Quotient Groups and the Isomorphism Theorem

AMP Day 8

Jonathan Alcaraz

Here's a warm up proof following up on the stuff we discussed yesterday.

Lemma(?): Let $H \leq G$ and $x \in G$. Then

xH = xhH

for any $h \in H$.

Let $y \in xhH$. Then $y = xhh_1$ for some $h_1 \in H$. Since H is a subgroup, $hh_1 \in H$, so $y \in xH$.

Let $z \in xH$. Then $z = xh_2$ for some $h_2 \in H$. In particular, $z = xhh^{-1}h_2$. Since H is a subgroup, then $h^{-1}h_2 \in H$, so $z \in xhH$.

Let G be a group and $H \leq G$ a subgroup. The set of cosets is denoted by:

$$G/H = \{xH : x \in G\}$$

By the conjectures Mike discussed yesterday, if G is finite, then |G/H| = |G|/|H|. We can try to define a binary operation on G/H by

$$(\mathbf{x}\mathbf{H})(\mathbf{y}\mathbf{H}) = (\mathbf{x}\mathbf{y})\mathbf{H}.$$

However, this would not be well-defined. We can explore specific counter-examples in the exercises, let's observe the main obstruction. If $y_1H = y_2H$, then $y_2 = y_1h$ for some $h \in H$. So $(xy_1)H = (xy_2h)H = (xy_2)H$. We might start to think this means the operation is well-defined, but if $x_1H = x_2H$, then $x_1 = x_2h$ for some $h \in H$. So $x_1yH = x_2hyH$, but there is no way to get the h out.

Definition

Let G be a group and $N \leq G$ a normal subgroup. The set G/N with the operation given above forms a group called the **quotient group** of G by N.

This is a definition, but we're also claiming that this thing is actually a group. Here's a proof of this claim.

WELL-DEFINED:Let $x_1, y \in G$ and $x_2 \in G$ such that $x_1N = x_2N$. We need to show that $x_1yN = x_2yN$. Since $x_1N = x_2N$, then in particular, $x_1 = x_2n$ for some $n \in N$. So

 $x_1yN = x_2nyN$

Since N is normal, then Ny = yN, so $ny = y\tilde{n}$ for some $\tilde{n} \in N$. So

$$x_2$$
ny $N = x_2y\tilde{n}N = x_2yN$

ASOCIATIVITY: This follows from the fact that the operation on G is associative.

IDENTITY: The identity element in G/N is eH = H. Indeed:

$$(eN)(gN) = (eg)N = gN$$

and

$$(gN)(eN) = (ge)N = gN$$

INVERSES: Given $gN \in G/N$, the inverse element is $(g^{-1})N$. Indeed

 $(gN)(g^{-1}N) = (gg^{-1})N = eN$

and

$$(g^{-1}N)(gN) = (g^{-1}g)N = eN$$

Let's see some examples:

Example

Consider the subgroup $N_2 = \{0, 3\} \leq \mathbb{Z}_6$ Recall that any subgroup of an abelian group is normal. Let's look at \mathbb{Z}_6/N_2 . First of all, what are the cosets of N_2 ?

$$\{0 + N_2, 1 + N_2, 2 + N_2\}$$

We propose $\mathbb{Z}_6/\mathsf{N}_2 \cong \mathbb{Z}_3$. Indeed,

$$\begin{split} \phi \colon \mathbb{Z}_3 &\to \mathbb{Z}_6/N_2 \\ k &\mapsto k + N_2 \end{split}$$

is an isomorphism.

Definition

Given a normal subgroup $N \trianglelefteq G$, the **quotient map** is defined by

$$\pi \colon G \to G/N$$
$$g \mapsto gN$$

Yesterday, we showed that the kernel of any homomorphism is normal. Which means we can take a quotient group of the domain by the kernel. Well, we get a dope fact:

The First Isomorphism Theorem If φ : $G \to H$ is a homomorphism, then there exists an injective homomorphism $\tilde{\varphi}$: $G/\ker(\varphi) \to H$ such that $\varphi = \tilde{\varphi} \circ \pi$. Moreover, if φ is surjective, then $\tilde{\varphi}$ is an isomorphism.

Let $K = \ker(\phi)$. The picture you should have here is:

$$\begin{array}{c} G \xrightarrow{\phi} H \\ \downarrow^{\pi} \xrightarrow{\tilde{\phi}} \end{array} \\ G/K \end{array}$$

but we need to cook up $\tilde{\phi}$ ourselves. Let's give it a shot.

Define

$$\begin{split} & \tilde{\phi} \colon \mathsf{G}/\mathsf{K} \to \mathsf{H} \ & \mathsf{g}\mathsf{K} \mapsto \phi(\mathsf{g}) \,. \end{split}$$

Now, there is a question whether this is even well-defined. This is where the magic happens. Suppose $g_1K = g_2K$. In particular, $g_1 = g_2k$ for some $k \in K$. So

$$\begin{split} \tilde{\phi}(g_1 \mathsf{K}) &= \phi(g_1) \\ &= \phi(g_2 \mathsf{k}) \\ &= \phi(g_2)\phi(\mathsf{k}) \\ &= \phi(g_2) \\ &= \tilde{\phi}(g_2 \mathsf{K}) \,. \end{split}$$

To prove that $\tilde{\phi}$ is injective, recall that a homomorphism is injective if and only if it has trivial kernel. Suppose $gK \in \ker(\tilde{\phi})$. We want to show that gK is secretly the trivial element. Indeed,

$$\tilde{\phi}(gK) = \phi(g) = e_H$$

so $g \in K$ and hence gK = eK.

In the case where ϕ is surjective, then for any $h \in H$, there is some $g \in G$ such that $\phi(g) = h$. In particular,

$$\tilde{\phi}(gK) = \phi(g) = h$$