Algebra – Permutation (Symmetric) Groups

Advanced Mathematics Program, Summer 2019

- 1. First some healthy computational practice. The group S_3 is the group is the group of all permuations of a set with 3 elements. What is the order of S_3 ? Can you write down all the elements of S_3 ?
- 2. Consider the permutations σ and τ in S_6 given as

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix} \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 1 & 6 & 3 \end{pmatrix}$$

- (a) Can you write down σ^{-1} and τ^{-1} ?
- (b) Can you write down $\tau \sigma$ and $\sigma \tau$ and σ^2 ?
- (c) What is the order of σ ?
- 3. Using cycle notation, take $\mu = (7 \ 4 \ 6) \in S_8$. What is the order of μ ? What is the order of the cycle $(1 \ 5 \ 2 \ 4 \ 8) \in S_8$?
- 4. Take the same σ and τ above in Exercise 2 and write them in cycle notation. After you've written them in cycle notation, take the products $\sigma\tau$ and $\tau\sigma$ and see that you got the same thing you did before.
- 5. Say S_n is the group of all permutations of the set $\{1, 2, ..., n\}$. Consider the subset of $H_1 \subset S_n$ consisting of all the permutations that leave the number $1 \in \{1, 2, ..., n\}$ fixed (all the permutations that send 1 to 1). Prove that H_1 is a *subgroup* of S_n .
- 6. Prove that the order of S_n is n!.
- 7. Write the following products of cycles as a product of *disjoint* cycles.

$$(987654)(159438)$$
 $(15)(25)(27)(17)(13)(97)(12)(37)$

8. (TOUGHIE) A transposition is a 2-cycle. So, for example $(2\,3) \in S_3$ is a transposition. Prove that *every* permutation can be we written as a product of transpositions.