and one combinator

in the next section; we’ll see that it, too, fails to be a universal prefix-free machine.

1.2.2 Iota

Iota [3] is a minimalist language created by Chris Barker. The universal basis {S,K} suffices to produce

every lambda term, but it is not necessary. There are one-combinator bases, known as universal com-

binators. Iota is a very simple universal combinator, λf.fSK, denoted 0. To make Iota unambiguous,

there is a prefix operator, 1, for application. Valid programs are preorder traversals of full binary trees.

In the tables that follow, brackets [·] denote taking the semantics of the argument.

Syntax Semantics

F → 1F0F1 [F0]([F1])

F → 0 λf.fSK

Fokker [40] proposed a different universal combinator, λf.fS(λxyz.x), which is slightly larger, but

recovers S and K with fewer applications.

Like lambda calculus, there will be a normal form of the Iota term if the program halts. As before,

because normal forms are denumerable, we can make a bijection between binary strings and normal

forms, ordering both lexically, and output the matching string. Another alternative, advocated by Ben

Rudiak-Gould [56], is to restrict the output to a subset of normal forms, such as lists of booleans. Any
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program whose normal form is not in this subset is defined to output the empty string, while the list of

booleans is converted directly to a binary string.

We illustrate the execution of two simple Iota programs below:

100 = (λf.fSK)(λf.fSK)

= (λf.fSK)SK

= SSKK

= SK(KK)

= I

1010100 = 1010I

= (λf.fSK)((λf.fSK)I)

= (λf.fSK)(ISK)

= (λf.fSK)(SK) (1)

= SKSK

= KK(SK)

= K

Notice that at step (1) we performed an application within an internal branch. Iota is confluent: it

does not matter in which order the applications are carried out, because there are no side-effects.

Iota is not quite a universal prefix-free machine because of the requirement that codewords be preorder

traversals of a full binary tree. There are Cn full binary trees with n + 1 leaves, where Cn is the nth

Catalan number, giving a codeword of length 2n + 1; asymptotically, Cn ∼ 4n√
πn3

. Thus, if we increase

the length of a codeword by two bits, the number of representable strings only increases by 2− 3 lg( n
n−1 )

bits. It is asymptotically close to being a universal prefix-free machine, but doesn’t quite make it. Again,

any encoding of strings within Iota will necessarily suffer from a slight expansion, and will not satisfy the

O(1) error requirement.

1.2.3 Zot

Zot [4] is a continuized form of Iota. Here, 1 is a combinator rather than an operator; in Barker’s words,

it is treated “lexically” rather than “syncategoremically.” The initial continuation is the trivial one, and

the current continuation is applied to each combinator in turn. This allows the program to get access to

each bit of input individually. It also makes Zot a nice Gödel numbering, since every blank-terminated

binary string is a valid Zot codeword and every computable function is represented.

Syntax Semantics

F → FB [F ]([B])

F → � λc.cI

B → 0 λc.c(λf.fSK)

B → 1 λcL.L(λlR.R(λr.c(lr)))

B → � λc.c(O)(P ), where O = λabcde.KI

and P is an output monad.
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Barker also includes an operator which I have denoted �, which allows the program to interact with

an output monad. It is not strictly necessary: we can ignore the � operator and, like Iota, consider the

normal form of the current continuation to be the output.

Zot is a BEM, and therefore not a universal prefix-free machine.

1.2.4 Binary lambda calculus

Binary lambda calculus (BLC) [63] is a language created by John Tromp in resonse to Chaitin’s claim

[27] that “Lambda calculus is even simpler and more elegant than LISP, but it’s unusable. Pure lambda

calculus with combinators S and K, it’s beautifully elegant, but you can’t really run programs that way,

they’re too slow.” Tromp noted that “There is however nothing intrinsic to λ calculus or CL that is

slow; only such choices as Church numerals for arithmetic can be said to be slow, but one is free to do

arithmetic in binary rather than in unary,” and proposed BLC specifically for studying concrete AIT.

Rather than follow Church’s original notation, Tromp used de Bruijn [34] notation, which eliminates

the need to use the variable name in the both lambda prefix and in the body of a term. Instead, n refers

to the variable bound by the nth enclosing λ.

Syntax Semantics

F → 01F0F1 [F0]([F1])

F → 00F λ[F ]

F → 1n+10 n

Any remaining bits are converted to a nil-terminated list of combinators K and KI to which the

program is applied. The list is constructed using the pairing cobinator P = λxyz.zxy, which has the

property that PXYK = X and PXY (KI) = Y . Thus K and KI behave like booleans with respect to

P .

Tromp explicitly states that the normal form of the resulting BLC term is the output.

Prefix-free BLC uses a rather nonstandard approach. Instead of defining a computer whose domain

is prefix-free, Tromp redefines the way output is handled: a program is prefix free if and only if

U(p : z) = 〈xp, z〉, (*)

where p : z is a lambda term encoding a list whose first few members are the bit string p, followed by the

tail z, where z may be infinite. Since z is potentially infinite and is arbitrary, U cannot output z without

processing all of the bits of p and returning z as part of the output. This guarantees that no prefix or

extension of p has the right form, and thus the set of such p is prefix-free.

Normal BLC is a BEM, and therefore not a universal prefix-free machine; prefix-free BLC is a BEM

combined with the definition (*), but does not define a prefix-free machine whose domain matches the

set {p | (∗) holds}.

We would like to construct universal prefix-free machines from universal BEMs. The first step is to

get rid of the blank endmarker. In the next section, we describe an algorithm to extract the (possibly

empty) subset of the domain of a BEM that does not depend on reading the blank endmarker to know

when to halt.
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1.3 Eliminating the blank endmarker

Some BEMs have the property that their behavior after the final read request does not depend on the

result of that request. In a BEM B, the last request is always for the � symbol, but in these cases, the

program does not need the � to know when to halt. We can use this property to define a prefix-free

machine whose domain is a prefix-free set of programs such that if x ∈ dom(C), then x� ∈ dom(B).

We construct C in the following way:

1. C simulates B up to the point where the first read request is made; if no read requests are made,

then C loops forever. After a read request, no read is actually performed; rather,

2. C simulates the behavior of B for all the possibilites for that symbol up to the point where one of

the branches is about to halt or make another read request.

3. At that point, the read for the previous symbol is actually performed; if there are no more symbols,

then C blocks; otherwise the C selects the appropriate branch and the abandons other branches’

simulations.

4. C continues executing that branch until it halts or makes a read request. If the selected branch

halts, then C halts (although if there are symbols remaining in the pipe, the sender will block and

the computation will fail to halt). If the selected branch performs a read request, C goes to step

(2).

In this way, C only needs to simulate |Σ| concurrent branches at a time, and if B does not need to

read � to know when to halt, then that read is never actually performed by C. The domain of C is prefix

free, since C would underflow on any string more than one symbol shorter than a codeword of B and

overflow on any extension of a codeword of C.

A prefix-free machine constructed in this way is universal if it can simulate either of the universal

machines that Chaitin proposed with only an additive constant increase in the size of the input. The

machine constructed in this way from BLC is universal.

1.4 Church’s lambda operator as a curried interpreter

In this section, we take a small aside to introduce a concept used in one of the proposed prefix-free

machines below, as well as to introduce a bit of new notation.

Church’s lambda operator can be seen as an interpreter. It reads three self-delimiting parameters

from the input stream—var, body, and replacement—builds data structures representing the application

of the functions and operators that those parameters describe, and performs alpha and beta reduction

on the data structures, calling itself recursively. If the process of alpha- and beta-reduction reaches a

point where it cannot continue, it decodes the data structure into the normal form of the lambda term

and outputs it as a string of symbols.

Since an interpreter is merely a function, we can curry it: the function λ takes an input var and

returns a new function λ′; likewise, the function λ′ takes a single input body and returns a function λ′′;

the function λ′′ applied to the input replacement yeilds the normal form, if one exists.

Since curried functions take exactly one input, the application operator becomes strictly binary, and

the tree of applications is a full binary tree. Programs may be written as preorder traversals of the tree

to avoid parentheses. We adopt the backtick (‘) as a prefix application operator throughout the rest of

the paper, which behaves identically to Iota’s 1 operator; for example, the lambda term S = λxyz.xz(yz)

will be written
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‘‘λx ‘‘λy ‘‘λz ‘‘x z ‘y z

In Appendix A, we include the Javascript source code for a source-to-source filter from this dialect

of lambda calculus to Javascript. It supports lazy evaluation and can be trivially modified to work with

any eager language with first-class functions, such as Perl.

1.5 A very simple prefix-free machine

Below, we present a Chaitin-universal combinator for use in Iota. Input requests R go via a monad that

binds the requests together in lazy-evaluation order. R reads a bit and evaluates to K or ‘K I if the bit

is 0 or 1, respectively.

The definition of the combinator is optimized, like Fokker’s, for the number of applications to recover

K,S, and R. Codewords are concatenations of programs (preorder traversals of the application tree) and

(possibly empty) input.

A = ‘K ‘K R

B = ‘K ‘K ‘K ‘K ‘K ‘K ‘K K

C = ‘‘λ x ‘x B

0 = ‘‘λ x ‘‘‘‘x C A ‘K I S

100 = K

10100 = S

1010100 = R

1 first program to loop due to

a syntax error

00 first to loop due to overflow

= 0 with input 0

110101000 first to loop due to underflow

=‘R 0 with no input

1101010000 first to halt with nonempty

= ‘R 0 with input 0 input

= ‘K 0

This language is prefix-free. Prefices of programs are not traversals of full binary trees, so they loop

due to a syntax error. In any halting program, there will be a finite number of applications of the R

operator, and thus a finite number of bits appended to the end of the program. The execution of any

prefix of that codeword will block due to underflow, and any extension will block due to overflow.

It is also universal with respect to all prefix-free machines defined over {0, 1}. Chaitin’s universal

machine can be simulated by this one with a program that reads in a parenthesis-balanced LISP S-

expression and evaluates it: S and K are universal over the lambda terms, and R provides the bits for

Chaitin’s readBit function.

1.6 Extending a universal combinator

One may also construct a Chaitin-universal combinator 0 from any universal combinator U by taking

0 = ‘‘Pair ‘‘λx ‘‘λy ‘‘λz U R,
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where

Pair = ‘‘λx ‘‘λy ‘‘λz ‘‘z x y.

Programs written for U can be converted to use 0 by replacing U with 100. For example, taking Iota’s

combinator U =‘‘λf “f S K, we have that

1100100 = ‘U U = I

11001100100 = ‘U ‘U U = ‘S K

110011001100100 = ‘U ‘U ‘U U = K

1100110011001100100 = ‘U ‘U ‘U ‘U U = S

1011001100100 = ‘0 ‘U ‘U U = R

1.7 Keraia, continuized binary lambda calculus with a 6-bit

UTM

Keraia is a BEM that uses a straightforward encoding of the curried λ introduced in section 1.4. We

begin with three examples:

I = � 110 0 0

Interpret ‘‘λ x x

K = � 110 0 110 10100 0

Interpret ‘‘λ x ‘‘λ y x

S = � 110 10100 110 11000 110 0 11 10100 0 1 11000 0

Interpret ‘‘λ x ‘‘λ y ‘‘λ z ‘‘ x z ‘ y z

The leftmost leaf represents the curried λ function; the first right subtree var (if it exists) represents

a variable; the second right subtree body (if it and var exist) represents the applications of curried

lambda and variables; the third right subtree replacement (if it and the previous two exist) represents

the replacement pattern.

Keraia uses a greedy algorithm while marking variables: it traverses body marking occurrences of

var, then recursively parses body to mark the rest of the variables. Next, it performs α-reduction and

β-reduction until body has reached normal form. Any remaining leaves are replaced by the 0 combinator.

Finally, Keraia performs lambda-abstraction and returns a combinator.

Syntax Semantics

F → FB ‘[F ] [B]

F → � [0]

B → 0 ‘‘λc ‘c Interpret

B → 1 ‘‘λc ‘‘λA ‘A ‘‘λa ‘‘λB ‘B ‘‘λb ‘c ‘‘Pair a b

While Zot’s 1 combinator applies the left branch to the right, Keraia’s 1 merely Pairs the branches.

Interpret reads in the data structure created by the Pairing, and then interprets it. The behavior of

the function Interpret is only specified on combinators of the form constructed by applications of the

combinators 0 and 1.

Like Zot, Keraia has a very simple self-interpreting UTM, with the same meaning: 111000 is the

encoding of “apply the identity operator to what follows.”

In Appendix B, we give Javascript source code for an implementation of Keraia that bootstraps off

of the curried lambda dialect from section 1.4.
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1.8 Keraia as a universal prefix-free machine

Rather than use a continuized set of combinators to get a universal Turing machine, we can get a universal

prefix-free machine with a few small modifications. First, we treat 1 lexically, interpreting the first full

binary tree traversal as the program description; the remaining bits are given to the sender to push

through the pipe. Also, rather than replace remaining leaves with the 0 combinator in the last step,

we replace them with R operator. As always, syntax errors (incomplete tree traversals), overflow, and

underflow cause the machine to loop indefinitely.

For example, the codeword 111010010100110001 splits into a self-delimiting program (all the bits but

the last) and the input bit 1 (the last bit). The execution proceeds as follows:

11101001010011000 = ‘‘‘λx ‘R x I

= ‘R I

= ‘‘K I I (R→ ‘K I upon reading the bit 1)

= I

This modification of Keraia is a universal prefix-free machine, since every Lisp S-expression has an

equivalent lambda term that is directly encodable, and the R operator behaves identically to Chaitin’s

readBit operator.

1.9 Conclusion

Algorithmic information theory has much to say both about physics and philosophy. It would be nice to

experiment with tiny concrete models, but until now, there were only two programming languages that

were universal prefix-free machines. We have given examples of two new universal prefix-free machines,

a modification to universal combinators that allows them to be Chaitin-universal, and an algorithm for

constructing a prefix-free machine from a BEM by removing the blank-endmarker and extracting the

prefix-free subset of those words.

The complexity of n bits of a Chaitin Omega number is n − c; Calude et al. [13] computed the first

64 bits of an Omega number, the halting probability of Chaitin’s register machine. We know, now, that c

for that machine is at least 64. The machines proposed above are ideally suited for similar computations.

Chaitin published an exponential Diophantine equation with one parameter n which has infinitely

many solutions if and only if the nth bit of ΩC (i.e. the halting probability of a particular universal

prefix-free machine C) is one [24]. These machines should make it possible to producing a smaller

instance.
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2
From Heisenberg to Gödel via Chaitin

2.1 Introduction

Are there any connections between uncertainty and incompleteness? We don’t know of any reaction of

Heisenberg to this question. However, Gödel’s hostility to any suggestion regarding possible connections

between his incompleteness theorem and physics, particularly, Heisenberg’s uncertainty relation, is well-

known.∗ One of the obstacles in establishing such a connection comes from the different nature of these

two results: uncertainty is a quantitative phenomenon while incompleteness is prevalently qualitative.

In recent years there have been a lot of interest in the relations between computability and incomplete-

ness and physics. Opinions vary considerably, from the conclusion that the impact on Gödel and Turing

incompleteness theorems to physics is a red herring (see [17, 18]), to Hawking’s view that “a physical

theory is self-referencing, like in Gödel’s theorem. . . . Theories we have so far are both inconsistent

and incomplete” (cf. [43]). A very interesting analysis of the possible impact of Gödel’s incompleteness

theorems in physics was written by Barrow [5, 6]; the prevalence of physics over mathematics is argued

by Deutsch [36]; for Svozil [61, 62], Heisenberg’s incompleteness is pre-Gödelian-Turing and finite. Other

relevant papers are Geroch and Hartle [41], Peres [54], and Peres and Zurek [55].

In this note we do not ask whether Gödel’s incompleteness has any bearing on Heisenberg’s uncertainty,

but the converse: Does uncertainty imply incompleteness? We will show that we can get a positive answer

to this question: algorithmic randomness can be recast as a “formal uncertainty principle” which implies

Chaitin’s information-theoretic version of Gödel’s incompleteness.

2.2 Outline

We begin with overviews of the relevant ideas first discovered by Heisenberg, Gödel, and Chaitin.

∗J. Wheeler was thrown out of Gödel’s office for asking the question “Professor Gödel, what connection do you see
between your incompleteness theorem and Heisenberg’s uncertainty principle?”, cf. Chaitin’s account cited in Barrow [5],
p. 221.

15
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Next, we show that random reals, of which Chaitin Omega numbers are just an example, satisfy a

“formal uncertainty principle”, namely

∆s ·∆C(ω1 . . . ωs) ≥ ε, (2.1)

where ε is a fixed positive constant.

The two conjugate coordinates are the random real and the binary numbers describing the programs

that generate its prefixes. Then, the uncertainty in the random real given an n-bit prefix is 2−n, and the

uncertainty in the size of the shortest program that generates it is, to within a multiplicative constant,

2n.

The Fourier transform is a lossless transformation, so all the information contained in the delta

function δΩ(x) = 1 if x = Ω, δΩ(x) = 0, otherwise, is preserved in the conjugate. Therefore, if you need n

bits of information to describe a square wave convergent on the delta function, there must be n bits of

information in the Fourier transform of the square wave. Since both the information in the transformed

square wave and the shortest program describing the square wave increase linearly with n, there is an

equivalence between the two.

We show that the formal uncertainty principle is a true uncertainty principle–that is, the terms are

bounded by the standard deviations of two random variables with particular probability distributions.

We note that for many self-delimiting Turing machines C, the halting probability ΩC is computable; in

these cases, there are quantum systems with observables described by these probability distributions, and

our uncertainty relation is equivalent to Heisenberg’s.

Finally, (2.1) implies a strong version of Gödel’s incompleteness, Chaitin’s information-theoretic ver-

sion [20, 21] (see also the analysis in [35, 8]). Chaitin’s proof relied on measure theory; we present here

a new proof via a complexity-theoretic argument.

2.3 Heisenberg

In 1925 Heisenberg developed the theory of matrix mechanics; it was his opinion that only observable

quantities should play any role in a theory. At the time, all observations came in the form of spectral

absorption and emission lines. Heisenberg, therefore, considered the “transition quantities” governing

the jumps between energy states to be the fundamental concepts of his theory. Together with Born, who

realized Heisenberg’s transition rules obeyed the rules of matrix calculus, he developed his ideas into a

theory that predicted nearly all the experimental evidence available.

The next year, Schrödinger introduced what became known as wave mechanics, together with a proof

that the two theories were equivalent. Schrödinger argued that his version of quantum mechanics was

better in that one could visualize the behavior of the electrons in the atom. Many other physicists agreed

with him.

Schrödinger’s approach disgusted Heisenberg; in a letter to Pauli (see [53]), he called Schrödinger’s

interpretation “crap”. Publicly, however, he was more restrained. In [44] he argued that while matrix

mechanics was hard to visualize, Schrödinger’s interpretation of wave mechanics was self-contradictory,

and concluded that something was still missing from the interpretation of quantum theory.

In 1927 Heisenberg published “Über den Anschaulichen Inhalt der Quantentheoretischen Kinematik

und Mechanik” (see [45]) to provide the missing piece. First, he gave his own definition of visualization:

“We believe we have gained intuitive understanding of a physical theory, if in all simple cases, we can grasp

the experimental consequences qualitatively and see that the theory does not lead to any contradictions.”

In this sense, matrix mechanics was just as intuitive as wave mechanics. Next, he argued that terms like
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“the position of a particle” can only make sense in terms of the experiment that measures them.

To illustrate, he considered the measurement of an electron by a microscope.† The accuracy is limited

by the wavelength of the light illuminating the electron; one can use as short a wavelength as one wishes,

but for very short wavelengths, the Compton effect is non-negligible. He wrote, (see [45], p.174–175),

At the instant of time when the position is determined, that is, at the instant when the photon

is scattered by the electron, the electron undergoes a discontinuous change in momentum.

This change is the greater the smaller the wavelength of the light employed, i.e., the more

exact the determination of the position. At the instant at which the position of the electron

is known, its momentum therefore can be known only up to magnitudes which correspond

to that discontinuous change; thus, the more precisely the position is determined, the less

precisely the momentum is known, and conversely.

Heisenberg estimated the uncertainty to be on the order

δp · δq ∼ h,

where h is Planck’s constant.

Kennard (see [47]) was the first to publish the uncertainty relation in its exact form. He proved in

1927 that for all normalized state vectors |Ψ〉,

∆p ·∆q ≥ ~/2,

where ∆p and ∆q are standard deviations of momentum and position, i.e.

∆2
p = 〈Ψ|p2|Ψ〉 − 〈Ψ|p|Ψ〉2; ∆2

q = 〈Ψ|q2|Ψ〉 − 〈Ψ|q|Ψ〉2.

Thus, assuming quantum mechanics is an accurate description of reality, the formalism is compatible

with Heisenberg’s principle.

2.4 Gödel

In 1931 Gödel published his (first) incompleteness theorem in [42] (see also [38, 39]). According to the

current terminology, he showed that every formal system which is (1) finitely specified, (2) rich enough to

include the arithmetic, and (3) consistent, is incomplete. That is, there exists an arithmetical statement

which (A) can be expressed in the formal system, (B) is true, but (C) is unprovable within the formal

system.

All conditions are necessary. Condition (1) says that there is an algorithm listing all axioms and

inference rules (which could be infinite). Taking as axioms all true arithmetical statements will not

do, as this set is not finitely listable. A “true arithmetical statement” is a statement about non-negative

integers which cannot be invalidated by finding any combination of non-negative integers that contradicts

it. Condition (2) says that the formal systems has all the symbols and axioms used in arithmetic, the

symbols for 0 (zero), S (successor), + (plus), × (times), = (equality) and the axioms making them work

(as for example, x + S(y) = S(x + y)). Condition (2) cannot be satisfied if you do not have individual

terms for 0, 1, 2, . . . ; for example, Tarski [67] proved that the plane Euclidean geometry, which refers to

†Heisenberg might have been so concerned with uncertainty because in 1923 he almost failed his Ph.D. exam when
Sommerfeld asked about (optical) limitations to the resolution of the microscope.
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points, circles and lines, is complete.‡ Finally (3) means that the formal system is free of contradictions.

Like uncertainty, incompleteness has provoked a lot of interest (and abuse).

2.5 Chaitin

Chaitin has obtained three types of information-theoretic incompleteness results (scattered through dif-

ferent publications, [20, 21, 23, 26]; see also [29, 30]). The strongest form concerns the computation of the

bits of a Chaitin Omega number ΩU , the halting probability of a self-delimiting universal Turing machine

U (see also the analysis in [35, 8]). A self-delimiting Turing machine U is a normal Turing machine C

which processes binary strings into binary strings and has a prefix-free domain, that is, if C(x) is defined

and y is either a proper prefix or an extension of x, then C(y) is not defined. The self-delimiting Turing

machine U is universal if for every self-delimiting Turing machine C there exists a fixed binary string p

(the simulator) such that for every input x, U(px) = C(x): either both computations U(px) and C(x)

stop and, in this case they produce the same output or both computations never stop. The Omega

number introduced in [20]

ΩU = 0.ω1ω2 . . . ωn . . . (2.2)

is the halting probability of U ; it is one of the most important concepts in algorithmic information theory

(see [8]).

In [20] Chaitin proved the following result: Assume that X is a formal system satisfying conditions

(1), (2) and (3) in Gödel’s incompleteness theorem. Then, for every self-delimiting universal Turing

machine U , X and values of only finitely scattered bits of ΩU , and one can give a bound on the number

of bits of ΩU which X determine. This is a form of incompleteness because, with the exception of finitely

many n, any true statement of the form “the nth bit of ΩU is ωn” is unprovable in X.

For example, we can take X to be ZFC§ under the assumption that it is arithmetically sound, that is,

any theorem of arithmetic proved by ZFC is true. Solovay [60] has constructed a specific self-delimiting

universal Turing machine S (called Solovay machine) such that ZFC cannot determine any bit of ΩS . In

this way one can obtain constructive versions of Chaitin’s theorem. For example, if ZFC is arithmetically

sound and S is a Solovay machine, then the statement “the 0th bit of the binary expansion of ΩS is 0”

is true but unprovable in ZFC. In fact, one can effectively construct arbitrarily many examples of true

and unprovable statements of the above form, cf. [10].

2.6 Rudiments of Algorithmic Information Theory

In this section we will present some basic facts of algorithmic information theory in a slightly different

form which is suitable for the results appearing in the following section.

We will work with binary strings; the length of the string x is denoted by |x|. For every n ≥ 0 we

denote by B(n) the binary representation of the number n + 1 without the leading 1. For example,

0 7→ λ (the empty string), 1 7→ 0, 2 7→ 1, 3 7→ 00, . . . The length of B(n) is almost equal to log2(n);

more precisely, it is blog2(n+ 1)c. The function B is bijective and we denote by N its inverse. The string

x is length-lexicographically less than the string y if and only if N(x) < N(y).

We need first the Kraft-Chaitin theorem: Let n1, n2, . . . be a computable sequence of non-negative

‡This result combined with with Gödel’s completeness theorem implies decidability: there is an algorithm which accepts
as input an arbitrary statement of plane Euclidean geometry, and outputs “true” if the statement is true, and “false” if it is
false. The contrast between the completeness of plane Euclidean geometry and the incompleteness of arithmetic is striking.
§Zermelo-Fraenkel set theory with choice.
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integers such that
∞∑
i=1

2−ni ≤ 1. (2.3)

Then, we can effectively construct a prefix-free sequence of strings (that is no wi is a proper prefix of any

wj with i 6= j) w1, w2, . . . such that for each i ≥ 1, |wi| = ni.

Let C be a self-delimiting Turing machine. The program-size complexity induced by C is defined

by HC(x) = min{|w| | C(w) = x} (with the convention that strings not produced by C have infinite

complexity). One might suppose that the complexity of a string would vary greatly between choices of self-

delimiting Turing machine. However, because of the universality requirement, the complexity difference

between C and C ′ is at most the length of the shortest program for C ′ that simulates C. Therefore, the

complexity of a string is fixed to within an additive constant. This is known as the “invariance theorem”

(see [8]), and is usually stated: For every self-delimiting universal Turing machine U and self-delimiting

Turing machine C there exists a constant ε > 0 (which depends upon U and C) such that for every string

x,

HU (x) ≤ ε+HC(x).

For our aim it is more convenient to define the complexity measure ∇C(x) = min{N(w) | C(w) = x},
the smallest integer whose binary representation produces x via C. Clearly, for every string x,

2HC(x) − 1 ≤ ∇C(x) ≤ 2HC(x)+1 − 2.

Therefore we can say that ∆C(x), our uncertainty in the value ∇C(x), is the difference between the upper

and lower bounds given, namely ∆C(x) = 2HC(x).

The invariance theorem can now be stated as follows: for every self-delimiting universal Turing

machine U and self-delimiting Turing machine C there exists a constant ε > 0 (which depends upon U

and C) such that for every string x,

∆U (x) ≤ ε ·∆C(x).

Let ∆s = 2−s. Chaitin’s theorem (see [20]) stating that the bits of ΩU in (2.2) form a random sequence

can now be presented as a “formal uncertainty principle”: for every self-delimiting Turing machine C

there is a constant ε > 0 (which depends upon U and C) such that

∆s ·∆C(ω1 . . . ωs) ≥ ε. (2.4)

The inequality (2.4) is an uncertainty relation as it reflects a limit to which we can simultaneously

increase both the accuracy with which we can approximate ΩU and the complexity of the initial sequence

of bits we compute; it relates the uncertainty of the output to the size of the input. When s grows

indefinitely, ∆s tends to zero in contrast with ∆C(ω1 . . . ωs) which tends to infinity; their product is not

only bounded from below, but increases indefinitely (see also (2.6)). From a complexity viewpoint (2.4)

tells us that there is a limit ε up to which we can uniformly compress the initial prefixes of the binary

expansion of ΩU .

How large can be ε in (2.4)? For example, ε = 1 when C = U0 is a special universal self-delimiting

Turing machine:

∆s ·∆U0(ω1 . . . ωs) ≥ 1. (2.5)

If U is universal and satisfies (2.4), then a universal machine U0 satisfying (2.5) can be defined by

U0(0εx) = U(x) (so requiring that any input to U0 not starting with ε zeros causes the machine to go

into an infinite loop).
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In fact, in view of the strong complexity-theoretic characterization of random sequences (see [20, 8])

a stronger form of (2.4) is true: for every positive integer N there is a bound M (which depends upon U ,

C and N) such that for all s ≥M we have:

∆s ·∆C(ω1 . . . ωs) ≥ N. (2.6)

The constant N appearing in (2.4) can be made arbitrarily large in case s is large enough; the price paid

appears in the possible violation of the inequality for the first s < M bits.

Is (2.4) a ‘true’ uncertainty relation? We prove that the variables ∆s and ∆C in (2.4) are the standard

deviations of two measurable observables in suitable probability spaces.

For ∆s we consider the space of all real numbers in the unit interval which are approximated to exactly

s digits. Consider the probability distribution Prob(v) = PC(v)/ΩsC , where PC(x) =
∑
C(y)=x 2−|y| and

ΩsC =
∑
|x|=s PC(x).

Now fix the first s digits of ΩU , ω1ω2 . . . ωs and define

α = 2−s/2 · (Prob(ω1ω2 . . . ωs))
−1/2 · (1− Prob(ω1ω2 . . . ωs))

−1/2.

The random variable X on a reals approximated by the first s digits v = v1v2 . . . vs is defined by the

delta function X(v) = α if v = ω1ω2 . . . ωs and X(v) = 0 otherwise. Then the expectation values of X

and X2 are 〈X〉 = α · Prob(ω1ω2 . . . ωs) and 〈X2〉 = α2 · Prob(ω1ω2 . . . ωs), so the standard deviation is

σX = ∆s.

For ∆C we consider

β = (∆C(ω1ω2 . . . ωs))
1/2 · (Prob(ω1ω2 . . . ωs))

−1/2 · (1− Prob(ω1ω2 . . . ωs))
−1/2,

and the same space but the random variable Y (ω1ω2 . . . ωs) = β and Y (v) = 0 if v 6= ω1ω2 . . . ωs. Then,

the expectation values of Y and Y 2 are 〈Y 〉 = β ·Prob(ω1ω2 . . . ωs) and 〈Y 2〉 = β2 ·Prob(ω1ω2 . . . ωs), so

the standard deviation is σY = ∆C(ω1ω2 . . . ωs).

Hence the relation (2.4) becomes:

σX · σY = ∆s ·∆C(ω1ω2 . . . ωs) ≥ ε,

so for U0 satisfying (2.5) we have:

σX · σY ≥ 1.

2.7 From Heisenberg to Chaitin

Since self-delimiting universal Turing machines are strictly more powerful than non-universal ones, the

inequality holds for the weaker computers as well. In many of these cases, the halting probability of the

machine is computable, and we can construct a quantum algorithm to produce a set of qubits whose state

is described by the distribution.

To illustrate, we consider a quantum algorithm with two parameters, C and s, where C is a Turing

machine for which the probability of producing each s-bit string is computable. We run the algorithm to

compute that distribution on a quantum computer with s ouput qubits; it puts the output register into

a superposition of spin states, where the probability of each state |v〉 is PC(v)/ΩsC . Next, we apply the

Hamiltonian operator H = β|ω1 . . . ωs〉〈ω1 . . . ωs| to the prepared state. A measurement of energy will

give β with probability P = Prob(ω1ω2 . . . ωs) and zero with probability 1 − P . The expectation value
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for energy, therefore, is exactly the same as that of Y , but with units of energy, i.e.

∆C(ω1ω2 . . . ωs)[J ] ·∆s ≥ ε[J ],

where [J ] indicates Joules of energy.

Now define

∆t ≡
σQ

|d〈Q〉/dt|
,

where Q is any observable that does not commute with the Hamiltonian; that is, ∆t is the time it takes

for the expectation value of Q to change by one standard deviation. With this definition, the following

is a form of Heisenberg’s uncertainty principle:

∆E ·∆t ≥ ~/2.

We can replace ∆E by ∆C(ω1ω2 . . . ωs) by the analysis above; but what about ∆t? If we choose a time

scale such that our two uncertainty relations are equivalent for a single quantum system corresponding

to a computer C and one value of s, then the relation holds for C and any value of s:

∆C(ω1ω2 . . . ωs)[J ] ·∆s
~
2ε

[J−1 · Js] ≥ ~
2

[Js].

In this sense, we claim that Heisenberg’s uncertainty relation is equivalent to (2.4). We cannot say

whether (2.4) is physical for universal self-delimiting Turing machines; to do so requires deciding the

Church-Turing thesis for quantum systems.

The uncertainty principle now says that getting one more bit of ΩU requires (asymptotically) twice as

much energy. Note, however, that we have made an arbitrary choice to identify energy with complexity.

We could have chosen to create a system in which the position of a particle corresponded to the complexity,

while momentum corresponded to the accuracy of C’s estimate of ΩU . In that case, the uncertainty in

the position would double for each extra bit. Any observable can play either role, with a suitable choice

of units.

If this were the only physical connection, one could argue that the result is merely an analogy and

nothing more. However, consider the following: let ρ be the density matrix of a quantum state. Let

R be a computable positive operator-valued measure, defined on a finite dimensional quantum system,

whose elements are each labeled by a finite binary string. Then the statistics of outcomes in the quantum

measurement is described by R: R(ω1 . . . ωs) is the measurement outcome and tr(ρR(ω1 . . . ωs)) is the

probability of getting that outcome when we measure ρ. Under these hypotheses, Tadaki’s inequality (1)

(see [64], p. 2), and our inequality (2.4) imply the existence of a constant τ (depending upon R) such

that for all ρ and s we have:

∆s
. 1

tr(ρR(ω1 . . . ωs))
≥ τ.

In other words, there is no algorithm that, for all s, can produce

1. an experimental setup to produce a quantum state and

2. a POVM with which to measure the state such that

3. the probability of getting the result ω1ω2 . . . ωs is greater than 1/(τ2s).

Finally, it is interesting to note that a Fourier transform of the wave function switches between an

“Omega space” and a “complexity space”. We plan on examining this relationship further in a future

paper.
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2.8 From Chaitin to Gödel

In this section we prove that the uncertainty relation (2.4) implies incompleteness.

We start with the following theorem: Fix a universal self-delimiting Turing machine U . Let x1x2 . . .

be a binary infinite sequence and let F be a strictly increasing function mapping positive integers into

positive integers. If the set {(F (i), xF (i)) | i ≥ 1} is computable, then there exists a constant ε > 0 (which

depends upon U and the characteristic function of the above set) such that for all k ≥ 1 we have:

∆U (x1x2 . . . xF (k)) ≤ ε · 2F (k)−k. (2.7)

To prove (2.7) we consider for every k ≥ 1 the strings

w1xF (1)w2xF (2) . . . wkxF (k), (2.8)

where each wj is a string of length F (j) − F (j − 1) − 1, F (0) = 0, that is, all binary strings of length

F (k) where we have fixed bits at the positions F (1), . . . , F (k).

It is clear that
∑k
i=1 |wi| = F (k) − k and the mapping (w1, w2, . . . , wk) 7→ w1w2 . . . wk is bijective,

hence to generate all strings of the form (2.8) we only need to generate all strings of length F (k)− k.

Next we consider the enumeration of all strings of the form (2.8) for k = 1, 2, . . .. The lengths of these

strings will form the sequence

F (1), F (1), . . . , F (1)︸ ︷︷ ︸
2F (1)−1 times

, . . . , F (k), F (k), . . . , F (k)︸ ︷︷ ︸
2F (k)−k times

, . . .

which is computable and satisfies the inequality (2.3) as

∞∑
k=1

2F (k)−k · 2−F (k) = 1.

Hence, by Kraft-Chaitin theorem, for every string w of length F (k)−k there effectively exists a string

zw having the same length as w such that the set {zw | |w| = F (k) − k, k ≥ 1} is prefix-free. Indeed,

from a string w of length F (k)− k we get a unique decomposition w = w1 . . . wk, and zw as above, so we

can define C(zw) = w1xF (1)w2xF (2) . . . wkxF (k); C is a self-delimiting Turing machine. Clearly,

∆C(w1xF (1)w2xF (2) . . . wkxF (k)) ≤ ∇C(w1xF (1)w2xF (2) . . . wkxF (k)) ≤ N(zw) ≤ 2F (k)−k+1 − 1,

for all k ≥ 1. In particular, ∆C(x1 . . . xF (k)) ≤ 2F (k)−k+1 − 1, so by the invariance theorem we get the

inequality (2.7).

It is easy to see that under the hypothesis of the above theorem the uncertainty relation (2.4) is

violated, so the sequence x1x2 . . . xn . . . is not random. Indeed, if the sequence were random, then the

formal uncertainty principle (2.4) will hold true, hence for each k ≥ 1, we would have the following

contradictory pair of inequalities:

ε1 ·
1

∆F (k)
≤ ∆U (x1 . . . xF (k)) ≤ ε · 2F (k)−k.

We are now able to deduce Chaitin’s information-theoretic incompleteness theorem from the uncer-

tainty relation (2.4). Assume by absurdity that ZFC can determine infinitely many digits of ΩU =

0.ω1ω2 . . .. Then, we could enumerate an infinite sequence of digits of ΩU , thus contradicting the above
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theorem.

In particular, there exists a bound N such that ZFC cannot determine more than N scattered digits

of ΩU = 0.ω1ω2 . . ..

2.9 Conclusion

We have shown that uncertainty implies algorithmic randomness which, in turn, implies incompleteness.

Specifically, the complexity-theoretic characterization of the randomness of the halting probability of

a universal self-delimiting Turing machine U , Chaitin Omega number ΩU , can be recast as a “formal

uncertainty principle”: an uncertainty relation between the accuracy of one’s estimate of ΩU and the

complexity of the initial bit string. This relation implies Chaitin’s information-theoretic version of Gödel’s

incompleteness.

The uncertainty relation applies to all self-delimiting Turing machines C. For the class of machines

whose halting probabilities ΩC are computable, we have shown that one can construct a quantum com-

puter for which the uncertainty relation describes conjugate observables. Therefore, in these particular

instances, the uncertainty relation is equivalent to Heisenberg’s.

There is an important distinction between “quantum randomness” and our formal uncertainty prin-

ciple. They are separate concepts. In the Copenhagen interpretation, the random collapse of the wave-

function is a postulate. In the Bohmian interpretation, where there are real particles with real (though

non-Newtonian) trajectories, randomness comes from our ignorance about the system; the velocity of any

particle depends instantaneously on every other particle. In one case the interpretation is probabilistic,

while in the other, it is completely deterministic. We cannot distinguish between these. Our result

concerns a different source of randomness.

Like Heisenberg’s uncertainty principle, our formal uncertainty principle is a general one; they both

apply to all systems governed by the wave equation, not just quantum waves. We could, for exam-

ple, use sound waves instead of a quantum system by playing two pure tones with frequencies f and

f + ∆C(ω1 . . . ωs). Then ∆s corresponds to the complementary observable, the length of time needed to

perceive a beat. The (algorithmic) randomness we are concerned with seems to be pervasive in physics,

even at the classical level. We may speculate that uncertainty implies randomness not only in mathe-

matics, but also in physics.
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3
Omega and zeta functions

3.1 Introduction

Chaitin [20] defined the halting probability of a universal prefix-free machine U defined on {0, 1}∗ to be

ΩU =
∑

p ∈ dom(U)

2−|p|.

This real is computably enumerable and the bits of ΩU form a random sequence with respect to the

prefix-free complexity H:

∃c ∀m > 1 H(ΩU [m]) ≥ m− c,

where ΩU [m] is the string formed by the first m bits of ΩU .

We show below that Ω can be written as an infinite product over halting programs; that there exists

a “natural,” or base-free formulation that does not (directly) depend on the alphabet of the universal

prefix-free machine; that Tadaki’s generalized halting probability is well-defined even for arbitrary univeral

Turing machines and the plain complexity; and finally, that the natural generalized halting probability

can be written as an infinite product over primes and has the form of a zeta function whose zeros

encode halting information. We conclude with some speculation about physical systems in which partial

randomness could arise, and identify many open problems.

3.2 Omega as an infinite product

Given a universal prefix-free machine U , construct a program t that is known not to halt, with no halting

prefices or extensions. For instance, in the prefix-free variant of Iota from chapter 1.5, the program

25
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encoding the lambda term

t = (λx.xx)(λx.xx)

= 1111010011101001001001110100100100111010011101001001001110100100100

has no normal form, and no extension of it halts, since it does not read any bits. Then dom(U) ∪ {t} is

also prefix free. Now consider the set of strings

S =

 ∏
p ∈ dom(U)

p∗

 · t =
∑

n · t

where products are ordered finite concatenation, sums are set union, and each n is an ordered finite

concatenation of elements of dom(U).

The set S is clearly prefix-free, since each element has exactly one copy of t at the very end, and no

element of dom(U) is a prefix or extension of t. It corresponds to the domain of a prefix-free machine M

that repeatedly reads in programs for U and executes them until it reads t, in which case it halts.

By the Kraft inequality,

ΩM =
∑
nt ∈ S

2−|nt| = 2−|t|
∏

p ∈ dom(U)

1

1− 2−|p|
< 1.

Theorem 4. The bits of ΩM form a c.e. random sequence.

Proof. Consider the set of strings

S′ =
∑

p ∈ dom(U)

p · t ⊂ S;

these are the programs for M that consist of a single halting program for U and the terminator t. Given

m bits of ΩM , we can clearly compute the halting status of all p ∈ dom(M) such that |p| ≤ m; but these

include the programs in S′, so it also tells us the halting status of all p ∈ dom(U) such that |p| < m− |t|.
We can then pick a string not in the set of outputs of such programs, and halt. Thus, there exists a

computable function Ψ : X → X with the property that

H(Ψ(ΩM [m])) > m− |t|.

By the universality of U ,

H(ΩM [m]) + cΨ ≥ H(Ψ(ΩM [m])) > m− |t|

and

H(ΩM [m]) > m− (cΨ + |t|),

which completes the proof. �

3.3 Natural halting probability

Consider the quasi-lex ordering b : N+ → {0, 1}∗—that is, b(p) is the string formed by removing the

leading 1 from the binary expansion of p. Unlike B(p) in section 2, this map is undefined on 0 and maps

1 → λ, 2 → 0, 3 → 1, 4 → 00, etc. Given a universal prefix-free machine U defined over X = {0, 1}∗ we
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define

ζU =
∑

p ∈ N | b(p) ∈ dom(U)

1/p.

It is clearly computably enumerable; we show that this real is not equal to Chaitin’s ΩU , but is still

random.

Theorem 5. ΩU > ζU > ΩU/2.

Proof. 2−blog2(p)c ≥ 2− log2(p) > 2−blog2(p)c−1, where equality holds only when p is a power of two, so

ΩU =
∑

2−|b(p)| =
∑

2−blog2(p)c >
∑

2− log2(p) = ζU >
∑

2−blog2(p)c−1 =
∑

2−|b(p)|−1 = ΩU/2,

where all sums are over p ∈ N | b(p) ∈ dom(U) and we have used the fact that the set of strings in

the domain of U cannot all have lengths that are integer powers of two: due to the universality of U ,

there must exist some integer n such that for all p ∈ dom(Iota), there exists a string qp such that

U(qp) = Iota(p) and |qp| ≤ |p| + n. Also, all strings of the form 11010100x halt on Iota, where x is

a preorder traversal of any full binary tree; this is equivalent to the lambda term K(x). If we assume

that the domain of U consists solely of strings whose lengths are powers of two, this implies that, even

ignoring the restriction that halting programs cannot be prefices or extensions of each other, there are

only

blog2(n+8+|x|)c∑
i=0

2i = 2blog2(n+8+|x|)c+1 = the smallest power of two greater than n+ 8 + |x|

strings of the appropriate form. This grows linearly (if sporadically) with |x|, while the number of

halting programs of that form, the |x|th Catalan number, grows exponentially with |x|, and we reach a

contradiction. �

Theorem 6. The bits of ζU form a random sequence.

Proof. Given m+ 1 bits of ζU , we run programs in parallel and sum the weights of the halting programs

until we can account for the bits. Then we know no more programs b(j) such that |b(j)| ≤ m can halt:

since

1/j = 2− log2(j) > 2−blog2(j)c−1,

the longest of such programs would affect at least the last bit. We can take the outputs of all the programs

that have halted and output a string not in that set. The complexity of that string is greater than m;

thus, there exists a computable function Ψ : X → X with the property that

H(Ψ(ζU [m+ 1])) > m.

By the universality of U ,

H(ζU [m+ 1]) + cΨ ≥ H(Ψ(ζU [m+ 1])) > m

and

H(ζU [m]) > m− (cΨ + 1),

which completes the proof. �
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3.4 Partial K-randomness

Tadaki [65] introduced the concept of partial randomness. Several of his open questions were answered

by Calude et al. [16]. The equation describing the complexity of successive prefices of a random sequence

describes a line with slope 1. The equation describing the prefices of a partially-random sequence describes

a line with slope 0 < s < 1.

Tadaki defines the c.e. partially-random real

Ωs =
∑

p ∈ dom(U)

2−s|p|,

though we have altered his notation slightly. This number is 1/s-random—that is, it satisfies

∃c ∀m > 1 H(Ωs[m]) ≥ m/s− c.

One may consider the (partial-)randomness of a sequence to be its complexity density. Martin-Löf and

Chaitin independently showed [19, 50, 12] that there are no sequences x such that the plain complexity

satisfies

∃c ∀m > 1 K(x[m]) ≥ m− c,

which has given rise to alternate definitions of random sequences with respect to the plain complexity

[49]. We do not consider these in this thesis. However, we show that for all real, computable s > 1 there

are sequences xs such that

∃c ∀m > 1 K(xs[m]) ≥ m/s− c.

We will call these sequences 1/s−K-random.

Given a universal Turing machine U ′ (which may or may not be prefix-free), we define “the halting

probability of U ′ at inverse temperature s” to be

κs =

 ∑
p ∈ dom(U)

2−s|p|

/
∑
q ∈ N

2−s|b(q)|

 = (1− 2−s+1)
∑

p ∈ dom(U)

2−s|p|.

This converges for all real s > 1. We will explain the reference to temperature in section 3.6.

Theorem 7. For real s > 1, 0 < κs < 1.

Proof. If U ′ is universal, then there must be some integer q such that b(q) 6∈ dom(U ′). Therefore the

numerator, which sums only over those q such that b(q) ∈ dom(U), is smaller than the denominator, which

sums over all positive natural q. Since there must be at least one program that halts, the numerator is

positive. �

Since κs is in the interval (0, 1), we can interpret it as a halting probability.

Theorem 8. For real, computable s > 1, the bits of κs form a 1/s−K−random sequence.

Proof. Given the first m+log2(1−2−s+1) bits of κs, we can compute the halting status of all programs p ∈
dom(U ′) such that |p| < m/s. Then there is a computable function Ψ that, given κs[m+log2(1−2−s+1)],

produces a string not in the output of those programs, and

K(κs[m]) ≥ m/s− (cΨ + log2(1− 2−s+1)).

�
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Theorem 9. If U ′ is a universal prefix-free machine, then for real, computable s > 1, the bits of κs form

a 1/s−random sequence.

Proof. The proof proceeds exactly as in the previous theorem, replacing the plain complexity K with the

prefix-free complexity H. Note that in this case, κs is just a computable factor times Ωs. �

3.5 Riemann

Given a universal Turing machine U ′, we define the natural halting probability at inverse temperature s

to be

κsn =

 ∑
q ∈ N | b(q) ∈ dom(U ′)

q−s

/
∑
q ∈ N

q−s


= ζU ′(s)/ζ(s),

where ζ(s) is Riemann’s zeta function and

ζU ′(s) =
∑

q ∈ N | b(q) ∈ dom(U ′)

q−s.

Given that both ζ(s) and ΩM can be written as infinite products, it begs the question of whether

ζU ′(s), the natural halting probability at inverse temperature s, can be written as one.

Given a UTM U ′, we can define the set

V = {pi|b(i) ∈ dom(U ′)},

where pi is the ith prime. Consider the set of natural numbers

S′ = {n|(prime factors of n) ∈ V }

The set S′ is the domain of a machine M ′ that performs the following steps on an input x:

1. Compute n = b−1(x).

2. Compute the prime factors pi of n.

3. For each pi, simulate U ′(b(i)).

4. Output the empty string.

Then

ζM ′(s) =
∑
n∈S′

n−s =
∏
p∈V

1/(1− p−s),

and

κsn = ζM ′(s)/ζ(s) = ζ(s)
∏
p 6∈V

(1− p−s)/ζ(s).

Theorem 10. The program b(j) halts if and only if

κ
2πi

log(pj)

n 6= 0.
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Proof. The function κsn is zero when

s =
m2πi

log(p)

for any p 6∈ V and any m ∈ N. These values are purely imaginary, while the nontrivial zeros s of

Riemann’s zeta function all have Re(s) > 0. Therefore κsn is well defined at that point and is equal to

zero only if pj 6∈ V . �

The zeros of κsn therefore encode halting information.

Theorem 11. For all real, computable 1 < s < s0 there exist c, t such that for all m > t,

K(κsn[m]) ≥ m/s0 − c.

Proof. The prime number theorem implies that for i > 5, i log(i) < pi. Given ms bits of κsn, we can

compute the halting status of all programs b(i) such that pi < 2m.

i log(i) < 2m

i < 2m/W (2m)

|b(i)| = blog2(i)c < m− log2(W (2m)) = W (2m)/ log(2)

Here, W is Lambert’s W -function. Therefore, given ms bits, we can compute the halting status of all

programs whose length is less than W (2m)/ log(2). Since

lim
m→∞

W (2m)

m log(2)
= 1,

the result follows. We call such sequences asymptotically 1/s−K−random. �

Theorem 12. If U ′ is a universal prefix-free machine, then for all real, computable 1 < s < s0 there

exist c, n such that for all m > n,

H(κsn[m]) ≥ m/s0 − c.

Proof. The proof is exactly the same as the previous theorem, replacing K with H. We call such sequences

asymptotically 1/s-random. �

Tadaki’s generalized halting probability is well-defined even for arbitrary univeral Turing machines,

but has a pole at s = 1. Since the natural generalized halting probability can be written as a zeta

function with the Riemann zeta function as a sharp bound, one can view the fact that there are no

random sequences with respect to plain complexity as a proof of the infinitude of primes!

3.6 Physical systems and open questions

We report in this chapter on some work in progress related to the physical nature of the halting proba-

bilities and some open problems.

3.6.1 The quantum Riemann system

It is well known [46, 57, 7] that Riemann’s zeta function can be interpreted as the partition function of

a quantum system in equilibrium at inverse temperature s—that is, the system is in a classical mixture
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of states, each with probability proportional to exp(−Hs), where s = 1/kT , k is Boltzmann’s constant,

and T is the temperature in Kelvins.

The Hamiltonian for the Riemann system is the sum of the Hamiltonians for the QHOs.

H =
∑
n

ω2
n

2
x2 − 1

2

∂2

∂x2
− ωn

2
,

where ωn = log(pn) and we’ve chosen units such that m = ~ = 1. The energy basis of the Riemann

system is spanned by the set of vectors |n > such that

H|n >= log(n)|n > and exp(H)|n >= n|n >,

In analogy to the absorbtion and emission of photons by a QHO, the union over n of log(pn) is often

called the set of “primons.”

The function κsn has the form of an expectation value on a Riemann system at inverse temperature

s. We can define a quantum computer that measures exp(H) on the current state, converts that number

into a program for M ′ via the bijection b, executes it for at most T steps, and sets a qubit to |1 > if

the program halted within T steps or |0 > if it did not. Then in the limit as T approaches infinity, the

expectation value of the qubit will be κsn.

3.6.2 Tadaki’s universal semi-POVM

Tadaki [64, 66] has introduced a quantum analog of Ω for finite- and infinite-dimensional systems. We

would like to establish what connection exists between the expectation value above and this computably

enumerable sum of elements of the semi-POVM.

3.6.3 Variable base computers

The “natural” halting probability ζU depends indirectly on base 2 through the alphabet on which U acts.

Calude et al. have considered [15] the randomness of strings over a set of finite alphabets Xi such that

the ith symbol of the string is an element of Xi. If there is a finite bound b on the magnitude of Xi,

then one can define a halting probability using b as a base; this is less than satisfactory, however, since

it essentially maps the string into {0, . . . , b− 1}∗. If Xi has no finite bound, then it’s unclear what base

to use for the standard halting probability of such a machine.

The natural halting probability does not have either of these problems. In fact, one can even define

the natural halting probability for computers such that the alphabet for the next symbol depends on the

state of the machine. It’s likely that this halting probability will be useful for producing a simple proof

that random numbers are random in any base.

3.6.4 Partial 2-randomness

Since there are no sequences x such that

∃c ∀m > 1 K(x[m]) ≥ m− c,

the definition

∃c K(x[m]) ≥ m− c infinitely often
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has been proposed [49]. Sequences satisfying this definition have been shown to be 2-random [51, 52]; the

canonical example of a 2-random sequence is the bits of the halting probablility of a universal prefix-free

machine U0′ , i.e. one with oracle access to the halting probability of another universal prefix-free machine

U .

What can be said about the randomness of partially 2-random strings? Inserting a zero between each

bit of a 2-random string gives a sequence that is 1/2-random and 1/2-2-random. On the other hand, if

we define a machine C such that C(xx) = U0′(x), the halting probability of C is 1/2-2-random, but it’s

much less clear what the randomness with respect to U is.

3.6.5 Halting primes in number theory and geometry

There are deep relationships between number theory and geometry. Borrowing a table from [2],

NUMBER THEORY COMPLEX GEOMETRY

Integers Polynomial functions on the complex plane

Rational numbers Rational functions on the complex plane

Prime numbers Points in the complex plane

Integers mod pn (n− 1)st-order Taylor series

p-adic integers Taylor series

p-adic numbers Laurent series

Adeles for the rationals Adeles for the rational functions

Fields One-point spaces

Homomorphisms to fields Maps from one-point spaces

Algebraic number fields Branched covering spaces of the complex plane

If we restrict ourselves to “halting primes”—those primes pi such that b(i) halts—what happens?

3.6.6 Riemann’s hypothesis

The definition of the function ζU ′(s) is the same as the Riemann zeta function, but with the primes

restricted to those primes pi such that b(i) halts. We can choose U ′ such that it halts on all programs

less than a given length n; as n→∞, ζU ′(s)→ ζ(s). Can we say anything about the zeros of Riemann’s

zeta function by complexity-theoretic means?

Riemann’s zeta function also satisfies the functional equation

F (s) = π−s/2Γ(s/2)ζ(s) = F (1− s).

Does ζU (s) satisfy a functional equation?

3.7 Conclusion

Chaitin’s Ω can be written not only as an infinite sum, but also as an infinite product over halting

programs. While Chaitin’s definition explicitly assumes a binary alphabet (though the generalization to

arbitrary bases is straightforward), there is a natural formulation such that the definition is independent

of the underlying machine, and even accounts for machines defined over mixed-base strings.

Tadaki proposed to parameterize Ω, effectively turning it into a zeta function. The fact that Chaitin

had to resort to prefix-free machines to have Ω converge is just an illustration of the pole of the zeta

function at s = 1 for many universal Turing machines.
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The natural generalized halting probability can be written as a product over primes, just like in

the Riemann zeta function. In the limit as the universal machine is defined to halt on more an more

programs, the zeta function approached Riemann’s as a sharp bound. It would be interesting to know

if AIT has anything to say about solving the Riemann hypothesis, or can shed light on any number of

related questions.
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Conclusion

We’ve presented new prefix-free machines whose designs are very simple; we hope they will be used in

the study of concrete AIT. The halting probability of such machines is a random sequence; when such

a sequence is the result given by a measurement of a system, the system itself can be shown to satisfy

an uncertainty principle equivalent to Heisenberg’s uncertainty principle. This uncertainty principle also

implies Chaitin’s strongest form of incompleteness.

We’ve shown that Tadaki’s generalized halting probability can apply to all Turing machines, prefix-

free or not, and that it has the form of a zeta function. Zeta functions are often partition functions

of a dynamic system composed of loops; we’ve shown that the loops in this case correspond to halting

programs. We’ve introduced the concept of partially K-random sequences, and shown that while there

are no random sequences, in a certain sense we can define sequences that are “as close as we want” to

random.

Finally, we noted a relationship with Riemann’s zeta function, and showed that some of the zeros of

our zeta function encode halting information. There are many open problems to consider, and we hope

our work will encourage others to join the effort in answering them.
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[15] Calude, C. S., Staiger, L., and Svozil, K. “Randomness Relative to Cantor Expansions,” Comm.

Nonlinear Science Numerical Simulation, 10/8 (2005), 921–930.

[16] Calude, C. S., Staiger, L., and Terwijn, S. A. “On partial randomness,” Annals of Pure and Applied

Logic, accepted.

37



38 BIBLIOGRAPHY

[17] Casti, J. L. and Traub, J. F. (eds.). On Limits, Santa Fe Institute Report 94-10-056, Santa Fe, NM,

1994.

[18] Casti, J. L. and Karlquist, A. (eds.). Boundaries and Barriers. On the Limits to Scientific Knowledge,

Addison-Wesley, Reading, MA, 1996.

[19] Chaitin, G. J. “On the lengths of programs for computing binary sequences.” J. Assoc. Comput.

Mach. 13, 549–569. 1966.

[20] Chaitin, G. J. “A theory of program size formally identical to information theory,” Journal of the

ACM 22 (1975), 329–340. http://www.cs.auckland.ac.nz/CDMTCS/chaitin/acm75.pdf

[21] Chaitin, G. J. “Randomness and mathematical proof,” Scientific American, 232 (5) (1975), 47–52.

[22] Chaitin, G. J. “Algorithmic Information Theory.” IBM Journal of Research and Development 21

(1977), 350–359, 496.
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[50] Martin-Löf, P. “Complexity oscillations in infinite binary sequences,” Zeitschrift fr Wahrschein-

lichkeitstheorie und Verwandte Gebiete, 19 (1971), 225–230.

[51] Miller, J. S. “Every 2-random real is Kolmogorov random,” J. Symbolic Logic 69, 3 (2004), 907–913

[52] Nies, A., Stephan, F., and Terwijn, S. A. “Randomness, relativization and Turing degrees,” Journal

of Symbolic Logic, to appear.

[53] Pauli, W. In Hermann, A., von Meyenn, K. and Weiskopf, V. F. (eds.) Wissentschaftlicher Briefwech-

sel mit Bohr, Einstein, Heisenberg u.a. Volume 1 (1919–1929), Springer-Verlag, Berlin, 1979.
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A
A lambda-calculus-to-Javascript

source-to-source filter

// The "Be Lazy" wrapper

function _(x){return function(){return x}}

// Evaluate the parsed source

function __(x){

return eval("(function(){var x="+parse(x)+"; return x})()")

}

// The guts

function parse(x) {

if (x.indexOf(’‘’)==-1) return x;

var pos=1, count, start, c;

// find left tree

for (count=0, start=pos;

count >= 0 && pos < x.length;

pos++)

{

c=x.charAt(pos);

count += (c==’‘’)?1:((c==’ ’ || c==’^’)?-1:0);

}

var left = x.substring(1,pos);

// find right tree

for (count=0, start=pos;

count >= 0 && pos < x.length;
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pos++)

{

c=x.charAt(pos);

count += (c==’‘’)?1:((c==’ ’ || c==’^’)?-1:0);

}

var right = x.substring(start,pos);

if (left.substring(0,2)==’‘^’)

return "function(){return function("+

left.substring(2)+"){return "+parse(right)+"()}}";

return "function(){return "+parse(left)+"()("+parse(right)+")}";

}

S=__("‘‘^x ‘‘^y ‘‘^z ‘‘x z ‘y z");

K=__("‘‘^x ‘‘^y x");

I=__("‘‘^x x");

omega=__("‘‘^x ‘x x");

Omega=__("‘omega omega");

// Calling syntax:

// K()(I)(Omega)(S) = S()

// or

// __("‘‘‘K I Omega S")() = S()



B
An implementation of Keraia

// Keraia’s alphabet

_0=__("‘‘^c ‘c Keraia");

// This version of _1 uses Javascript strings

// instead of the Pair combinator

_1=__("‘‘^c ‘‘^L ‘‘‘‘Bit L ‘‘^c ‘c _(0) L "+

"‘‘^l ‘‘^R ‘‘‘‘Bit R ‘‘^c ‘c _(0) R ‘‘^r ‘c ‘‘Cat l r");

// Assembles the string to interpret

Cat=function(){return

function(x){return

function(y){return

"1"+x()+y()

}}};

// ‘Bit _0 = K, ‘Bit _1 = ‘K I

Bit=__("‘‘^b ‘‘b ‘K ‘K K ‘K ‘K ‘K ‘K ‘K ‘K I");

Keraia=function(){

return function(x){

function parse(x) {

if (x.indexOf(’1’)==-1) return "_"+x+" ";

var pos=1, count, start, c;

// find left tree

for (count=0;count >= 0 && pos < x.length; pos++)

{ c=x.charAt(pos); count += (c==’1’||c==’3’)?1:-1; }

var left = x.substring(1,pos);
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// find right tree

for (count=0, start=pos;

count >= 0 && pos < x.length;

pos++)

{ c=x.charAt(pos); count += (c==’1’||c==’3’)?1:-1; }

var right = x.substring(start,pos);

if (left.substring(0,2)==’10’)

{

var arg=left.substring(2).

replace(/0/g,’2’).

replace(/1/g,’3’);

return "‘‘^_"+arg+" "+

parse(right.replace(

new RegExp(left.substring(2),’g’),arg));

}

return "‘"+parse(left)+parse(right);

}

return __(parse(x())

// uncomment this line for the prefix-free version

// .replace(/_0/g,’R’)

)();

}

}

epsilon=_0;

I_k = __("‘‘‘‘‘epsilon _1 _1 _0 _0 _0"); // ‘‘^x x

K_k = _( epsilon()(_1)(_1)(_0) (_1)(_0)(_1)(_0)(_0) // ‘‘^x

(_1)(_1)(_0) (_0) // ‘‘^y

(_1)(_0)(_1)(_0)(_0) ); // x

// These functions are only used in the prefix-free version

InputBits=’’;

// Input monad

R=function(){

return function(x){

// loop on underflow

if (InputBits==’’) Omega();

var c=InputBits.charAt(0);

InputBits=InputBits.substring(1);

return c==’1’?K()(I)(x):K()(x);

}

}

pf-Keraia=function(x){

var pos=0, count, c;

// find a full tree
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for (count=0; count >= 0 && pos < x.length; pos++)

{ c=x.charAt(pos); count += (c==’1’||c==’3’)?1:-1; }

// loop on syntax error

if (count>-1) Omega();

// Take the remainder of the bits as input

InputBits = x.substring(pos);

var combo = _(Keraia()(_(x.substring(0,pos))));

// loop on overflow

if (InputBits != ’’) Omega();

return combo;

}

// pf-Keraia("1001")() = I()
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