Quiz 3 for Section 3

History of Mathematics UCR Math-153-03, Spring 2019

- 1. (a) Let n > 1 be an integer. Explain why $k^2 \equiv (n k)^2 \pmod{n}$ for all $k \in \mathbb{Z}$.
 - (b) Find all integers $a \in \{0, 1, ..., 16\}$ such that $a \equiv b^2 \pmod{17}$ for some integer *b*.

We notice that $(n - k)^2 = n^2 - 2nk + k^2$. The first two summands of this are divisible by *n*, so $n^2 - 2nk + k^2 \equiv k^2 \pmod{n}$.

To find all integers $a \in \{0, 1, ..., 16\}$ such that a is a square modulo 17, we must simply calculate the squares of $\{0, 1, ..., 8\}$ modulo 17 We only need to check up to 8 by part (a). These squares are

x	$x^2 \pmod{17}$
0	0
1	1
2	4
3	9
4	16
5	8
6	2
7	15
8	13

so the numbers *a* such that $a \equiv b^2 \pmod{17}$ for some integer *b* are $a \in \{0, 1, 2, 4, 8, 9, 13, 15, 16\}$.

2. The Cubic Formula shows that one root of the polynomial $x^3 - 3x + 1 = 0$ has the form

$$\sqrt[3]{\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) + \sqrt[3]{\cos\left(\frac{2\pi}{3}\right) - i\sin\left(\frac{2\pi}{3}\right)}}$$

where $i^2 = -1$. Express this as a real number; your answer should have the form $k \cos \theta$ for some explicit value of θ and $k \in \mathbf{R}$. (HINT: $e^{i\alpha} = \cos \alpha + i \sin \alpha$)

Utilizing the hint, and the fact that sine is an odd function while cosine is an even function,

$$\sqrt[3]{\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)} + \sqrt[3]{\cos\left(\frac{2\pi}{3}\right) - i\sin\left(\frac{2\pi}{3}\right)}$$

$$= \sqrt[3]{\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)} + \sqrt[3]{\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)}$$

$$= \sqrt[3]{e^{i\frac{2\pi}{3}} + \sqrt[3]{e^{-i\frac{2\pi}{3}}}}$$

$$= e^{i\frac{2\pi}{9}} + e^{-i\frac{2\pi}{9}}$$

$$= \cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right) + \cos\left(-\frac{2\pi}{9}\right) + i\sin\left(-\frac{2\pi}{9}\right)$$

$$= \cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right) + \cos\left(\frac{2\pi}{9}\right) - i\sin\left(\frac{2\pi}{9}\right)$$

$$= 2\cos\left(\frac{2\pi}{9}\right).$$

Quiz 3 for Section 2

History of Mathematics UCR Math-153-02, Spring 2019

- 1. (a) Let n > 1 be an integer. Explain why $k^2 \equiv (n k)^2 \pmod{n}$ for all $k \in \mathbb{Z}$.
 - (b) Find all integers $a \in \{0, 1, ..., 18\}$ such that $a \equiv b^2 \pmod{19}$ for some integer *b*.

We notice that $(n - k)^2 = n^2 - 2nk + k^2$. The first two summands of this are divisible by *n*, so $n^2 - 2nk + k^2 \equiv k^2 \pmod{n}$.

To find all integers $a \in \{0, 1, ..., 18\}$ such that a is a square modulo 19, we must simply calculate the squares of $\{0, 1, ..., 9\}$ modulo 19 We only need to check up to 9 by part (a). These squares are

x	$x^2 \pmod{19}$
0	0
1	1
2	4
3	9
4	16
5	6
6	17
7	11
8	7
9	14

so the numbers *a* such that $a \equiv b^2 \pmod{19}$ for some integer *b* are $a \in \{0, 1, 4, 6, 7, 9, 11, 14, 16, 17\}$.

2. The Cubic Formula shows that one root of the polynomial $x^3 - 3x + 1 = 0$ has the form

$$\sqrt[3]{\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) + \sqrt[3]{\cos\left(\frac{2\pi}{3}\right) - i\sin\left(\frac{2\pi}{3}\right)}}$$

where $i^2 = -1$. Express this as a real number; your answer should have the form $k \cos \theta$ for some explicit value of θ and $k \in \mathbf{R}$. (HINT: $e^{i\alpha} = \cos \alpha + i \sin \alpha$)

Utilizing the hint, and the fact that sine is an odd function while cosine is an even function,

$$\sqrt[3]{\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)} + \sqrt[3]{\cos\left(\frac{2\pi}{3}\right) - i\sin\left(\frac{2\pi}{3}\right)}$$

$$= \sqrt[3]{\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)} + \sqrt[3]{\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)}$$

$$= \sqrt[3]{e^{i\frac{2\pi}{3}} + \sqrt[3]{e^{-i\frac{2\pi}{3}}}}$$

$$= e^{i\frac{2\pi}{9}} + e^{-i\frac{2\pi}{9}}$$

$$= \cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right) + \cos\left(-\frac{2\pi}{9}\right) + i\sin\left(-\frac{2\pi}{9}\right)$$

$$= \cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right) + \cos\left(\frac{2\pi}{9}\right) - i\sin\left(\frac{2\pi}{9}\right)$$

$$= 2\cos\left(\frac{2\pi}{9}\right).$$