Algebra – Isomorphisms & Homomorphisms

Advanced Mathematics Program, Summer 2019

- 1. Prove that a group is isomorphic to itself.
- 2. Prove that $\mathbf{Z}_n \cong \mathbf{Z}_m$ if and only if m = n.
- 3. Recall the Klein 4-group K given by the table

*	е	a	b	С
е	е	a	b	С
a	a	е	С	b
b	b	С	е	a
С	c	b	a	е

Prove that *K* is **not** isomorphic to Z_4 .

- 4. Prove that $(\mathbf{R}, +) \cong (\mathbf{R}_{>0}, \cdot)$.
- 5. Recall that the kernel of a homomorphism $f: G \rightarrow H$ is defined as

$$\ker(f) = \{g \in G : f(g) = e_H\}$$

Prove that ker(f) is a subgroup of *G*.

- 6. Prove that a homomorphism is injective if and only if its kernel is trivial.
- 7. Consider the map $f : \mathbb{Z} \to \mathbb{Z}_5$ where f(m) is defined to be the remainder when m is divided by 5. More precisely, we can write any integer as m = 5q + r where $q \in \mathbb{Z}$ and $r \in \mathbb{Z}_5$; we define f(m) = r.
 - (a) Prove that this map is a surjective homomorphism.
 - (b) Prove that ker(f) is the set of integers divisible by 5.
- 8. Let $f : G \to H$ be a homomorphism and $h \in \ker(f)$. Prove that $ghg^{-1} \in \ker(f)$ for any $g \in G$.