Algebra – Set Theory & Functions

Advanced Mathematics Program, Summer 2019

Using Venn diagrams, convince yourself that each of the following statements is true and then prove them using the methods discussed in lecture.

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 1. Suppose $A \subseteq B$ and $B \subseteq C$. Prove that $A \subseteq C$.
- 2. (a) Prove that $A \cap B \subseteq A$ and $A \cap B \subseteq B$.
 - (b) Prove that $A \subseteq A \cup B$ and $B \subseteq A \cup B$.
- 3. Prove that $(A \cap B) \cap C = A \cap (B \cap C)$.
- 4. Recall that any rational number can be written as a fraction of integers. That is for any $q \in \mathbf{Q}$, we can write $q = \frac{n}{d}$ where $n, d \in \mathbf{Z}$. Suppose I tried to define a function $f : \mathbf{Q} \to \mathbf{Z}$ by $f(\frac{n}{d}) = n + d$. Why is such a "function" not well-defined?
- 5. Recall that if the domain of a function $f : B \to C$ is the same as the codomain of a function $g : A \to B$, we can define the composition of these functions $f \circ g : A \to C$ given by $f \circ g(a) = f(g(a))$.
 - (a) Prove that if $f, g: A \to A$ are bijections, then $f \circ g: A \to A$ is a bijection.
 - (b) If A is finite with n elements, how many bijections A → A are there? That is, how many elements are in the set Bij(A) := {f : A → A | f is bijective}?
- 6. A relation is a way of comparing two elements in a set. Examples of relations on **Z** are $=, \leq, <, \geq$, and >. An equivalence relation is a relation \sim that "acts like" equality. Specifically, \sim has the following properties:
 - (Reflexive) $a \sim a$
 - (Symmetric) If $a \sim b$, then $b \sim a$
 - (Transitive) If $a \sim b$ and $b \sim c$, then $a \sim c$.

Prove that each of the following relations are equivalence relations on the given sets:

- (a) On the set **Z**, $n \sim m$ iff n m is even.
- (b) On the set **Z**, $n \sim m$ iff n m is divisible by 4.
- (c) On the set { 0, 1, 2, 3, }, $n \sim m$ iff n m is even.
- (d) On the set of gumballs in a gumball machine, one gumball is ~ to another iff they are the same color.
- 7. Given an equivalence relation ~ on a set *A* and en element $a \in A$, we can define the equivalence class of *a* by

$$[a] := \{b \in A : a \sim b\}$$

We can further define the quotient set of A by \sim as the set of equivalence relations. That is

$$A/\sim := \{[a] : a \in A\}$$

For parts (a), (b), and (c) of exercise 8 above, how many elements are in the respective quotient sets.

8. Given a set *A* and an equivalence relation ~ on *A*, prove that the map $p: A \rightarrow A/ \sim$ given by p(a) = [a] is surjective. This map is called a projection map.