
ZIP Attacks with Reduced Known Plaintext

Michael Stay

AccessData Corporation
2500 N. University Ave. Ste. 200

Provo, UT 84606
staym@accessdata.com

Abstract. Biham and Kocher demonstrated that the PKZIP stream ci-
pher was weak and presented an attack requiring thirteen bytes of plain-
text. The deflate algorithm “zippers” now use to compress the plaintext
before encryption makes it difficult to get known plaintext. We consi-
der the problem of reducing the amount of known plaintext by finding
other ways to filter key guesses. In most cases we can reduce the amo-
unt of known plaintext from the archived file to two or three bytes,
depending on the zipper used and the number of files in the archive.
For the most popular zippers on the Internet, there is a fast attack
that does not require any information about the files in the archive;
instead, it gets doubly-encrypted plaintext by exploiting a weakness in
the pseudorandom-number generator.

1 Introduction

PKZIP is a compression / archival program created by Phil Katz. Katz had the
foresight to document his file format completely in the file APPNOTE.TXT,
distributed with every copy of PKZIP; there are now literally hundreds of “zip-
per” programs available, and the ZIP file format has become a de facto standard
on the Internet.
In [BK94] Biham and Kocher demonstrated that the PKZIP stream cipher

was weak and presented an attack requiring thirteen bytes of plaintext. Eight
bytes of the plaintext must be contiguous, and all of the bytes must be the
text that was encrypted, which is usually compressed data. [K92] shows that
the compression method used at the time, implode, produces many predictable
bytes suitable for mounting the attack.
Most zippers available today implement only one of the compression methods

defined in APPNOTE.TXT, called deflate. Deflate uses Huffman coding followed
by a variant of Lempel-Ziv. Once the dictionary reaches a certain size, the process
starts over. Since the Huffman codes for any of the data depend on a great deal of
surrounding data, one is forced to guess the plaintext unless one has the original
data. The difficulty of getting known plaintext was one reason Phil Zimmerman
decided to use deflate in PGP [PGP98]. Practically speaking, if one has enough
of the original file to get the thirteen bytes of plaintext required for the attack
in [BK94], one has enough to break the encryption almost instantly.

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 125–134, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

126 M. Stay

Without the original file, all is not lost; we have the file’s type as indicated by
its extension, and we have its size. The ZIP file format requires at least one byte
of known plaintext for filtering incorrect passwords. Most zippers also encrypt
output from a pseudorandom number generator that is vulnerable to attack.
It is the author’s opinion that the only reason the PKZIP cipher has held

up so well in light of [BK94] is the high entropy of the data produced by the
deflate algorithm and the related difficulty of getting enough plaintext. This
paper treats the question of how far we can reduce the plaintext requirement
and still break the cipher with a practical amount of work.

1.1 The PKZIP Stream Cipher

The PKZIP stream cipher was designed by Roger Schaffely and is fully described
in the file APPNOTE.TXT found in most PKZIP distributions. The internal
state of the cipher consists of three 32-bit words: key0, key1, and key2. These
values are initialized to 0x12345678, 0x23456789, and 0x34567890, respectively.
The internal state is updated by mixing in the next plaintext byte. The first and
third words are updated using the linear feedback shift register known as CRC-
32; the second word is updated using a truncated linear congruential generator.
The output byte is the result of a truncated pseudo-squaring operation. (See
Figure 1.)
unsigned char PKZIP stream byte (unsigned char pt)
{

unsigned short temp;
key0 = crc32 (key0, pt);
key1 = (key1 + LSB(key0)) * 0x08088405 + 1;
key2 = crc32 (key2, MSB(key1));
temp = key2 | 3;
return LSB((temp * (temp ˆ 1)) >> 8);

}
where ‘unsigned char’ is an 8-bit integer; ‘unsigned short’ is a 16-bit integer;
| is bitwise OR; ˆ is XOR; >> is right shift; ‘LSB’ and ‘MSB’ are the least-
significant and most-significant bytes, respectively; and ‘0x’ is a prefix indicating
hexadecimal.
For the purposes of this paper, we define crc32() to be

unsigned long crc32(unsigned long crc, unsigned char b)
{

return ((crc >> 8) ˆ crctab [LSB(crc) ˆ b]);
}

where ‘unsigned long’ is a 32-bit integer.
The old LFSR state is shifted right eight bits and XORed with the 32-bit

entry of a byte-indexed table to produce the new state. The index is the low
byte of the old state XORed with b. The function is linear; that is,

ZIP Attacks with Reduced Known Plaintext 127

Fig. 1. The PKZIP stream cipher. CRC-32, TLCG, CRC-32, truncated pseudo-square.

crctab[x ˆ y] = crctab[x] ˆ crctab[y].

The cipher is keyed by encrypting the user’s password and throwing away the
corresponding stream bytes. The stream bytes produced after this point are
XORed with the plaintext to produce the ciphertext.

The crux of all of our attacks is the fact that there is almost no diffusion
in the internal state. Of the ninety-six bits of internal state, eight bits of key0
affect key1; eight bits of key1 affect key2; and fourteen bits of key2 affect the
output stream byte.

128 M. Stay

1.2 Encrypted File Format

Zippers must prepend twelve bytes to the beginning of the file to be encrypted.
The ZIP file format specifies that the first eleven should be random and that
the last should be the low byte of the archived file’s CRC. The entire CRC is
stored in plaintext, and this byte serves as a password filter. Some zippers, like
InfoZIP [IZ] and WinZip [WZ], store ten random bytes and the low two bytes of
the CRC.
We assume that deflate was the algorithm used to compress the underlying

data. The author did a crude statistical test on a few hundred files of varying
types and sizes and found that given the file type, as indicated by its extension,
and its size, one can guess about the first two and a half bytes of the compressed
file. Since the checksum bytes are at the very end of the prepended header, we
can use them to augment the plaintext from the file in mounting our attacks.

2 Biham and Kocher’s Attack

For completeness, we review [BK94]’s results. We begin with some terminology.
Bits are numbered from right to left: bit 0 is the ones’ place, bit 1 is the twos’
place, bit 2 is the fours’ place, etc. Let pi be the ith known-plaintext byte, i = 1,
2, 3, ... Let si be the ith stream byte. Let key0i, key1i, and key2i be the value
of key0, key1, and key2 after processing pi. Note that s1 is a function of the
random header and the password; it is independent of the plaintext. In general,
bits 2 through 15 of key2i determine si+1.
Their attack proceeds as follows:

• XOR ciphertext and known plaintext to get known stream bytes s1 through
s13.

• Guess 22 bits of key213.
• This guess combined with s13 is enough to fill in eight more bits of key213,
for a total of thirty. s12 provides enough information to derive 30 bits of
key212 and the most significant byte of key113. In general, each stream byte
si allows us to calculate thirty bits of key2i−1 and the most significant byte
of key1i.

• We continue using stream bytes to make a list of the most significant bytes
of key113 through key18.

• For each list, we find 216 possibilities for the low 24 bits of key113 through
key19 by calculating the low byte of (key1i + LSB(key0i+1)) such that we
get the right high byte of key1i+1.

• From each of the 216 lists of complete key1’s, derive the low bytes of key013
through key010.

• Once we have the low bytes of key010, key011, key012, and key013, we can use
our knowledge of the plaintext bytes to invert the CRC function, since it’s
linear, and find the complete internal state at one point along the encryption.

• Once we have the complete internal state, we can decrypt backwards as far
as we want; we decrypt the ciphertext corresponding to p1 through p5 and
filter out wrong keys.

ZIP Attacks with Reduced Known Plaintext 129

We can break a file with work equivalent to encrypting around 238 bytes and
negligible memory. We need a total of thirteen bytes of known plaintext: eight
for the attack, and five to filter the 238 keys that remain. This is an upper bound;
each additional byte of plaintext eliminates approximately one list (see [BK94],
fig. 1).

2.1 Minor Improvement in the Amount of Plaintext Required

[BK94] throws away six bits in key17. By using them, we can reduce the plaintext
requirement to twelve bytes at the cost of increasing the work factor by four.

2.2 More Files in the Archive

If we have more than one file in the archive, we can make the reasonable as-
sumption that they were encrypted with the same password. Zippers encrypt at
least one check byte into every encrypted file to verify that the user entered the
correct password. Once we have the complete internal state of the cipher, we
can run it backwards to the beginning of the file and read out key0, key1, and
key2. Since this state is the same at the beginning of each file (it only depends
on the password), we can decrypt the check byte in each file and use it to filter
with instead of known plaintext from a single file. This also works if the files are
in different archives, but have the same password.
If the file was created in a zipper with two checksum bytes, we can break

the file with work equivalent to encrypting 11 ∗ 240 ≈ 243 bytes. We need two
checksum bytes followed by only four more known plaintext bytes in one file, and
three other files in the archive (six check bytes) to filter the 240 possible keys.
The factor of eleven in the estimate above is due to the fact that to decrypt the
checksum byte, we must decrypt the first eleven bytes of the random header.
If there is only one checksum byte per archived file, we can break the cipher

with the nearly the same amount of work, but we need seven files in the archive
and five bytes of known plaintext in addition to the checksum byte in the first
file.

3 Divide and Conquer

The limited diffusion of the internal state prompts us to ask how much of the
state we need to guess to process one byte. If it is small enough, we can guess it
and filter out keys that won’t work with our known stream bytes, then proceed
to the next part.
It turns out that we can get by with as few as 23 bits (See Figure 2.) Note

that we don’t need to guess 16 bits of key00 to calculate the low byte of key01:
if we distribute the XOR in the definition of crc32(), we see that we only need
to guess 8 bits of crc32(key00, 0):

130 M. Stay

Fig. 2. The twenty-three bits involved in generating a stream byte.

LSB(key01) = LSB(crc32(key00, p1))
= LSB(crc32(key00, 0)) XOR LSB(crctab[p1]).

Now we distribute the multiplication across the addition in the next step:

MSB(key11) = MSB((key10 + LSB(key01)) * 0x08088405 + 1)
(A) = MSB(LSB(key01) * 0x08088405) +
(B) MSB(key10 * 0x08088405) + possible carry bit.

ZIP Attacks with Reduced Known Plaintext 131

We separate the equation into parts we know (A) and parts we need to guess
(B), and find we need to guess nine bits, including a possible carry bit. Note
that since we know the low bits of (LSB(key01) ∗ 0x08088405), the carry bit
will usually give us more than one bit of information in the form of an upper or
lower bound on the rest of key10 ∗ 0x08088405) that we haven’t guessed yet.

Given a stream byte si+1, we can find sixty four values for bits 2..15 of key2i.
It’s easy to see why: fourteen bits of key2i produce eight bits of si+1, so there
are six left over. We can create a table of 256 x 64 bytes such that given si+1 and
bits 10..15 of key2i, we can look up bits 2..9 of key2i. We call this the preimage
table.
We guess bits 10..15 of crc32(key20, 0) and use s2, the preimage table, and

crctab[MSB(key11)] to find bits 2..9 of crc32(key20, 0). We end up with 223 key
guesses.
To find the next part of the internal state, we have to guess about the same

amount. This guess is not illustrated, but we basically guess about eight more bits
of information in each of the three keys. The only complicated part is separating
what we know about key1 from what we don’t.
We guess bits 8..15 of crc32(key00, 0) directly; the next guess involving key1

is a little more complicated:

MSB(key12) = MSB((key11 + LSB(key02)) * 0x08088405 + 1)

= MSB(LSB(key02) * 0x08088405) +
MSB(key11 * 0x08088405) + possible carry bit

= MSB(LSB(key02) * 0x08088405) +
MSB((key10 + LSB(key01)) * 0xD4652819) +
possible carry bit

(A) = MSB(LSB(key02) * 0x08088405) +
(A) MSB(LSB(key01) * 0xD4652819) +
(B) MSB(key10 * 0xD4652819) + possible carry bit.

Again, (A) is known and we have to guess (B) nine bits, including a possible carry
bit. The carry bit establishes an upper or lower bound on (key10 ∗0xD4652819).
We end this filter by guessing bits 16..23 and bits 0..1 of crc32(key20, 0) and
calculating a stream byte. We have guessed 27 more bits, but the output byte
has to match s3, so we expect 223+27−8 = 242 key guesses to pass this filter.
At this point, we have guessed 24 bits of crc32(key20, 0) and we know s1.

From this we can calculate, on average, one full value of key20. There are also
only around 213 possibilities for key10 due to the restrictions from the carry
bits. So the third stage consists of guessing bits 16..23 of crc32(key00, 0) and
running through the 213 possible values for key10. We expect 242+13+8−8 = 255

key pieces to pass this filter.
Finally, we guess the last eight bits of key00 and we have a complete internal

state. We will have 263 complete keys to filter with other bytes, whether they

132 M. Stay

are in the archived file or in checksum bytes in other files. The cost is approxi-
mately the same as encrypting 263 bytes under the stream cipher. The plaintext
requirement is four bytes total; at least one of these may come from the file’s
own check byte(s).
This is 128 times faster than guessing three stream bytes and using [BK94].

4 Parallel Divide and Conquer Attack

InfoZIP is a cross-platform freeware zipper distribution. Because the C source
code is readily available and is free, it forms the basis of most non-PKZIP zip-
pers, including the very popular WinZip and NetZip. According to CNET’s Do-
wnload.com [DL], WinZip and NetZip constitute over 96% of the total archiver
downloads.
APPNOTE.TXT does not specify how to generate the prepended random

bytes; it only says that they are used to scramble the internal state of the cipher
and are discarded after decryption. InfoZIP implements it as follows:
1. srand(time(NULL) ˆ getpid())
2. For each file in the order they are stored,
3. Generate ten random bytes by calling rand() ten times and discarding all

but the high eight bits of each return value.
4. Initialize the cipher with the password.
5. Encrypt the ten random bytes.
6. Append the low two bytes of the checksum.
7. Reinitialize the cipher with the password.
8. Encrypt the twelve-byte header and the compressed file.
Note that the random bytes were encrypted twice: once in step 5, and again

in step 8.
rand() is usually implemented as a truncated linear congruential generator.

WinZip and NetZip use Microsoft Visual C++’s implementation, which has a
31-bit seed:
unsigned long seed;
void srand(unsigned long s) { seed = s; }
unsigned short rand()
{

seed = 0x343FD * seed + 0x269EC3;
return ((seed >> 16) & 0x7FFF);

}
Let ri,j be the jth random byte in the ith archived file; i, j = 1, 2, 3, ... Note

that the internal state of the cipher is the same both times ri,1 is encrypted.
Since XOR is its own inverse, ri,1 is decrypted for all i. Also, every ri,1 reveals
the high eight bits of the internal state of the random number generator.
Since rand() is linear, we can compute two new constants for a generator

such that it outputs every tenth output of the original. We know the upper eight
bits of the generator, so we guess the low 23 bits and start generating every tenth
output and comparing them to the revealed bytes. Five archived files suffice to

ZIP Attacks with Reduced Known Plaintext 133

determine uniquely the seed that was used in the random number generator, and
therefore every ri,j .

Let us emphasize that we do not have known plaintext at this point, in the
sense that [BK94] requires. The random bytes were encrypted twice, so we do
not know the actual output of the stream cipher during the first and second
encryption. What we can derive is the XOR of these stream bytes.

4.1 The Attack

We can adapt the divide-and-conquer algorithm from section 3 to use this in-
formation. Once we know the “random” headers, we can exploit the fact that
the internal state was the same at the beginning of each embedded file and
filter guesses with multiple known plaintext bytes in parallel, instead of being
restricted to one byte as in section 3.
Let si,j,k be the jth stream byte of the kth encryption of the bytes in the

ith archived file; i, j = 1, 2, 3, ...; k = 1, 2. We guess the same 23 bits as in
section 3, but since we don’t know the actual value of s1,2,1, we have to guess it,
too. It is equivalent, and more convenient, to guess bits 2..9 of crc32(key20, 0).
Now we have a prediction for s1,2,1, and can derive s1,2,2. We don’t have any
information at all about si,1,1, since it’s the same as si,1,2 and cancels out. We
guess it, and check to see that the second encryption spits out s1,2,2. We have to
guess a carry bit for the second encryption, too, so of the 223+8+8+1 = 240 key
guesses, we expect 240−8 = 232 key pieces to pass this filter on this file.
We want to filter out all but the correct guess at this stage; fortunately, we

know that the state we are trying to guess was the same at the start of each
encryption. We have an eight-bit value to filter with in each file,
si,2,1 XOR si,2,2, but we also guess two carry bits, so with four more files in the
archive, we can reduce the number of false positives to around 232−6∗4 = 256.
Note that we now have ten carry bits putting restrictions on key10 instead of
just one.
We continue to the next byte of each file. This time we guess the same 26 bits

as in section 3 plus two carry bits, one for each encryption. With five files, we have
30 bits to filter with. We expect that 28+26+2−30 = 26 = 64 key guesses survive
the second stage. Total work for this stage is 28+26+2 = 236 byte encryptions.
At this point we can derive key20 as before. Due to all the carry bit restric-

tions, we only have on the order of 28 possible key10’s. We guess eight more bits
of crc32(key10, 0) and run through all the remaining key10’s. Since we aren’t
guessing carry bits any more, we have 40 bits to filter with. 26+16−40 < 1, and
we expect that only the correct guess survives. Finally, we guess the last eight
bits of crc32(key10, 0) and only the correct guess survives.
Experimentally, we have found that a key guess passes the second stage only

if our guess for si,1,1 is correct. This usually occurs about one quarter of the
way through the first 40-bit keyspace. After that, we only try one value for si,1,1
instead of 256 and the rest of the attack takes at most a few minutes.
The work done in the first stage dwarfs the rest of the work needed. The

total work is therefore about the same as encrypting 239 bytes. We assume that

134 M. Stay

there are five files in the archive that were encrypted consecutively as described
above. Decrypting a file created with this kind of weak PRNG usually takes
under two hours on a 500 MHz Pentium II. One can then take the three keys
and use [BK94]’s second algorithm to derive a password, if one desires, although
the three keys suffice to decrypt the files.

Table 1. PKZip Attack Complexity. Files are assumed to have been archived with two
checksum bytes.

Attack Archived files Plaintext bytes Complexity
BK94 1 13 238

BK94 (tradeoff) 1 12 240

BK94 (tradeoff) 4 6 11 ∗ 240
Divide and conquer 1 2 263

Parallel divide and conquer
(WinZip) 5 0 239

5 Conclusion

The PKZIP stream cipher is very weak. The deflate algorithm makes it harder
to get plaintext, but in most cases we can reduce the plaintext requirement to
the point where one can guess enough plaintext based on file type and size alone.
The most popular zippers on the internet are also susceptible to an attack that
runs in two hours on a single PC based on known plaintext provided by the
application and independent of the archived files themselves.

References

[BK94] Biham, Eli and Paul Kocher. “A Known Plaintext Attack on the PKZIP
Stream Cipher.” Fast Software Encryption 2, Proceedings of the Leuven
Workshop, LNCS 1008, December 1994.

[DL] http://download.cnet.com/downloads/0,10151,0-10097-106-0-1-5,00.
html?tag=st.dl.10097 106 1.lst.lst&

[IZ] ftp://ftp.freesoftware.com/pub/infozip/
[K92] Kocher, Paul. ZIPCRACK 2.00 Documentation. 1992.

http://www.bokler.com/bokler/zipcrack.txt
[PKZ] http://www.pkware.com
[PGP98] User’s Guide, Version 6.0. Network Associates, Inc., 1998. p.145.

http://www.nai.com
[WZ] http://www.winzip.com

	1 Introduction
	1.1 The PKZIP Stream Cipher
	1.2 Encrypted File Format

	2 Biham and Kocher ’s Attack
	2.1 Minor Improvement in the Amount of Plaintext Required
	2.2 More Files in the Archive

	3 Divide and Conquer
	4 Parallel Divide and Conquer Attack
	4.1 The Attack

	5 Conclusion
	References

