Quiz 1 for Section 3

History of Mathematics UCR Math-153-03, Spring 2019

1. Find the Egyptian fraction expansion for $\frac{7}{26}$.

Note that there are infinitely many Egyptian fraction expansions of any fraction between 0 and 1. It turns out though that the greedy algorithm provides a nice expansion for $\frac{7}{26}$. Notice that $\frac{1}{4}$, which equals $\frac{7}{28}$, is strictly less than $\frac{7}{26}$, so let's write

$$\frac{7}{26} = \frac{1}{4} + d$$
.

Solving for *d*, we get that it must be $\frac{1}{52}$ which has a numerator of 1, so we're done.

There is another question on the back.

2. The pentagonal numbers are given by P(2) = 5 and P(n+1) = P(n) + 3n + 1 for $n \ge 2$. Prove by induction that $P(n) = \frac{1}{2}(3n^2 - n)$.

First, our base case is covered since $P(2) = \frac{1}{2}(3(2)^2 - (2)) = 5$. Now suppose that for a *fixed* natural number $k \ge 2$ we have $P(k) = \frac{1}{2}(3k^2 - k)$. Then we have

$$\begin{split} P(k+1) &= P(k) + 3k + 1 \\ &= \frac{1}{2}(3k^2 - k) + 3k + 1 \\ &= \frac{1}{2}(3k^2 - k + 6k + 2) \\ &= \frac{1}{2}(3k^2 + 6k + 3 - k - 1) \\ &= \frac{1}{2}\left(3(k+1)^2 - (k+1)\right). \end{split}$$

So $P(n) = \frac{1}{2}(3n^2 - n)$ holds for n = k + 1 too, which by induction means it holds for all $n \ge 2$.

Quiz 1 for Section 2

History of Mathematics UCR Math-153-03, Spring 2019

1. Find the Egyptian fraction expansion for $\frac{5}{26}$.

Note that there are infinitely many Egyptian fraction expansions of any fraction between 0 and 1. It turns out though that the greedy algorithm provides a nice expansion for $\frac{5}{26}$. Notice that $\frac{1}{6}$, which equals $\frac{5}{30}$, is strictly less than $\frac{5}{26}$, so let's write

$$\frac{5}{26} = \frac{1}{6} + d$$
.

Solving for *d*, we get that it must be $\frac{1}{39}$ which has a numerator of 1, so we're done.

There is another question on the back.

2. The hexagonal numbers are given by H(2) = 6 and H(n+1) = H(n) + 4n + 1 for $n \ge 2$. Prove by induction that $H(n) = 2n^2 - n$.

First, our base case is covered since $H(2) = 2(2)^2 - (2) = 6$. Now suppose that for a *fixed* natural number $k \ge 2$ we have $H(k) = 2k^2 - k$. Then we have

$$H(k+1) = H(k) + 4k + 1$$

= $(2k^2 - k) + 4k + 1$
= $2k^2 + 4k + 2 - k - 1$
= $2(k+1)^2 - (k+1)$.

So $H(n) = 4n^2 - n$ holds for n = k + 1 too, which by induction means it holds for all $n \ge 2$.