Algebra – Abelian Groups & Subgroups

Advanced Mathematics Program, Summer 2019

Prove that a cyclic group must be abelian.

- 1. Let *G* be a group and *H* a *nonempty* subset of *G*. Prove that *H* is a subgroup of *G* if and only if for any $a, b \in H$, $ab^{-1} \in H$.
- 2. Let *G* be any group and *g* any element of *G*. Consider the following set:

$$\langle g \rangle = \{ g^k : k \in \mathbf{Z} \}$$

Prove that $\langle g \rangle$ is a subgroup of G. We call $\langle g \rangle$ the cyclic subgroup of G generated by g.

- 3. Suppose you have a group G, and two subgroups H < G and K < G. Prove that $H \cap K$ will also be a subgroup of G.
- 4. Prove that any subgroup of an abelian group is abelian.
- 5. Recall the integers modulo n, \mathbf{Z}_n .
 - (a) Let $m \in \mathbb{Z}_n$ such that gcd(m, n) = 1. Prove that \mathbb{Z}_n is generated by m.
 - (b) Let $m \in \mathbb{Z}_n$ such that gcd(m, n) = d. Prove that the subgroup $\langle m \rangle$ is a group with $\frac{n}{d}$ elements.
- 6. Prove that any subgroup of a cyclic group must be cyclic.