Algebra – Playing with Groups

Advanced Mathematics Program, Summer 2019

- 1. Can the empty set be a group?
- 2. Suppose you have a group with six elements:

{*e*, *a*, *b*, *ab*, *ba*, *aba*}

The element *e* is the identity element for this group. The element *ab*, *ba*, and *aba* have been given names that indicate how they can be written as a product of the elements *a* and *b*. Furthermore these three facts are also true about this group:

aa = e bb = e aba = bab

Can you write out the operation table for this group?

3. Consider the groups whose operation tables are

	$+_4$	0	1	2	3				*	е	a	b	С	2
-	0	0	1	2	3	-			e	е	a	b	С	;
	1	1	2	3	0				a	a	b	С	e	?
	2	2	3	0	1				b	b	С	е	a	ı
	3	3	0	1	2				c	С	е	а	k)
*	e	a	b	С				×		1	-1		i	$-\mathfrak{i}$
е	e	a	b	С				1		1	-1		i	—i
a	a	е	С	b			-	-1	-	-1	1	_	i	i
b	b	С	е	а				i		i	$-\mathfrak{i}$	-	1	1
С	c	b	a	е				-i	-	-i	i		1	-1

You've seen all of these tables this week. Some of these tables actually give the "same" group though.

- (a) Which are the same? How many distinct groups are given by those four tables?
- (b) (CHALLENGE How many groups are there *total* with four elements? You can figure this out by filling in a general group table an seeing how many choices you had to make, like we did for a group with three elements.

4. Here's a group operation table. Note that in this group, *e* is not the identity element. Instead *a* is the identity.

*	a	b	С	d	е	f	Z	у	x	w	v	и
а	a	b	С	d	е	f	Z	у	x	w	v	и
b	b	С	d	е	f	a	у	x	w	v	и	\mathcal{Z}
С	С	d	е	f	а	b	x	w	v	и	Z	у
d	d	е	f	a	b	С	w	v	и	Z	у	x
е	е	f	a	b	С	d	v	и	Z	у	x	w
f	f	a	b	С	d	е	и	Z	у	x	w	v
Z	Z	и	v	w	x	у	а	f	е	d	С	b
у	y	Z	и	v	w	x	b	a	f	е	d	С
x	x	у	Z	и	v	w	С	b	а	f	е	d
w	w	x	у	Z	и	v	d	С	b	а	f	е
v	v	w	x	у	Z	и	е	d	С	b	а	f
и	и	v	w	x	у	Z	f	е	d	С	b	a

Isn't that a nice table? Trivia fact: this is the group table for the dihedral group D_6 , which one can think of as the group of symmetries of a regular hexagon.

- (a) What is the order of the element *z*? What is the order of the element *b*?
- (b) Can you find a subgroup of this group of order 3?
- (c) Is this group commutative?
- (d) Identity the subset of elements of this group that commute with *all* the other elements of the group. This subset is called the center of the group.
- 5. In Exercise 4 we identified the center of a certain group. Let's define the center in general. For a group *G*, the center of *G*, often denoted *Z*(*G*), is defined as

$$Z(G) = \left\{ x \in G : gx = xg \text{ for all } g \in G \right\}.$$

That is, the center is every element x in G that commutes with *every* other element of G. But the center is not just a subset of the group. Prove that the center is a subgroup of G.

6. Suppose you have a group *G*, and two subgroups H < G and K < G. Prove that $H \cap K$ will also be a subgroup of *G*.