Algebra – Binary Operations & Groups

Advanced Mathematics Program, Summer 2019

For each of the following sets, figure if the proposed operation is a valid (well-defined) binary operation on that set.

- 1. (N, -), where N are the natural numbers, and is the difference of two numbers.
- 2. (**Q**, *), where **Q** is set the rational numbers, and * is the quotient of two numbers. That is a * b = a/b.
- 3. (X, \star) , where $X = \{-1, 0, 1, 2, 3\}$ and $a \star b = ab a b$.
- 4. (W, \times) , W is the set of all words in the Scrabble dictionary of words, and for any two words $x, y \in W$, we define $x \times y$ to be the word "word".
- 5. (X, *), where X is a set with three elements, and for $a, b \in X$, a * b will be the element of X that is neither a nor b.

Consider the following binary operation * defined on the set $S = \{a, b, c\}$:

Prove that this binary operation actually defines a group on S. What is the identity element of the group? For each element of S can you identify it's inverse? Finally, can you show that * is associative? (this last part might be tedious)

- 1. For each of the following sets equipped with a binary operation figure why the binary operation *doesn't* give the set a group structure.
 - (a) (N, \times) , where N is the natural numbers, and \times is the usual product of two numbers.
 - (b) (\mathbf{R}, \times) , where **R** is the real numbers, and \times is the usual product of two numbers.
 - (c) (S, *), where S be the set of all colors, and a * b is the color that results from mixing the colors a and b in equal parts.
- 2. Let \mathbf{Q}^+ denote the set of positive rational numbers.

- (a) Prove that Q^+ under multiplication forms a group.
- (b) Define * on \mathbf{Q}^+ by $a * b = \frac{1}{2}(a \times b)$. Prove that $(\mathbf{Q}^+, *)$ forms a group.
- 3. A group (G, *) has to have an identity element e. Prove that this element has to be unique. That is, prove that there cannot be another element $e' \in G$ that satisfied the characterization of an identity element.
- 4. In a group G, every element has to have an inverse. That is for every group element x there exists a group element x^{-1} such that $xx^{-1} = e$ and $x^{-1}x = e$. Prove that inverse elements are unique. That is, prove that for any x there cannot be more than one element that acts like its inverse.
- 5. Let $S = \{a, b, c, d\}$. Complete the following table so that * defines a valid *associative* binary operation on S. Is (S, *) a group?

- 6. Let $S = \{a, b, c, d\}$. After you realize that the S and binary operation in exercise 5 doesn't define a group, can you define an operation on \star on S that *does* define a group? Note that you'll have to define this structure explicitly by writing out the table for the operation \star .
- 7. For a binary operation * on a set S, we'll define an element $x \in S$ to be idempotent if x * x = x. Prove that if S is a group, that it has exactly one idempotent element.
- 8. Consider again the binary operation \star defined above in the first problem on this page, where \star is defined on some set $X \subset \mathbf{Z}$ as $a \star b = ab a b$.
 - (a) (PLAY) How many *finite* subsets $X \subset \mathbf{Z}$ can you find on which \star will be a valid binary operation on X?
 - (b) (MORE PLAY) Prove or disprove: there are infinitely many distinct subsets $X \subset \mathbf{Z}$ on which \star is a valid binary operation.
- 9. (QUITE TOUGH) Let * be a commutative and associative binary operation on a set S. (* being commutative means that a*b=b*a for every a and b in S.) Assume that for every x and y in S, there exists z in S such that x*z=y. (This z may depend on x and y.) Show that if a, b, c are in S and a*c=b*c, then a=b.