Algebra – Quotient Groups and the Isomorphism Theorem

Advanced Mathematics Program, Summer 2019

- 1. Consider the subgroup $N = \{0, 4, 8\} \le \mathbb{Z}_{12}$. What does the quotient \mathbb{Z}_{12}/N look like? Based on this example and the example we went over in lecture, what can you conjecture about \mathbb{Z}_n/N where *N* is some subgroup of \mathbb{Z}_n ?
- 2. Let *K* denote the Klein 4-group and $N = \{e, a\} \leq K$. Compute K/N.
- 3. Recall the group $S_3 = \{(), (12), (23), (13), (123), (132)\}$ and the subgroup $H = \{(), (12)\}$
 - (a) Prove that $(123)H \neq H(123)$ and hence *H* is *not* normal.
 - (b) Prove that the binary operation on the cosets of *H* is *not* well-defined. That is, find *a*, *b* ∈ *S*₃ such that *aH* = *bH*, but either *axH* ≠ *bxH* or *xaH* ≠ *xbH* for some *x* ∈ *S*₃.
- 4. Let *Q* be the quaternion group and $N = \{1, -1\} \leq Q$ a normal subgroup. Compute Q/N.
- 5. We know that $(\mathbf{R}, +)$ is an abelian groups and so $\mathbf{Z} \subseteq \mathbf{R}$ is a normal subgroup. Prove that every finite cyclic group is isomorphic to a subgroup of \mathbf{R}/\mathbf{Z} .
- 6. Let $N \subseteq G$ be a normal subgroup and let $\pi: G \to G/N$ denote the quotient map. Prove that ker(π) = *N*.
- 7. Consider the map $f : \mathbb{Z} \to \mathbb{Z}_n$ where f(m) is defined to be the remainder when *m* is divided by *n*.
 - (a) Prove that this map is a surjective homomorphism.
 - (b) Prove that ker(f) is $n\mathbf{Z}$, the set of integers divisible by n.
 - (c) Use the first isomorphism theorem to prove that $\mathbf{Z}_n \cong Z/nZ$.
- 8. Let $N \subseteq G$ be a normal subgroup and let $\iota: N \to G$ denote the inclusion map and $\pi: G \to G/N$ denote the quotient map. Prove that

$$Im(\iota) = ker(\pi)$$

where $Im(\iota)$ denotes the image of the map ι .