ELEMENTS OF NUMBER THEORY: LECTURE NOTES

FELIX LAZEBNIK

The goal of these several lectures is to discuss in more details some properties of
integers. In what follows Z = {0,1,-1,2,-2,3,-3,...,n,—n,... } will denote the
set of all integers and it will be our universe of discourse. By N=1{1,2,3,...,n,...}
we denote the set of positive integers. If otherwise is stated, letters a,b,c,...,z,y, z
will be used to represent integers only, and we will often allow ourselves not to
mention this in the future. We do not give a formal definition of integers, and
assume that the reader is well familiar with their basic properties, such as:

The sum and the product of two integers are integers.
The addition and multiplication of integers satisfy

Commutative laws: a +b = b+ a, ab = ba.

Associative laws: (a+b) +c=a+ (b+ ¢); (ab)c = a(bc).

The distributive law: a(b+ ¢) = ab + ac.

There exist unique neutral elements: 0 for the addition, and 1 for the
multiplication.

For every integer a, there exists unique additive inverse, denoted —a.

e For every two integers a,b, ab = 0 if and only if a =0 or b= 0.

We also assume that the First and the Second Principles of Mathematical Induc-
tion are valid methods of proving statements of the form Vn € Z>,, [P(n)], where
Z>p, is the set of all integers greater or equal to an integer ny. We will also use

The Well-Ordering Axiom for Z>,,,: Every non-empty subset of Z>n, contains
unique smallest element.

It can be shown that the Well-Ordering Axiom is equivalent to each of the two
Principles of Mathematical Induction.

By |n| we denote the absolute value of n, which is equal to n if n > 0, and is —n
ifn<0(eg |5=5,100=0, -7 =—(=7) =7). For every two integers a, b,
|ab| = lal - [b]-
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1. DIVISION OF INTEGERS: BASIC PROPERTIES

For two integers a and b # 0, there may exist an integer ¢ such that a = bg. If
this happens, then we say that b divides a, and denote this fact by writing b|a. If
bla, then a is called a multiple of b, b is called a divisor of a and ¢ is called the
quotient of the division of a by b. Using “the” in “the quotient” is justified by
the fact that if such ¢ exists, then it is unique ( will be shown later). Thus 5|(—15)
since —15 =5 (—3), 2 is a divisor of 20 since 20 = 2 - 10, 0 is a multiple of 5 since
0=>5-0. If bla, the we also say that a is divisible by b.

Why do we need to restrict b from being zero? The reason is the following. The
equality a = 0 - ¢ implies a = 0, therefore the only number a which seem to allow
division by zero is 0 itself. But 0 = 0 - ¢ is correct for every ¢, which means that
the quotient of the division of 0 by 0 can be any number. This proved to be too
inconvenient when properties of integers (as well as rational or real numbers) are
discussed, and therefore the division by zero is not defined at all. In what follows
the notation b|a will imply that b # 0.

In the following theorem we list several important properties related to the di-
vision of integers. Though most of them may look familiar or obvious, we are not
sure that many readers have ever seen (or attempted) the proofs of these facts.
Usually it is not their fault: integers are studied mostly in the 1-8 grades, and the
predominant tradition is to postpone all proofs to the high school years. But for
some reasons, they are rarely touched in high schools either... In our opinion it is
very important to discuss them and the reader should study them very thoroughly.

Theorem 1. For all integers a,b,c,...,x,y, z,
(i) if bla, then blca ;

(ii) if c|b and bla, then cla (transitive property);

(iii) if cla and c|b , then c|(a + b) and c|(a — b);

(iv) if cla and c|b , then c|(za + yb);

(v) if a # 0, then ala (reflexive property) and a|(—a);

(vi) if bla and a # 0, then |b| < |al.

(vil) 1 and -1 are divisors of every number;

(viii) a nonzero number has only finite number of divisors. Zero is divisible by

any nonzero number.

Proof.

(i) We have to show that b|ca, i.e., the existence of an integer ¢ such that
ca = bq. If bla, then a = bg; for some integer ¢;. Then ca = ¢(bgy) = b(cqr).
Since cq; is an integer, then setting ¢ = c¢q; we obtain that blca. O

(ii) We have to show that c|a, i.e., the existence of an integer ¢ such that a = cq.
If ¢|b and b|a, then b = ¢q; and a = bgs for some integers g; and g2. Then
a =bqy = (cq1)q2 = c(q1g2). Setting ¢ being equal the integer ¢1¢2, we get
a = qc which ends the proof. O

(ili) We prove the statement for a + b only. The proof for a — b is absolutely
similar. We have to show that ¢|(a 4+ b), i.e., the existence of an integer ¢
such that @ + b = ¢q. Since c|a and c¢|b, there are integers ¢1, g2 such that
a=cq and b = cqa. Then a + b = cq1 + cqg2 = ¢(q1 + g2). Since ¢ + g2 is
an integer, setting ¢ = q1 + ¢2, we obtain that a +b = cq. O
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(iv) Before we start our proof, we want to point out that this statement is a
generalization of the previous one. Indeed, taking x = y = 1, we obtain
c|(1-a+1-b) = a+b, and taking x = 1,y = —1, we get ¢|(1-a+(—1)b) = a—b.
We wish to present two proofs of (iv): one based on (iii) and (i) and another
is independent.

Proof 1. Since c|a and c|b, then, from (i), we get that c|za and c|yb. But
now it follows from (iii), that ¢|(za + yb). O

Proof 2. We have to show that ¢|(za+yb), i.e., the existence of an integer
g such that za+yb = gc. Since c|a and ¢|b, there are integers ¢, g2 such that
a = cq; and b = cqy. Then za + yb = x(cq1) + y(cg2) = c(xq1 + yg2). Since
xq1 + yqo is an integer, setting ¢ = xq1 + yq2, we obtain that xza + yb = cq.
O
Remark. Since (iv) implies (iii), and the second proof of (iv) is independent of (iii)
one might ask why we bothered to prove (iii) at all. Our answer is two-fold. First,
a development of a mathematical theory most often follows an ‘inductive’ path, i.e.,
a generalization from particular cases to general ones. On the other hand, having
(iii) proven, enabled us to construct a proof of (iv) (the first one).
(v) Since a =a -1 and —a = a(—1), the statement follows. (Both 1 and -1 are
integers!). O
(vi) Indeed, b|a implies that a = bg for some integer ¢, and therefore |a| = |b]|q].
Since a is nonzero, then so is q. Hence |q| > 1. Together with |a| = || - |q],
it implies [b] < |a. O
(vii) Since for every integer a, a =1-a = (—1) - (—a), the statement follows. O
(viii) If bla and a # 0, then (vi) gives |b] < |a|. Since we are dealing with
integers only, the latter implies that b € {—a, —a+1,...,—-1,1,...,a—1,a}.
Therefore a nonzero integer a has at most 2|a| divisors, and this proves the
first statement. The second statement is obvious, since 0 = b - 0 for any b.
O

Regardless of how basic the statements of Theorem 1 are, in the right hands they
become powerful tools and can be used to establish many interesting and much
less obvious facts about integers. The latter is not always easy. To the contrary,
usually it requires several trials to find (and to write) a proof, and sometimes the
solution resists many attempts. Below we give several examples of rather simple
applications.

Example 1. Take a two-digit integer, switch the digits, and subtract the obtained
number from the original one. Prove the difference will always be divisible by 9.

Solution. Let N be the number. Then N = ab = 10a + b for some integers a and b.
The bar over ab signifies that a and b are digits in the representation of N in base
ten, and is used to distinguish N from the product ab. After the digits are reversed,
we obtain a number M = ba = 10b + a. Then N — M = (10a + b) — (10b + a) =
9a — 9b = 9(a —b). Since a — b is an integer, 9|(N — M), and the proof is complete.
O

Example 2. Is it possible to pay total of $100674 for buying several $12 items and
several $32 dollar items?

Solution. The answer is “No”. To show this we assume the contrary, and let
integers = and y represent the number of $12 items and $32, respectively. Then
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the total price is 12z 4+ 32y = 100,674. Since 4|12 and 4|32, then 4|(12z + 32y) =
100674 (according to Theorem 1 (iv)). But 4 does not divide 100674 (check it!).
The obtained contradiction proves our answer.

Example 3. Prove that for all n € N, 27|(10™ + 18n — 1).

Proof. We use the method of mathematical induction. Forn =1, 10 +18-1—1 = 27.
Since 27|27, the statement is correct in this case.
Let n =k > 1 and let 27|A = 10* + 18k — 1.
We wish to show that 27|B = 10"+ +18(k + 1) — 1 = 10**1 + 18k + 17.
Consider

C' =B -104
= (1081 + 18k +17) — (10F*! + 180k — 10)
= —162k + 27
= 27(—6k + 1).

Then 27|C, and B = 10A+C. Since 27| A (inductive hypothesis) and 27|C, then
B is the sum of two addends each divisible by 27. By Theorem 1 (iii), 27| B, and
the proof is complete. O

Exercise Set 1

The horizontal lines divide the problems in three groups according to their difficulty:
easier, intermediate, harder. The division is very subjective, and I am sure many readers
will often disagree with the ordering. Those who do not have much experience with the
subject may proceed in order.

1. Show that if a|b and b|a, then a = b or a = —b. Is the converse statement correct?
2. Construct the converse statement to Theorem 1 (i), (iii), (vi). Prove or disprove
them.

w

Prove that the sum of any four consecutive integers is an even number.
4. Prove that:
(i) if n is a perfect square, then n has an odd number of distinct positive
divisors;
(ii) if n is not a perfect square, then n has an even number of distinct positive
divisors.
5. Are there integers x and y, such that
(i) 16z + 10y = —227
(ii) 24z — 54y = 28,010 ?
Prove your answers.

6. Prove by induction that for all n € N,
(i) 5|(n° —n)
(i) 7|(n” —n)
(iii) 9|(4™ + 15n —1)
(iv) 64|(3*"T3 +40n — 27).
7. Show that the sum of 2n 4+ 1 consecutive integers is divisible by 2n + 1. (For
example, for n =3, 16 + 17 4+ 18 + 19 + 20 + 21 + 22 = 133 is divisible by 7.)
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8. Prove that a 6-digit number of the form abcabc, a, b, c are the digits, is always
divisible by 7,11, and 13.

9. There were seven sheets of paper. Some of them were cut into seven pieces. Some
of the obtained pieces were cut again into seven pieces, and so on. At the end
1961 pieces altogether were counted. Prove that the count was wrong.

10. 1000 students came to the school. All lockers are open. The first student comes
in and closes all lockers. Then the second student comes in and changes the
condition of each second locker, i.e., he opens lockers numbered 2,4,6,. .., 1000.
Then the third student comes in and changes the condition of each third locker,
i.e., he opens locker 3, closes locker 6, opens locker 9, and so on. Eventually the
1,000th student comes in and changes the condition of the 1000th locker. Which
lockers are now closed?

11. Prove that for all n € N, 133 ] (11772 4 122"+1).

12. Consider any positive integer N whose (decimal) digits read from left to right are
in non-decreasing order, but the last two digits (tens and ones) are in increasing
order. For example, a = 1778, b = 2344459, ¢ = 12225557779. Note that when
each of these numbers is multiplied by 9, the sum of digits in the result is 9:

9a = 16002, 9b = 21100131, 9c = 110030020011.

Prove that it is always true, i.e., the sum of digits of 9NV is 9.

2. DIVISION WITH REMAINDER

The following theorem will hardly surprise anyone. At the same time it represents
one of the most important properties of integers. All it says is that integers can be
divided with remainders.

Theorem 2. (Division with Remainder Theorem.) For any two of integers a and
b, b # 0, there exist a unique pair of integers ¢ and r, 0 < r < |b|, such that
a=qgb+r.

For example:
if (a,b) = (20,6), then (¢,7) = (3,2), since 20 =3-6+2 and 0 < 2 < 6;
if (a,b) = (—20,6), then (¢,7) = (—4,4), since —20 = (—4) - 6 + 4 and
0<4<6:
if (a,b) = (20,—6), then (q,7) = (—3,2), since 20 = (=3) - (—6) + 2 and
0<2<|—6|=6
if (a,b) = (—20,—6), then (¢,7) = (4,4), since —20 = 4 - (—6) + 4 and
0<4<6;
if (a,b) = (120,—8), then (q,7) = (—15,0), since 120 = (—15) - (—8) + 0
and 0 <0< | -8/ =8
if (a,b) = (0,7), then (¢,7) = (0,0), since 0 =0-7+0and 0 <0 < 7.
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If a =gb+7r and 0 < r < |b|, then we will continue calling g the quotient of the
division of a by b and we will refer to r as the remainder of the division of a by b.

Proof. We break the proof into two parts: the existence of ¢ and r and their
uniqueness.

Existence. In case the reader experiences difficulties with this rather boring
proof, we recommend that he (she) illustrates the arguments by a proper numerical
example.

Let us first assume that a > 0 and b > 0; all other cases will be easily reduced
to this one. Intuitively, the theorem states that “walking” along x-axis with step
of length b one can reach a or stop before reaching a at distance r from a, where

Trr 1

----------------- g a (q+Db
a=qgb+r

We form a set A = {a—xb:a > ab,x € Z} by subtracting from a all multiples of
b which do not exceed a. Clearly A # (), since a = a—0-b € A, and all elements of
A are non—negative integers. By the Well-Ordering Axiom, A contains the smallest
element. Let us call it r» and, since r is in A it is of the form r = a — ¢b, for
some q. We are going to show that ¢ and r satisfy the statement of the theorem.
Obviously, a = gb + r. To show that 0 < r < |b|] = b, we assume the contrary,
namely 7 > b and arrive to a contradiction. Thus suppose r > b, and let ' = r —b.
Then a =¢gb+r = (¢gb+b)+ (r—>b) =(¢g+ 1)b+ 7', and hence ' = a — (¢ + 1)b.
Since v > 0 and 7’ is of the form a — xb, then ' € A. Since 0 < 1/ < r , we
found an element in A smaller than r. This contradicts the definition of r as being
the smallest member of A. The source of the contradiction is our assumption that
r > b. Therefore 0 < r < b and the proof of the existence is completed (in this
case).

The case when a > 0, but b < 0, can be reduced to the previous one. Indeed,
since —b > 0, there are integers ¢’ and r such that a = ¢’(—=b) +r = (—¢')b+r and
0 <r < —b = |b| (by the case above!l). Setting ¢ = —¢’, we get a = qb + r with
0 < r < |b|] and the proof is completed.

The case when a < 0 and b > 0, can again be reduced to the first case. Indeed,
since —a > 0, there are integers ¢’ and 7’ such that —a = ¢’b+ 7', with 0 <7/ < b.
If ' = 0, then a = (—¢')b + 0, and the proof is complete. If 0 < ' < b, then
a=(—¢)b—7r"=(—¢ —1)b+ (b—1'). Setting g=—¢ —1land r =b— 7', we get
a =qb+r, where 0 < r < b= |b|, and the proof is completed.

The case when a < 0 and b < 0, is left to the reader.

Uniqueness. We have to show that if a = ¢gb+r = ¢1b + r1, with 0 < r < |b] and
0 <ry < |b|, then ¢ = ¢; and r = 1. Indeed, gb+r = g1b+r; < r—r1 = (¢1—q)b,
and so

[r =71 = la1 —ql|bl. (1)
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If ¢4 = ¢, then |r —r;| =0 <= r = ry, and the statement is proven. If ¢ # ¢y,
then |¢1 —¢| > 1 and the right hand side of (1) is at least |b|. But the left hand side
of (1) represents the distance between two integer points of the real line segment
[0, |b| — 1], and therefore is at most |b| — 1. The obtained contradiction shows that
the case g # ¢; is not possible. This proves that the representation is unique. O

The following two examples illustrate some immediate applications of Theorem
2.

Example 4. If a = 5k + 2, then we know that when a divided by 5, k is the
quotient and 2 is the remainder. Indeed, just divide a by 5 with the remainder and
apply Theorem 2.

Example 5. Every integer n can be written in one and only one of the following
four forms: n = 4k, or n = 4k + 1, or n = 4k 4+ 2, or n = 4k + 3, where k is an
integer. Indeed, just divide n by 4 with the remainder and apply the Division with
Remainder Theorem.

Examples below suggest more interesting applications of Theorem 2.

Example 6. When n is divided by 8, the remainder is 5. What is the remainder
of the division of n® + 5n by 87

Solution. By Theorem 2, n = 8k + 5, for some integer k. Then

n® +5n = (8k +5)* + 5(8k +5)
= 83k3 + 3(8%k?)5 + 3(8k)52 + 5% + 5(8k) + 52
= 8(82k> + 3(8k?)5 + 3k5% + 5k) + 150
= 8(8%k® + 3(8k?)5 + 3k5% + 5k + 18) + 6.

Thus n® + 5n = 8¢ + 6, where ¢ = 82k® + 3(8k?)5 + 3k5% + 5k + 18. Therefore
(Theorem 2 again!) the remainder of the division of n3 + 5n by 8 is 6.

Example 7. Prove that M = m(m + 1)(2m + 1) is divisible by 6 for all integers
m.

Proof. By the Division with Remainder Theorem, m = 6k +r, where k is an integer
and r is an element of the set {0,1,2,3,4,5}. Let us evaluate M for each possible
value of r.

If r = 0, then M = 6k(6k + 1)(12k + 1).

If r =1, then M = (6k + 1)(6k + 2)(12k + 3) = 6(6k + 1)(3k + 1)(4k + 1).
If r = 2, then M = (6k + 2)(6k + 3)(12k +5) = 6(3k + 1)(2k + 1)(12k +5).
If r = 3, then M = (6k + 3)(6k +4)(12k +7) = 6(2k + 1)(3k + 2)(12k + 7).
If r = 4, then M = (6k 4 4)(6k + 5)(12k + 9) = 6(3k + 2)(6k + 5)(4k + 3).
If r =5, then M = (6k+5)(6k+6)(12k+11) = 6(6k+5)(k+1)(12k +11).

As we see, in each of the cases 6|M, and the problem is solved. O

The last example shows that concentrating on the remainders one can reduce
a problem of establishing a property of infinitely many integers to a problem of
verifying the property for finite number of cases. The importance of this idea is
hard to overestimate. More on this will be presented in the next section.
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Exercise Set 2

1. When n is divided by 9, the remainder is 5. What is the remainder of the division
of n(n? 4 Tn — 2) by 9?

2. Prove that m(m? + 5) is divisible by 6 for all integers m.

3. Prove that if both @ and b divided by n give remainders 1, then ab divided by n
gives remainder 1. Use the method of mathematical induction to prove a similar
result for any k > 2 integers.

4. Prove that for all n € N, 15™ divided by 7 gives remainder 1.

5. Prove that the product of

(i) two consecutive integers is always divisible by 2;

(ii) three consecutive integers is always divisible by 3;

(iii) five consecutive integers is always divisible by 5;

(iv) Generalize the statements (i) — (iii). You do not have to prove your gener-

alization.

6. Prove that the difference of squares of two consecutive odd integers is always
divisible by 8.

7. (i) Show that a square of an integer cannot give the remainder 2 when divided
by 3, i.e., n? # 3k + 2 for any integers n, k.
(ii) Prove that if 3|(a® + b*) for some integers a and b, then 3|a and 3|b. (Hint:
use part (i).)
(iii) Prove that in a right triangle with integer side lengths, the length of at least
one leg must be divisible by 3.

8. Explain the following “faster” way of squaring the integers ending with digit 5:
Let N = a5 where a is the number formed by the all the digits of N but 5. Then
N? can be obtained by multiplying a by a 4+ 1 and attaching 25 at the end of the
product.

For example: 35% = 1,225 can be computed by multiplying 3 (= a) by 4
(= a+1) and attaching 25 to 12; 2352 = 55,225 can be computed by multiplying
23 (= a) by 24 (= a+ 1) and attaching 25 to 552.
9. Prove that among any n+1 integers, n € N, there are at least two whose difference
is divisible by n. (Hint: think about the remainders these integers give when
divided by n.)

10. Let a, b, c be the measures of three sides of a right triangle and a, b, ¢ be integers.
Prove that one of the numbers a, b, ¢ is divisible by 5.

11. Prove that at least one of the last two digits of a square of an integer is even. (Is
234345456567439 a perfect square?)

12. Prove that when the process of long division is used for 2 integers, say m and n,
then the resulting decimal fraction is always a repeating one, i.e.

m
o = ApGn—1...a1G0 . b1...bgc1...cpc1...cpc1 ... cp. ..
= ananp—-1...0100 .bl...bk(cl...cp).

Here a;’s represent digits of the integer part of the fraction, b;’s represent digits which
appear after the decimal point and which precede the repeating string of digits, and ¢y ’s
are the digits which form the repeating string of digits ci ...cp, called a period of the
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decimal fraction. Here the finite decimal fractions are viewed as infinite with 0 repeated.
For example: 20/7 = 2.857142857142... = 2.(857142) (a period is 857142), 74/8 =
9.25000... = 9.25(0) = 9.25 (a period is 0), —1127/90 = —12.5222... = —12.5(2) (a
period is 2).

Prove that the number p of digits in a period is never greater than |n| — 1.

3. CONGRUENCES

Please look again over Example 7. What becomes clear is that often, when
divisibility of integers is discussed, the answer depends not on the actual integers
involved but on the remainders they produce when divided by a given number. This
phenomenon is captured well through the definition of a congruence, introduced by
K.F. Gauss (1777-1855). The language of congruences has proven to be a very
convenient in number theory and its applications. The goal of this section is to
learn it.

For a positive integer m, two integers a and b are called congruent modulo m,
written a = b (mod m), if a and b give equal remainders when divided by m. For
example, 16 = 6 (mod 5), 16 = —9 (mod 5), 35 = 0 (mod 7), every two integers
are congruent modulo 1.

The following statement collects most properties of the congruences we will be
concerned with.

Theorem 3. For any modulus m € N, and all integers a,b,c,d,z,n, n > 2,
(i) a =a (mod m) (reflexive property)
(ii) a =b (mod m) <= b=a (mod m) (symmetric property)
(i) If a = b (mod m) and b = ¢ (mod m), then a = ¢ (mod m) (transitive
property)
(iv) a =b (mod m) <= m|(a—b) < a=mt+b for somet
(v) If a = b (mod m) and ¢ = d (mod m), then a + ¢ = b+ d (mod m) and
a—c=b-—d (mod m)
(vi) If a=b (mod m), and ¢ = d (mod m), then ac = bd (mod m). In partic-
ular, ac = be (mod m).
(vii) If a =b (mod m), then a™ =b" (mod m)
(viii) If a =7 (mod m) and 0 < r < m, then r is the remainder of the division
of a by m.

As we see, some of the properties of congruences remind us the corresponding
properties of equalities. In particular, congruences by the same modulus can be
added, subtracted, multiplied, and both sides of a congruence can be raised to the
same power.

Proof. Properties (i),(ii) and (iii) follow immediately from the definition of con-
gruences.

(iv) a =b (mod m) means that a and b give the same remainder, call it 7, when
divided by m. Let a = mq; +r and b = mqs + 7. Then a — b = (q1 — ¢2)m,
and, since ¢q1 — ¢o is an integer, m|(a — b). Thus we have shown that a = b
(mod m) = m|(a — b). To prove the converse, i.e., m|(a —b) = a =b
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(viii)
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(mod m), we divide a and b by m with remainders. Let a = gym + r1 and
b= gam+ e, where 0 < 71,79 < m. Then a — b= (q¢1 — g2)m + (r1 — r2).
Since m|(a—0b), then m|[(a—b) — (q1 —g2)m] = 11 —r2, (by Theorem 1 (iii)).
So m|(ry —r2). But —(m—1) <r;—ry <m—1, since 0 < ry,79 < m. The
only integer in {—(m —1),—(m — 2),...,0,...,m — 2,m — 1} divisible by
m is 0. So r; —ry = 0, hence 71 = r5. But this means that a = b (mod m),
and the proof of the first equivalence is finished. The second equivalence is
obvious. O

The statement (iv) provides an equivalent definition of the congruences,
namely that two integers are called congruent by module m if their differ-
ence is divisible by m. The equivalence of the two definitions is very useful.
We apply it heavily in the following proofs of (v)—(viii).

By (iv) (= direction), a —b = ¢ym and ¢ — d = gam, for some integers
q1,q2- Then (a+c) = (b+d) = (a—b) + (c—d) = m+g2m = (q1 + g2)m,
and therefore m|[(a + ¢) — (b + d)]. By (iv) (<= direction), a+c=b+d
(mod m), and the proof is finished. The case a — ¢ = b — d (mod m) can
be proven in absolutely similar way and is left to the reader. O
By (iv), it is sufficient to show that m|(ac—bd). We use a trick of rewriting
ac — bd as (a — b)e + b(ec — d). By (iv) again, m|(a — b) and m|(c — d).
Therefore (by Theorem 1 (iv)) m|(a — b)c + b(c — d) = ac — bd, and the
proof is finished. The second statement follows, since, due to (i), z = =
(mod m). O
Perhaps, the shortest way to proceed is by induction. For n = 2 the state-
ment follows from (vi): take @ = ¢ and b = d. Suppose the statement is
proven for n = k > 2, i.e., a¥ = ¥ (mod m). We want to show that it
is correct for n = k + 1, i.e., that a**' = b**1 (mod m). This follows
immediately from (vi) if we multiply two congruences: a* = b* (mod m)
(which is correct by the inductive hypothesis) and a = b (mod m) (given).
O

Another proof could be obtained by using the formula a™ — " = (a —
b)(a" ' +a"2b+ -+ ab" 2 4+ b 1), Since m|(a — b), then m|(a™ — b"),
and, by (iv), a™ = b" (mod m). O
By (iv), m|(a — ), hence a —r = gm for some ¢q. So a = gm +r. Since 0 <
r < m, the statement follows from the Division with Remainder Theorem.
O

Several immediate illustrations of the theorem follows.
e 17 = —533 (mod 10), since 17 — (—533) = 550, which is divisible by 10

(here we used property (iv).)

e To find the remainder of the division of the product 32517 - 5328 by 14, we

can first divide each factor by 14 with remainder, then multiply the obtained
remainders, and then divide their product by 14. Using congruences, this
can be written as: 32517 =9 (mod 14), 5328 = 8 (mod 14), and

325175328 =9-8=72=2 (mod 14)

(here we used (vi) and (viii)).

e Since 2* = 16 = 1 (mod 15), then 21000 = (24)250 = 1250 = 1 (mod 15).

Since 0 < 1 < 15, 1 is the remainder of the division of 21900 by 15. (Here
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we used mainly properties (vii) and (viii). But (i) and (iii) were used too!
Do you see where?)

e Since 128 = 30 (mod 14), then 98 = 128 — 30 = 0 (mod 14). Indeed, here
we used that 30 = 30 (mod 14) (by (i)), then subtracted this congruence
from the original one (used (v)).

Example 8. What is the remainder of the division of N = 375-2100 — 3587 by 6 ?

Solution. Here we stop writing the references to the parts of Theorem 3, but we
do use them constantly. All congruences below are modulo 6. We have: 375 = 3
(mod 6), 2190 = (2%)20 = 3220 = 220 = (2°) = 32% = 2% = 16 = 4 (mod 6).
Also, since 35 = —1 (mod 6), then 3587 = (=1)%" = —1 (mod 6). Therefore N =
3752100 3587 =3.4 — (1) =13 =1 (mod 6). Since 0 < 1 < 6, the remainder
of the division of N by 6 is 1.

Example 9. In this example we rewrite the solutions of the problems from Exam-
ples 6 and 7. The advantages of the new language become apparent.

o When n is divided by 8, the remainder is 5. What is the remainder of the
division of n® + 5n by 8%
Solution. Since n = 5 (mod 8), then n® = 5% = 25.5 = 1-5 = 5 (mod 8),
5n = 5.5 =25 =1 (mod 8). Adding we get n® +5n = 5+ 1 = 6 (mod 8).
Therefore the remainder is 6. A shorter presentation could be just one line

n?+5n=5+5-5=55+1)=25-6=1-6=6 (mod 8).
e Prove that M = m(m + 1)(2m + 1) is divisible by 6 for all integers m.

Solution. The integer m is congruent by mod 6 to one and only one of the numbers
{0,1,2,3,4,5}. All congruences below are by mod 6.
Ifm=0,then M=0-1-1=0; ifm=1,then M=1-2-3=6=0;
ifm=2,then M=2-3-5=6-5=0; ifm=3,then M=3-4.7=
12.7=0;
ifm=4,then M =4-5-9=36-5=0; ifm=5then M =5-6-5=0.

As we see, in each case M =0 (mod 6) and so 6|M.

Another illustration of the use of congruences is provided by the well-known
rules for the divisibility of a number by 3,4,8,9,11. The statements of the following
theorem are actually stronger, and the divisibility rules follow from them immedi-
ately.

Theorem 4. Let N =@, _1...a1aq9 be an n—digit positive integer, where ag s the
number of units, ay be the number of tens, and so on. Then
(i) N=ag+ay1+--+ap_1 (mod 3)
(i) N=ap+a;+ - +a,_1 (mod9)
(iii) N=ap—a; +---+ (=1)""ta,_; (mod 11)
(iv) N = agap (mod 4), where ajag is the number formed by two last digits of
N

(v) N = azaiap (mod 8), where azaiag s the number formed by three last

digits of N
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254361 =2+5+44+346+1=24+2+14+0+0+1=6=0 (mod 3), and so
3|254361;

3

254361 = 24+54+4+3+6+1 =3 (mod 9), so 254361 divided by 9 gives remainder

254361 = —2+5—-443 -6+ 1= —3 =8 (mod 11), so 254361 divided by 11
gives remainder 8;

123356= 56 = 0 (mod 4), so 4|123356;

123356= 356 = 4 (mod 8), so 12356 divided by 8 gives remainder 4.

Proof.
(i)

(i)
(iii)

(iv)
(v)

If ag,a1,...,an—1 are digits of N, then N = a,_110" " + a,,_»10""2 +
<+ 10a; +ap. But 1 =10 =102 = ... = 10" ! (mod 3). Hence N =
ap+a;+---+a,_1 (mod 3). O

The proof is exactly the same as in (i). O

10 = —1 (mod 11). So —1 =10 = 103 = 10° = ... (mod 11) and 1 =
102 =10*=10°=... (mod 11). Therefore N = a,,_110" "' +a, o102+
41001 +ag=ag —ay + -+ (=1)"ta,_1 (mod 11). O

N = a, 110" 4a, 210" 24 +10a1 +ag = 100(a, 110" 3+a, 210" 4+
-4 ag) + (10a; + ag) = 10a1 + ag = aag (mod 4). O

Left to the reader. O

Exercise Set 3

Write the solutions of Problems 1-7 of Exercise Set 2 by using congruences.

. Use congruences to to prove that for all positive integers n, 5|(n® —n) (the problem

already appeared as 6(a) in Exercise Set 1).
(a) What is the last digit of the number 3'°°?
(b) By finding the last digit of the number 997 — 71972 prove that it is divisible
by 10.
(Hint: the last digit of the number is the remainder of the division of the
number by 10.)
Form the converse statements for (v)—(vii) of Theorem 3. By giving counterex-
amples, prove that all of them are false.
Prove part (v) of Theorem 4.

Find the remainder of the division of 37992 by 17.

Find the last two digits of the number 371992,

(Hint: the 2-digit number formed by the last two digits of a number is the
remainder of the division of the number by 100.)

Prove that the sum of squares of three integers cannot give remainder 7 when
divided by 8. Are there three integers z, y, z such that 224y +2% = 23654009839?

Are there integers z, y, z such that z° + 3% + 2% = 12345678947
(Hint: Think about the corresponding congruence modulo 9.)
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10. Let A be an arbitrary 1972-digit number divisible by 9. Let a be the sum of
digits of A, b be the sum of digits of @ and ¢ be the sum of digits of b. Prove that
the value of c is the same for every A and find it.

4. GCD AND THE EUCLIDEAN ALGORITHM

Given two integers a and b, any integer d which divides both of them is called
a common divisor of ¢ and b. If a = b = 0, then any nonzero number d is their
common divisor, and the set of all common divisors is infinite. If at least one of a or
b is not zero, say b # 0, then the set of common divisors is finite, since by Theorem
1 (vi), for every divisor d of b, |d| < |b|. In what follows we will always assume
b # 0. For example, the set of common divisors of 12 and 30 is {£1,+2, +3, +6},
and the set of common divisors of 0 and —8 is {£1, £2, +4, +8}. It turns out, and
it will be proven below, that among common divisors of a and b there will always
be two which are divisible by each of their common divisors. In the examples above
they are +6 and £8, respectively. Concentrating on positive ones we make the
following definition: given a,b € Z, b # 0, the greatest common divisor of a
and b, denoted ged(a, b), is a positive common divisor of a and b which is divisible
by each of their common divisors. We will see that the concept of the ged is very
useful, and it will allow us to discover many deep properties of integers.

Just a few comments before we proceed. First it has to be proven that the
ged(a, b) exists, and we do it in Theorem 5. Next, one can wonder why we did not
define the ged(a, b) simply as the greatest (in terms of magnitude) common divisor
of a and b, since the existence of such is obvious. Indeed, it can be shown, that
this definition would be equivalent to ours, but a proof of the equivalence will be
comparable in difficulty with the one of Theorem 5. The real reason for choosing
the definition we suggested lies outside the scope of this course: it is easier to
generalize it to many algebraic systems other then Z, e.g. to polynomials, where
the concept of the ged plays as important role as it does in Z.

The following procedure allows both to prove the existence of the ged, and gives
an effective method to compute it. It goes back to Euclid’s (365 ~ 300 B.C.) Ele-
ments (Book VII, Prop. 2), and is often called the Euclidean Algorithm. With
no exaggeration, it is considered as one of the most fruitful ideas in mathematics.
Here it is.

e Divide a by b with remainder: a = g1+ r1. If 11 = 0, i.e., bla, then set
d = |b|, and stop. Else
e divide b by r; with remainder: b = gqory 4+ r5. If 79 = 0, i.e., r1|b, then set
d =r1, and stop. Else
e divide r1 by ro with remainder: r1 = gsro + 3. If 73 = 0, i.e., ro|ry, then
set d = ro, and stop. Else, and so on.
Since we have |b] > r; > r2 > ... > 0, the algorithm has to terminate, otherwise
it would produce an infinite decreasing sequence of non-negative integers(!) The
latter is impossible, since the set of members of such a sequence would violate the
Well-Ordering Axiom. Let the algorithm take n divisions to terminate, i.e., r,, = 0,
n > 1. Thus we have:
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= @b+,
b = qar1+ro,
4y
Th—4 = QGn—2Tn—3+Th—2,
Thn—3 = (n-1Tn—2 +Tn-1,
(4.2) Tne2 = (nCn_1.

Then d = |b| if n =1, and d = rp—1 if n > 1. We claim that d = ged(a,b). In
order to prove this we have to show that

(i) (i) d > 0 and is a common divisor of ¢ and b, and
(ii) (i) d is divisible by any common divisor of a and b.

If n = 1, then b|a. Since b|b, then d (= |b|) is a common divisor of a and b, and
(i) is checked. If ¢ is a common divisor of a and b, then it is a divisor of d (= |b]).
Thus (ii) is checked, and d = ged(a, b) in this case.
If n > 1, then r, =0, d = r,_1, and r,_1|rp—2 (for n = 2, define ro = a). Since
Tn—3 = Qn_1Tn—2 + Tn—1, then r,_q|r,_3. Since r,_4 = ¢n_2rp—3 + 7—2, and
Tn—1 divides both r,_5 and r,_3, then r,_1|r,—4. “Moving up” in the table, we
eventually obtain that d (= r,_1) divides b, and then that d divides a, and therefore
(i) is checked.
Let ¢ be a common divisor of @ and b. Then from the first equation, c¢|ry = a — g1b.
Dividing b and 71, c|ra = b — gory. Dividing 1 and ra, ¢|rs = 11 — gsre. “Moving
down” in the table, we eventually obtain ¢|r,_2, and then that c|r,—; = d. Hence
(ii) is checked, and d = ged(a, b) in this case.

Therefore we proved the following

Theorem 5. Let a,b € Z and b # 0. Then the greatest common divisor of a and b
exists and can be found by the FEuclidean Algorithm.

Example 10. Using the Euclidean Algorithm, find the ged(78,32).

Solution.
Applying the Euclidean Algorithm, we get:

78 = 232+ 14,
32 = 2.14+4,

(4.3) 14 = 3-4+42,
4 = 2.2

Therefore the ged(78,32) = 2.

For a,b € Z any number of the form za + yb, z,y € Z is called a linear com-
bination of a and b. For example, 4 -7+ 10 - (—3) = —2 is a linear combination
of 7 and —3 (or of 4 and 10, since 7-4+ (—=3)-10=4-7+10-(—3)); 7 is a linear
combination of 23 and —8, since 7 =123+ 2+ (—8); 5 is a linear combination of 5
and 18, since 5 =1-54+0-18;0=0-a+ 0 is a linear combination of any two
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numbers a and b. Let us denote the set of all linear combinations of a and b by
L%b? ie., La,b = {Ia+ yb : T,y € Z} Thus —2 € L47107 7€ L237_8, 5€ L5718.

Let nZ = {nt :t € Z} denote the set of all multiples of n. The following theorem
uncovers important relations between the greatest common divisor of a and b and
the set L p.

Theorem 6. Let a,b € Z and b # 0, and d = ged(a,b). Then

(i) d is the smallest positive linear combination of a and b

(i) Loy = dZ

Before proceeding with a proof we illustrate (i) by an example. Suppose we want
to show that 2 = ged(78,32) is a linear combination of 78 and 32.

From the third equality of (4.3), 2 =14 +4-(—3). So 2 is a linear combination
of 14 and 4. Solving the second equality of (4.3) for 4 and substituting the result
in2=144+4-(-3), weget 2=14+(32+14-(-2)) - (-3) =32-(-3)+14-7. So 2
is a linear combination of 32 and 14. Solving the first equality of (4.2) for 14 and
substituting the result in 2 = 32-(—3)+14-7, we get 2 = 32-(—3)+(78+432:(—2))-7 =
787432 (—17). So 2 = ged(78, 32) is a linear combination of 78 and 32. It is the
smallest positive element of Lrg 32, since each element of Lrg 39 is divisible by 2.

Proof.

(i) First we show that d € L, 3. By theorem 5, d = r,_1. From the (n — 1)st
division with remainder in the Euclidean algorithm (4.1), we obtain

d= Th—1 =Tnpn-3 = qn—-1Tn—2 = Tn-3 1 + rn—?(_Qn—l)a

so d is a linear combination of r,_3 and r,_o. Expressing r,_o from the
(n — 2)nd division of (4.1), and substituting it above we get

d= Tn—1 =Tn-3" 1+ (rn74 - Qn72rn73)<_qnfl)
=7rn3(1 + @n-1qn—2) + rn—a(—qn-1),
so d is a linear combination of r,_4 and r,_3. Expressing r,_3 from the
(n — 3)rd division of (4.1), and substituting it above we get that d is a
linear combination of r,_5 and r,_4, and so on. “Moving up ” this way

we eventually obtain that d is a linear combination of @ and b. It must be
the smallest positive one, since d divides each element of L, ; (Theorem 1
(iv)). O

(if) Since d divides both a and b, it divides every element of L, p, then Ly C
dZ. Since d € Lqp (by (1)), then d = ua+wvb for some u and v. Therefore any
multiple of d is again a linear combination of a and b: dt = (ut)a + (vt)b €

Lqp. Hence dZ C L, . Having both inclusions we conclude that L, , = dZ.
O

As we can see from the example and the proof above, integers w and v in a
representation ged(a,b) = ua+vb can be computed via subsequent ‘backward’ sub-
stitutions of the remainders appearing in the Euclidean algorithm. For a convenient
computing scheme of doing this, see Baker and Ebert [1].

We call integers a and b relatively prime, if gcd(a,b) = 1. The latter is
equivalent to 1 being a linear combination of a and b. For example, 6 and 25 are
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relatively prime, or 12 and 19. As an immediate corollary from Theorem 6, we have
the following very useful statement.

Corollary 1. The following three statements are equivalent:

(i) a and b are relatively prime
(ii) 1 is a linear combination of a and b
(i) Loy = Z, i.e., every integer is a linear combination of a and b.

The following statements further illustrate the importance of the notion of rela-
tive primeness.

Theorem 7.
(i) if clab and ged(a,c) =1, then ¢|b
(ii) 4f ged(a, c) = ged(b, ¢) = 1, then ged(ab,c) = 1
(iii) if ale, blc and ged(a,b) = 1, then ab|c
(iv) ged(a,b) =d < ged(a/d,b/d) =1
(v) if ged(e,n) =1, then a = b (mod n) <= ac = bc (mod n), i.e., both
sides of a congruence can be multiplied or divided by an integer relatively
prime to n.

(i) Since ged(a,c) =1, 1 = ax+cy for some integers x,y. Then b = (ab)x+cby.
But ab = gc for some integer ¢. Hence b = (qc)x + cby = ¢(qx + by), which
implies that ¢|b. O

(if) Since ged(a,c) = ged(b,¢) =1, then 1 = ax +cy = bu+ cv for some integers
z,y,u,v. Then1 =1-1 = (az+cy)(but+cv) = (ab)(zu)+c(ybu+azv+cyv).
Therefore 1 € Lgp ¢, or ged(ab, c) = 1.

(iii) Since ale, then ¢ = ga for some ¢ € Z. Then b|qa. Since ged(a,b) = 1, then,
by (i), blg. Therefore ¢ = ¢1b and ¢ = (¢1b)a = ¢1(ab), which implies that
able. O

(iv) Left to the reader. O

(v) The fact that both sides of a congruence can be multiplied by an arbitrary
integer was proven in Theorem 3 (vi). Therefore we just have to show that
for ¢ relatively prime to n, ac = bc¢ (mod n) <= ac—bc = (a—b)c=0
(mod n) <= n|(a—b)c. Using part (i), of this theorem, we conclude that
n|(a —b). This proves that a = b (mod n). O

Here are a few typical applications of Theorem 7:
e if 8|(25n), then 8|n (by (i));
e a number is divisible by both 10 and 9, if and only if it is divisible by 90
(by (iii) and Theorem 1 (ii));
e to prove that for all n € N, 30|(n® — n), it is sufficient to show that n® —n
is divisible by 5 and 6, or by 2, 3, and 5 (by (iii));
e 10z = 35 (mod 27) implies 22 = 7 (mod 27) (by (v)).

We know that many problems in mathematics can be solved by using linear
equations with one unknown, i.e., equations which are equivalent to ax = b, where
a and b are known real numbers, and x has to be determined. The theory of such
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equations is very simple: if a = 0, but b # 0, there are no solutions; if a = b = 0,
every real number is a solution; and if a # 0, then there exists a unique solution
which can be found in these steps:

ar =b <= a *(ax) =a"'b
— (e ta)b=a""b
— lz=a'b
— z=a"b

This argument uses the fact that multiplying both sides of an equation by a nonzero
number we obtain an equivalent equation. Then it uses the existence of the multi-
plicative inverse for every nonzero real number.

A somewhat similar theory can be constructed for linear congruences, which we
write as ax = b (mod n), where a, b, and n are known integers, and = denotes the
unknown. For example, one can be interested in finding all integers x such that
Tz =6 (mod 12). Experimenting with different simple linear congruences, we can
easily find examples of ones which have a solution and of ones which do not. E.g.,
42 = 1 (mod 3) is satisfied by each x = 1 (mod 3). On the other hand, 42 = 1
(mod 6) has no solutions: if it did, then 42:—1 = 6¢ for some integer ¢, or 1 = 4x—6t,
and so 2|1, a contradiction. Thinking about solving ax = b (mod n) in general,
we can try to mimic ideas used for solving linear equations. Namely, we can try
to multiply both sides of it by an integer ¢ such that the obtained congruence is
equivalent to the original one, and ca = 1 (mod n). The following theorem states
the important case when this is possible.

Theorem 8. Let ax = b (mod n) be a linear congruence with respect to x and
ged(a,n) = 1. Then there exists an integer ¢ such that ca = 1 (mod n), and all
solutions of the congruence can be written in the form x = ¢b (mod n).

Proof. According to Corollary 1 (ii), there exist integers u and v such that ua +
vn =1. Let ¢ = u. Then ca = 1—vn =1 (mod n). The fact that the multiplication
of both sides of ax = b (mod n) by ¢ leads to an equivalent congruence follows
from Theorem 7 (v). Therefore ax = b (mod n) <= c(az) = ¢b (mod n) <=
(ca)x=cb (mod n) <= 1-z=cb (mod n) < x =cb (mod n). O

We would like to remark that number ¢ in the above theorem is not determined
uniquely, moreover there are infinitely many such ¢. This is because there are
infinitely many u satisfying ua + vn = 1: for every (u,v) satisfying this equality,
the pair (u — bt,v + at) also satisfies the equality for every ¢. Nevertheless, each
value of ¢ leads to the same set of solutions of ax = b (mod n).

What can be said about the solutions of ax = b (mod n) when ged(a,n) # 17
The answer follows quickly from Theorem 8, see Exercise 6 at the end of this section.

Example 11.

(i) Solve 7Tz =5 (mod 12)
(ii) Find all integers « which give remainder 2 when divided by 6, and which
give remainder 10 when divided by 11.

Solution.
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We notice that 7-7 =1 (mod 12). Multiplying both sides of the congruence
by 7 we get £ = 35 = 11 (mod 12). The answer also can be written as
{z: v=11+12t,t € Z}, or just as {11 + 12¢,t € Z}.

Instead of ‘noticing’, we could proceed with the Euclidean Algorithm:
12 = 1.745,7 = 1:542, 5 = 2:2+1. Therefore 1 = 5—2-2 = 5—2-(7—1:5) =
(=2) 7+3-5=(-2)-7T+3-(12—1-7) =312+ (=5) - 7. Then, like
in the proof of Theorem 8, we multiply both sides of our congruence (i)
by —5, and we get —35z = —25 (mod 12). Since —35 =1 (mod 12), and
—25 =11 (mod 12), we obtain = 11 (mod 12), i.e., the same answer.

If the modulus n is large, proceeding with the Euclidean Algorithm can
be much faster than attempting to notice the number c.

We are asked to solve simultaneously two congruences: = 2 (mod 6) and
2 =10 (mod 11). One way to proceed is as follows. The general solution for
the first congruence can be written in the form z = 2+6t, where t € Z. This
formula describes all solutions of the first congruence. Therefore we can
try to find those values of ¢ for which these solutions will satisfy the second
congruence as well. To do this we substitute the expression in the second
congruence. We obtain: 2+ 6t = 10 (mod 11) <= 6t =8 (mod 11). The
last congruence, which has ¢ as the unknown, can be solved easily, since
the ged(6,11) = 1. Multiplying both sides by 2 we get: 6t =8 <= 12t =
16 <= t =5 (mod 11). Therefore t = 5411k, where k € Z, and these are
all values of ¢ for which solutions x = 2 + 6t of the first congruence are also
solutions of the second one. Hence z = 2+6t = 2+6-(5+11k) = 32+ 66k,
and the set {32466k, k € Z} is the solution set of the system of congruences.

Exercise Set 4

1.

(i) By using Euclidean Algorithm find the ged (112, 356).
(ii) Describe the set of all integers ¢, such that the equation 112z + 356y = ¢
has an integer solution (z,y).
Prove that:
(i) ged(n,m+1)=1
(ii)) ged(n,m+2) =1 or 2
(iii) ged(a,b) = ged(a,a +b)
(iv) ged(3n+1,10n+3) = 1.
The difference of two odd integers = and y is 4. Prove that « and y are relatively
prime.

. Form the converse statements for (ii) and (iii) of Theorem 7. Prove or disprove

them.

Prove part (iv) of Theorem 7.

If d = ged(a,n) # 1, then the existence of a solution of a linear congruence
ax = b (mod n) will depend on b. If d /b, then no solutions exist (it is obvious,
do you see why?). If d|b, let @ = da1,b = dby and n = dn,. Prove that az = b
(mod n) <= a1z = by (mod n;). Since ged(ai,n1) = 1 (Theorem 7 (iv)),
we reduced the problem to the case described in Theorem 8. Therefore if d|b,
solutions exist and can be found effectively.
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Find the least integer N > 2 which gives remainder 1 when divided by each of
the numbers 3, 4, 5, 7.
Find the least positive integer N such that when N divided by 3 the remainder is
2, when N divided by 4 the remainder is 3, when N divided by 5 the remainder
is 4, and when N divided by 7 the remainder is 6.
(i) Describe the set of all integers = satisfying the following two congruences
simultaneously:

z=3 (modT7), =6 (mod 8).

(ii) Describe the set of all integers = satisfying the following three congruences
simultaneously:

z=3 (modT7), z=6 (mod 8), z=2 (mod 25).

(iii) Let a,b € N and a1,b1 € Z. Prove that if a, b are relatively prime, then the
system of congruences

z=a1 (mod a), x=b1 (mod b)

has a solution. This statement (as well as 9(i) of Exercise Set 5) represents
a particular case of so—called Chinese Remainder Theorem.
Prove that for all n € N, 30|(n® — n)].
Let a, b, c be any three integers, no two of which are zero.
(i) Suppose d = ged(ged(a,b),c). Prove that d > 0 and divides each of the
numbers a, b, c.
(ii) Prove that d (from (i)) is divisible by any common divisor of the numbers
a,b,c.
(iii) Prove that for any three integers a, b, c, not all zeros, ged(ged(a,b),c) =
ged(ged(b, ¢), a) = ged(ged(a, ¢), b).
Properties (i) and (ii) suggest to call d the greatest common divisor of numbers
a, b, c, and we denote it by ged(a,b,c). Then (iii) says that this definition does
not depend on the order of the numbers.

Prove that for any positive integer n there are two integers a and b such that the
Euclidean algorithm applied to a and b consists of exactly n divisions.
Can you give an example of an infinite sequence of integers with the property
that every two its members are relatively prime? Of course, a sequence of all
prime numbers will do, but we have not proven yet that there are infinitely many
primes.

Show that the sequence a, = 22" + 1, n > 0, provides such an example, i.e.,
prove that

ged(2?” 41,22 +1) =1

for each pair of distinct non—negative integers m, n.
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5. DIOPHANTINE EQUATIONS

An equation of the form ax + by = ¢, where a, b, ¢ are given integers and x,y
unknown integers, is called a linear diophantine equation with two unknowns.
The term “diophantine” commemorates an ancient Greek mathematician Diophan-
tus (about 250 years A.D.), who investigated integer solutions of different equations.
When we refer to an equation as “diophantine” it usually means that the constants
in such an equation are integers and that we are interested in integer solutions only.
For example: 3z — 4y = 10 or 22 + 2y? = 22, or 3° — 2¥ = 1. For many classes of
diophantine equations it is extremely hard to find all their solutions. One of the
few successes in this regard is the class of linear diophantine equation.

Theorem 9. Let a,b,c € Z, b # 0, and d = ged(a, b). The equation
(5.1) ar +by =c

has a solution if and only if d|c. If d|c, then a particular solution (xq,y0) of (5.1)
can be found by means of the Euclidean algorithm. The set of all solutions of (5.1)
can be represented in the form

a

t, t ez},
d,e}

b
(5.2) {(z,y) : v =20 — b Y=ot

Proof. Equation (5.1) has a solution if and only if ¢ is a linear combination of
a and b. By Theorem 6 (ii) , it happens if and only if d = ged(a, b)|c. Let d|c and
¢ = c’d. Then reducing both sides of (5.1) by d, we obtain an equivalent equation

(5.3) dr+by=<¢,

where o’ = 4,V = g, and, by Theorem 7(iv), ged(a’,d") = 1. By using ‘backward’

substitutions in the Euclidean algorithm applied to a’ and b’, one can represent 1
as their linear combination. Say a’u + b'v = 1. This gives us a particular solution
(20,90) = (cu, 'v) of (5.3) (or (5.1)), since a’xg + 'y = a’(c'u) + b'(c'v) = .
Now we will describe the set of all solutions of (5.3) (or (5.1)). Let (z,y) represent
one of them. Then a’z+b'y = ¢’. Since a’zg+b'yy = ¢, subtracting these equalities,
we get

a'(z —xz0) =b'(yo — v).
Then a'|b/(yo — y). Since ged(a’,b’) = 1, then, by Theorem 7 (i), a’|(yo — y). Let
Yo —y = a't. Then z — xg = b't, and we obtain that every solution of (5.1) is
contained in the set (5.2).

The only thing left is to check that (5.2) does not contain any “extraneous” pairs,
i.e., that every element of (5.2) is a solution of (5.1). Indeed, let z = zg — %s =
o — b's, and y = yo + §s = yo + a's for some integer s. Then o'z + b’y =
a'(xg—b's)+ b (yo+a's) = (a’zo+byo) + (—a'b +ba')s = +0=c. Thus every
element of (5.2) is a solution of (5.3), and therefore (5.2) is the solution set of (5.1).
O

Example 12. Solve the diophantine equation 858z + 253y = 33.

Solution. First we find ged(858,253) by using the Euclidean algorithm.
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858 3.253 499,
253 = 2-99+55,

(5.4) 99 = 1-55+44,
55 = 1-44+11,
44 = 4-11.

Therefore the ged(858,253) = 11. Since 33 = 3 - 11, our equation has solutions.
By using ‘backward’ substitutions in (5.4), we get:

11 =554 (—1) - 44
=55+ (=1)- (99 + (1) - 55) = 2- 55+ (—1) - 99
=2 (2534 (—2)-99) + (—1)- 99 = 2- 253 + (=5) - 99
=2.253+ (=5) - (858 + (—3) - 253) = (—5) - 858 + 17 - 253.

Thus 858 - (—5) + 253 - 17 = 11, and (zo,y0) = (3- (—5),3-17) = (—15,51) is a
particular solution of 858x 4 253y = 33, and the general solution of the equation is

253 858
(55) {(w.y) : o =—15— Tt =—15-23t, y =51+ ——1 =51+ 78t t € Z}.

‘We would like to make two remarks.

1. When ¢ takes values 0,1, —1, we get particular solutions (—15,51), (—38,129),
(8, —27), respectively. Note that another choice of a particular solution would
change only the form in which the general solution is written. E.g., replacing
(=15,51) by (8,—27), we get

(5.6) {(z,y) : +=8—-23s, y=—27+78s, s € Z}.

It is important to understand that the sets in (5.5) and (5.6) are equal: a pair
(—15—23t, 514 78t) from the first set appears in the second set when s takes value
t+ 1, and a pair (8 — 23s, —27 + 78s) appears in the first set when t = s — 1.

2. The logic of our solution of 858z + 253y = 33 did not follow the precise path of
our solution of the general equation ax + by = ¢ in the proof of Theorem 9. Here a
particular solution of the equation was found from the Euclidean algorithm applied
to the original numbers a and b rather than to the reduced numbers a’ and o'. We
did it because we started our solution with finding the ged(858,253), and it would
be an extra work to perform a new Euclidean algorithm for the reduced numbers 78
and 23 (even though the latter could be obtained by simple reduction of all equations
of (5.4) by 11). On the other hand, if we see immediately that the original equation
can be reduced, it is better to be done. Having smaller numbers we can find a
particular solution sometimes simply by inspection without invoking the Euclidian
algorithm at all. For example, consider a diophantine equation 100x — 40y = 360.
Reducing by 20 we get 5z — 2y = 12. Now it is easy to notice that (2,—1) is a
particular solution. Since ged(5,—2) = 1, the general solution is {(z,y) ; © =
2—(=2)t=2+2t,y=—-1+5¢t t € Z}.
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Example 13. Find all integer solutions of the equation 22 — y? = 115.

Solution. We have z? — yv2 = (z — y)(x +y) = 115. Since both z —y and x + y are
integers, the problem is reduced to solving the following 8 systems of two equations
with two unknowns, where each case corresponds to factoring 115 into two factors:

(r —y,z+y) € {(1,115), (—1,—115), (5, 23), (—5, —23),
(115,1),(—115,-1),(23,5), (=23, —=5)}.
Solving each system we find the solution set of the equation:
{(58,57), (—58,-57),(14,9), (—14, —9), (58, —57),
(—58,57), (14, -9), (—14,9)}.
The following observation could speed the solution: if (a, b) satisfies the equation,

then so does (—a,b), (a, —b), and (—a, —b). Then it would be sufficient to consider
only the systems (z —y,z 4+ y) = (1,115) or (5, 23), corresponding x > y > 0.

Example 14. Prove that the equation x? — 2y + 8z = 3 has no integer solutions.

Solution. If y is even, i.e., y = 2k, then 2% = 3—82+2y? = 3—82+8k? = 3 (mod 8).
If y is odd, i.e., y = 2k + 1, then 22 =3 — 82 +2y2 =3 - 82+ 8k + 8k +2=5
(mod 8). Thus 2 =3 or 5 (mod 8). But this is impossible, since squares of integers
when divided by 8 give remainders 0, 4 or 1 only. Indeed, if x =0,1,2,3,4,5,6,7
(mod 8), then 22 =0,1,4,1,0,1,4,1 (mod 8), respectively.

The reader may wonder why in the solution above we decided to pay attention to
modulus 8. Let us explain it. It is clear that if a diophantine equation has a solution,
then so does the corresponding congruence for an arbitrary modulus m (equal
numbers are congruent for every modulus!). The contrapositive to this statement
is: if there exists a positive integer m, such that a congruence modulo m has no
solution, then the corresponding diophantine equation has no solution. Therefore
a general approach of showing that a diophantine equation has no solutions is to
find a positive integer m such that the corresponding congruence modulo m has
no solutions. One may start with small moduli, like 2,3,4,5,.... In Example 14
modulus 8 was the first one which worked. Sometimes the needed modulus can be
found fast, sometimes it may take long. Unfortunately, the approach may not work
at all. There are diophantine equations which have no integer solutions, but the
corresponding congruences will have a solution for every modulus n > 2. One such
example is given by the equation (22 4 1)(3z 4+ 1) = 0. Obviously it has no integer
solutions. It can be shown that the corresponding congruence (22 +1)(3z+1) =0
(mod n) has a solution for every n > 2 (see exercise 9 (ii) from Exercise Set 5).

Exercise Set 5

1. Find the general solution of the following diophantine equations:
(a) 172 + 10y =3
(b) 540z — 300y = 3540
(c) 315z + 66y = 94.
2. Prove that none of the following diophantine equations has a solution:
(a) 22 —5y=3
(b) 22% —5y% = 7.
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ind at least three integer solutions for each of the following equations:
2

(
(b) @? —5y* =1
(c

4. Prove that for every integer ¢ > 20, the diophantine equation 7z 4+ 4y = ¢ has a
solution (z,y) with both z and y being non—negative integers.

5. Find all integer solutions of the equation 2zy = =2 + 2.

Find all integer solutions of the equation z® + 91 = y3.

7. Let a,b € N be relatively prime. Prove that the equation ax + by = ab has no
solution with z,y € N. (Can it be solved with x,y € Z7?)

o

8. Let a and b be two positive relatively prime integers. Prove that ab —a — b
is the greatest integer which cannot be written as ax + by with =z and y being
non—negative integers.
(i) Let a,b,c € N and a1,b1,c1 € Z. Prove that if every two of the integers
a, b, c are relatively prime, then the system of congruences

©

z=a1 (mod a), x=b1 (mod b), z=c (mod c)
has a solution. This statement (as well as 9(iii) of Exercise Set 4) represents
a particular case of so—called Chinese Remainder Theorem.

(ii) Prove that the congruence (2z + 1)(3z + 1) =0 (mod n) has a solution for
every integer n > 2. (Obviously the corresponding equation has no integer
solutions.)

6. PRIMES

An integer p # +1 is called a prime number, or prime, if it divisible only by
41 and +£p. The first nine positive primes are 2,3,5,7,11,13,17,19,23. Numbers £2
are the only even primes. A number different from +1 which is not prime is called
a composite number, or composite. From now on to the end of the section we
restrict our attention to positive integers only. The importance of primes in number
theory is mainly due to the following theorem which simply claims that the primes
are the ultimate material out of which the world of integers is built up.

Theorem 10. Prime Factorization Theorem. Fuvery integer n > 2 is prime

or a product of positive primes. If n is represented as product of positive primes in

two ways, then these representations differ only in order of the factors.
FEquivalently:

every integer n > 2 is prime or a product of powers of distinct positive primes with

positive integer exponents:

(6.1) n=p;“pa - pptE.

Assuming p1 < p2 < ... < pg, such a representation is unique.
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For example, 48 =24 .31 =31.24 90 =2.3.5.3=3.5.2.3 =21 .32. 5L,

Proof. Clearly the two statements of the theorem are equivalent. We prove the
first one dividing its proof into two parts: existence of prime factorization and its
uniqueness.

FExistence. We proceed by induction on n. For n = 2 is prime, thus the statement
is trivial. Suppose the theorem is proven for all integers m such that 2 < m < n.
We want to show that it is true for m = n. If n is prime, then the statement
is obvious. If n is not prime, then n = ab, where 1 < a < nand 1 < b < n.
By inductive hypothesis, we know that both a and b are either prime or can be
written as product of distinct prime powers, and on substituting for them we get
n expressed as a product of prime powers. Adding exponents of the same prime
powers (if needed) we get m expressed as a product of powers of distinct primes.

For example, 60 =6-10=(2-3)(2-5) =2-3-2-5=22.3.5.

Uniqueness. In our proof of the uniqueness of prime factorization, we will use
the following

Lemma 1. If p is prime and plajas - - - as, then pla; for some i, 1 <i <s.

Proof. Since p is prime, the ged(p,a;) = 1 or p for each . If it is p for at least
one ¢, then p divides the corresponding a;, and the proof is finished. If for all
i, ged(p,a;) = 1, then ged(p,ajas---as) = 1 (just generalize Theorem 7(ii) by
induction on s). This contradicts that plajas - --as. Therefore p divides some a;.
O

Our proof of uniqueness proceeds by induction on n again. For n = 2 is prime,
thus the statement is trivial. Suppose the theorem is proven for all integers m such
that 2 < m < n. We want to show that it is true for m = n. If n is prime, there is
nothing to prove. If n is not prime, let

n=p1-Pk=4q1" "Gt

be two representations of n as product of primes (not necessarily distinct). We
want to show that & = ¢t and, after a proper rearrangement if necessary, p; = g¢;
for alli=1,...,k. Since p; is prime dividing q; - - - g, then, by Lemma 1, p;|g; for
some i, 1 < i < k. Since g¢; is also a positive prime, then p; = ¢;. Relabelling ¢’s if
necessary, we may assume that p; = ¢;. Thus we have

n=pip2-- Pk =P192 " qt

Dividing by p1, we get n/p1 = pa-+-pr = g2+ -+ ¢ < n. By inductive hypothesis,
n/p; is prime or product of primes, such representation is unique up to the order
of primes. So k = t, and, after a rearrangement if necessary, p; = ¢; for all
i = 2,...,k. Multiplying both sides of py---pr = q2---qx by p1, we prove the
uniqueness statement for n. O

Corollary 2. Let n = p1®'pa®2 - -pp, ¢; > 1,4 =1,2,... k. Then mjn <=

m =pilipgl2 - ppl*, where 0 < 1; < e, i=1,2,...,k.
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Proof. If m|n, then n = p11py®2 -+ - pi¢ = gm for some integer q. If either one
of prime factorizations of ¢ or m contains a power of a positive prime distinct from
each p;, or if it contains a power of p; with the exponent greater than e;, then it will
violate the uniqueness of prime factorization of n. This proves the = part. The
converse statement is obvious: n = (p;© "hpye2lz ... prer=le) . (prhipyle g i) =
(prer—lipyez—ie oo pR® ) om. Since, for every i, 1 <i <k, e; —[; > 0, then m|n.
O

Thus 32 - 17|2 - 3% - 5 - 172, and when we say that neither 11 nor 34 divides
2-33-5-172, we actually use the contrapositive to part = of Corollary 6.3.

Example 15. Prove that the only integers satisfying the diophantine equation n? =

2m?, are m =n = 0.

Proof. Clearly (m,n) = (0,0) is a solution. Suppose m # 0. Then n # 0. Every
prime power in prime factorizations of both n? and m? has an even exponent.
Consider the exponents of 2 in prime factorizations of n? and 2m?. Whatever they
are, the first is even and the second is odd. This contradicts the uniqueness of
prime factorization. Thus m # 0 is not possible, which ends the proof. O

Remark. The definitions of factors and primes involve solely the operation of
multiplication, and have no references to that of addition. The same is true about
our proof of the existence of prime factorization. At the first glance it may look
that the proof of the uniqueness is also independent on the addition operation. This
is not the case, since we used Lemma 1 whose proof depended on the Euclidean
algorithm. The latter is clearly inseparable from the addition of integers. There are
proofs of Theorem 10 which do not use the Euclidean algorithm, but all of them
use the additive properties of Z. Therefore one can ask a question: is it possible
to prove Prime Factorization Theorem by using the multiplicative properties of
integers only? It turns out that no such proof can ever be found, i.e., it is not a
matter of our cleverness, but the intrinsic property of integers!

How can one prove a statement like this? The following ingenious argument
belongs to D. Hilbert (1862 - 1943).

Consider the set S of all positive integers congruent to 1 modulo 4:
S =1{1,5,9,13,17,21,25,29,... }

Multiplying any two numbers from S, we get another number from S (Theorem
3(vi)). Call a number from S a pseudo—prime if it is different from 1 and is not a
product of two smaller numbers from S. For example, numbers 5,9,13,17, 21, 29, 33, 49
are all pseudo—primes, but not 25 (= 5-5), or 45 (= 5-9), or 117 (= 9-13). It is true
that every number from S is either a pseudo—prime of can be factored into pseudo—
primes, and this can be proved in just the same way as in Theorem 10. But it is not
true that the factorization is unique! For example, number 441 = 21 -21 = 9 - 49,
and both factorizations use pseudo—primes only and are distinct.

On the other hand the axioms of the multiplication operations on S and Z are the
same, namely: each set is closed under multiplication (i.e., the products of any two
elements of a set is an element of the set), both multiplications are commutative,
associative and each set contains a multiplicative identity (number 1). At the same
time the prime factorization is unique in N (or Z), but not in S. This argument
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shows that a proof of uniqueness can not be based solely on multiplicative axioms
of integers.

Let us now consider some other interesting properties of primes. Trying to
continue the sequence of positive primes we will experience that the frequency of
their appearance decreases with grows. For example, there are 25 primes among
{1,2,3,...,100}, but only 16 primes among {1001,1002,..., 1100}, and only 6
primes among {100001, 100002, ..., 100100}. One may start wondering whether we
will eventually exhaust all of them. This will never happen! The following proof
goes back to Euclid’s Elements (Book IX, Prop. 20). It is often used as an example
of the incredible power of mathematical thinking, in particular, of the method of a
proof by contradiction.

Theorem 11. There are infinitely many prime numbers.

Proof. By the method of contradiction. Suppose the statement is false, i.e., there
are only finitely many primes, say n. Then we can write all of them in the following
finite sequence
2=p1 <3 =pa<... <pn.

Consider a number N = pips---p, + 1. Since N > p,, N is not in the sequence,
and therefore it is composite. But any composite number is divisible by a prime due
to Theorem 10. Since all primes are listed in the sequence, there exists ¢, 1 < i < n,
such that p;|N. On the other hand, N = ¢p; + 1, where ¢ is the product of all
primes but p;, i.e., N divided by p; gives remainder 1. The source of the obtained
contradiction is our assumption that there are finitely many primes. Therefore the
set of primes is infinite. O

Is there any pattern in the distribution of primes?

The following theorems provide some answers.

Theorem 12. For any n € N, there exist n consecutive composite integers.

Proof. The meaning of the theorem is that the “gaps” between two consecutive
primes can be as large as we wish. For example, there is a set of a billion consecutive
integers with no prime among them. The proof of the theorem is very easy. Consider
the following n consecutive integers:

m+D+2,(n+ ) +3,(n+D!+4,...,(n+ 1)+ (n+1).

Since (n+ 1)l =1-2-3---n-(n+1), the first number is divisible by 2, the second
by 3, and so on, the last by n + 1. Since all number are greater than n + 1, all of
them are composite. O

Note that we did not claim that the set exhibited in the proof above was the
first segment of integers with the property. It is easy to see that the sequence

P+2,P+3P+4,....,P+(n+1),

where P is just a product of primes not exceeding n-+1, also consists of n composite
numbers, and they are much smaller than the ones above. For example , taking



ELEMENTS OF NUMBER THEORY: LECTURE NOTES 27

P=2-3-5-7=210, we get 10 consecutive composite integers 212, 213, ..., 222,
which are much smaller than the ones starting with 11! 4 2.

In a way, the following statement counterweights Theorem 6.6. It was formulated
by J.L.F. Bertrand (1822-1900) in 1845, and proved by P.L. Chebyshev (1821-1894)
in 1850. All known proofs use facts that are outside of the scope of our course and
we omit them.

Theorem 13. For any n > 4, there exists at least one prime number p, such that
n<p<2n-—2.

All odd primes can be written in the form 4n+1 or 4n+3, i.e., are members of the
arithmetic series 1,5,9,13,17,... or 3,7,11,15,19,... . Are there infinitely many
primes of each of the form (i.e., in each of the sequences)? In 1837 an affirmative
answer to a much more general question was given by P.G. L. Dirichlet (1805-1859).
Here it is. Again, all known proofs are too difficult at this stage, and are omitted.

Theorem 14. Let a and d be two relatively prime integers. Then the arithmetic
sequence
a,a+d,a+2d,...,a+nd,...

contains infinitely many primes.

Thus, there are infinitely many primes in the sequence

1,4,7,10,13,... (a=1,d=3);
orin 5,13,21,29,37,... (a=5,d=2_8);
orin 3,7,11,15,... (a=3,d =4);

there are infinitely many primes of the form 6n+1 (a = 1,d = 6).

‘ Is there any formula for prime numbers? ‘

For example, can one find a function f of one variable such that f(n) is prime
for all n € N?

The quadratic function y = 22 4 x + 41 takes prime values for all z = 1,2,...,39
(as well as x = —40,—-39,... — 2, —1,—0), but not for x = 40. This was observed
by L. Euler (1707-1783). One can do even better: y = x? — 792 + 1601 takes prime
values for the first eighty values of . On the other hand, it is not hard to show that
no non-constant polynomial p(z) with integer coefficients can take prime values for
all x € N. But what if f is not a polynomial of one variable?

It was noticed by P. Fermat (1601-1665) that 22" + 1 provides prime values for
n=0,1,2,3,4, and he conjectured that the pattern continues. It was disproved by
L. Euler, who showed that 22° 41 =232 4 1 = 4294967297 = 641 - 6700417, i.e., is
not prime.

Not much progress in finding a formula for primes had been made through the
centuries. A breakthrough came in 1947, when Mills proved the existence of a real
number «, such that La?’"J is prime for all n € N. Unfortunately the number «
is still unknown. Here | | denotes the integer part of a number, i.e., |z] is the
greatest integer which is < z. E.g., [5.6] =5, |[-5.6] = =6, |7] = 7.
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Another deep result in this direction was obtained by Y. Matijasevich in 1972.
He proved the existence of a polynomial in 58 variables z1, ..., x55 of degree 4 with
the property that if it is evaluated for all (zq,...,2z58) € Z°%, then the set of its
positive values is precisely the set of positive primes! Later other examples of such
polynomials were found. The one below was found by Jones, Sato, Wada, and
Wiens in 1976. Tts degree is 25 and it has 26 variables (so we may use all letters of
English alphabet).

flab,....y,2) = (k+2){1l —[wz+h+j—q*—[(gk+29+k+1)(h+j)+h— 2]
—[2n+p+gt+z—e?—[16(k+1)3(k+2)(n+1)>+1— f2*—[e*(e+2)(a+1)*+1—0%]?
—[(@®=1)y? +1—22> = [16r%y* (a® = 1) +1—u?]> = [((a+u?(u® — a))? — 1) (n+4dy)>
+l—(@4+ew) P —[n+l4+v—y?—[(> =P +1-—m?P? —jai+ k+1—1—i]?
~[p+lla—n—1)+b2an+2a—n*—-2n—-2)—m]>* —[g+yla—p—1)
+s(2ap +2a — p* = 2p — 2) — 2] — [z +pl(a — p) + t(2ap — p* — 1) — pm]*}.

Suppose you are given a large integer n and you have to determine whether it is
a prime.

How can one check whether a number is prime?

An obvious approach, i.e., trying to divide n by all positive integers less than
n/2, will work, but it is too slow. A refinement of this idea which speeds the
verification is given below.

Theorem 15. Let n > 2. If no prime number p < \/n divides n, then n is prime.

Proof. We prove the contrapositive statement: a composite number n is divisible
by a prime p, 2 < p < /n. Indeed, n = ab, for some 1 < a < b < n. Then a|n and
a < +/n (else, n = ab > /n - /n = n). Then any prime divisor p of a divides n.
Since 2 < p < a < /n, the proof is finished. O

For example, to check whether 143 is prime, it is sufficient to try to divide it by
2,3,5,7,11, since 11 is the largest prime not exceeding v/143. Since none of these
primes divide 143, 143 is prime.

For large numbers this method is still slow; much better methods for testing
primality have been developed, but their theory is much more involved. Such tests
are important in modern cryptography.

Exercise Set 6

1. Prove that the sum of four consecutive positive integers is never a prime number.
2. Find all n € N such that all three numbers n, n + 10, and n + 14 are prime.
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3. Are the following integers prime? Prove your answers.

(i) 127 (i) 667 (iii) 1987
(iv) 2°° — 3% (v) 2°° 410 (vi) 2°° +15°°
(vii) 111...111 (126 ones) (viii) 2'9%% — 1 (ix) 2'%%% 41

(Hint: the following identities can be useful: for n,k € N,

a" =" =(a—b)(a" " +a" b +a" PV . ab" Y,
oL LB (0 4 B)(a® — o2 lp 4 a2 — L — ab? L 4 7))
4. Prove that numbers below cannot be prime simultaneously:
(i) n+5 and n+ 10, (n > 2)
(i) p,p+2and p+5, (p > 2)
(iii) 2" —1and 2" + 1, n > 3.
5. (i) Prove that if 2" — 1 is prime, then n is prime. Does the converse hold?
(ii) Prove that if 2™ 4 1 is prime, then n is a power of two. Does the converse
hold?
6. Prove that if a cube of a number is divisible by 17, then the number is divisible
by 17.

7. Prove that the only solution of the diophantine equation
(i) n? =5m? is (0,0)
(ii) n® = 40m? is (0,0)
8. Show that n* + 4 is a composite number for all integers n > 2. (Hint: factor the
polynomial.)
9. Let p be a prime integer > 5. Prove that p® — 1 is divisible by 24.
10. Let p, denote the n—th positive prime. Thus p1 = 2,p2 = 3,p3 =5,pa = 7,....
Prove that for n > 5, p, > 2n.
11. (i) What is the greatest integer n such that 3™ divides 30!?
(i) What is the greatest integer n such that 2" divides (‘5") = 1000!/(500!)>?
(It can be shown that this number is an integer, but you do not have to do
it.)

12. Let p be a prime and let e be the greatest integer such that p® divides n!. Prove
that ]

e=|n/p) + [n/p*]) + |n/P"] + ...

13. Without using Theorem 6.5, prove that there are in infinitely many prime num-
bers of the form 4n + 3, n > 1.

14. Prove by induction with respect to a that for any positive prime p, and any
integer a, a? — a is divisible by p (The statement is known as the “Little Fermat
Theorem”.)

15. Prove that there are infinitely many primes using #13 of Exercise Set 4. A proof
based on this idea was suggested by G. Pélya (1887-1984).
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Supplementary Problems.

(1)
(2)

3)

How many zeros are at the end of 1995! 7

(i) Prove that for all n € N, the fraction 3241 is irreducible.
(ii) Find all integers n such that 179:;?17 is an integer.
(i) Prove that for all integers n and k, 0 < k < n, k! divides n(n — 1)(n —

9) -+ (n—k+1).

(ii) Prove that the binomial coefficient (*") = (3,7; )!! is always divisible by 2.
(iii) Prove that the binomial coefficient (27?) = ff; >!! is always divisible by n + 1.
(iv) Prove that the multinomial coefficient (, :" L) = n,(:,")'n, (product of k n!’s

in the denominator) is always divisible by k!
What is the remainder of the division of 347'%% by 17?
Prove that for all integers a, b, ¢, 6/(a + b+ c) implies that 6|(a® + b + ¢*)
Prove that for all integers n, n? + 3n 4 5 is not divisible by 121.
Both integer a and integer b is a sum of squares of two integers. Then ab is the
sum of squares of two integers. Prove it.
Solve the diophantine equation x> — 2y® — 423 = 0.
(i) Is number 111...11 (300 ones) a perfect square?
Can the sum of digits of a perfect square be 19947
Prove that for every n € N, there exists an x € N, such that the number nz + 1
is composite.

Consider the sequence of Fibonacci numbers: F; = Fo =1, and F,, = Fp,_1+F,_2
for n > 3. Prove that every positive integer can be represented as the sum of
distinct members of the Fibonacci sequence.

Prove that if positive integers m and n are relatively prime, then the same is true
for 2™ — 1 and 2" — 1.

Prove that there is no non-constant polynomial f(z) in one variable « with integer
coefficients which takes prime values for all x € N.

Prove that for any integer n > 2, thesum 1 +1/24+1/34+...+1/(n—1)+1/n
is never an integer.

Prove that the equation z* — 2y? = 1 has no integer solutions.

Let a and b be integers. If a® + b? is divisible by 21, then it is divisible by 441.
Prove it.

Let a,b,z0 € N. Prove that some terms of the sequence xo, 1 = axo + b, x2 =
ax1+b,...,Tn+1 = ax, +b,... are composite numbers.
Consider the sequence of Fibonacci numbers: F; = Fo =1, and F,, = Fp,_1+F,—2

for n > 3. Prove that 5|Fsj for each k € N.
For each irreducible fraction ¢ € (0, 1), consider an open interval (§ — 3, ¢+ 137)-
Does the union of all these intervals cover the interval (0,1), i.e., is

a 1 a 1
c ) (G- 24 e
one U G-g 5t o)

2e(0,1)

Prove that there are infinitely many prime integers of the form 4n + 1,n > 1.
Consider a sequence of n integers a1, az,...,a,. Prove that there are integers ¢
and j such 1 <4 <j <n and n|(a; + ait1 + ...+ a;).
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(23) Let a, b, k be positive integers, ged(b,10) = 1 and N = aaa ... aaa is obtained
by writing a next to each other k times. (For example, if @ = 2446 and k = 4,
then N = 2446244624462446.) Prove that given a and b, k can be chosen in such
a way that b|N.

(24) (i) Let A be an infinite set of points in the Euclidean plane such that the
distance between any two points is an integer. Prove that all points lie on
one line.

(ii) Does the conclusion of part (i) above hold if we require all distances to be
rational numbers?

(iii) Is it possible to find an infinite subset of points of the unit circle centered
at the origin having all their coordinates rational numbers and all pairwise
distances between them to be rational numbers?

(25) Prove that the equation z* 4+ y* = 2? has no integer solutions (z,y,z) with
xyz # 0.

(26) For n € N, let ¢(n) represent the number of positive integers less than n and
relatively prime to n. Assume ¢(1) = 1. The function ¢(n) is called the Euler’s
quotient function.

(i) Prove that if ged(a,b) = 1, then ¢(ab) = ¢(a)p(b).
(i) What is ¢(p), ¢(p?), ¢(»*), or ¢(p™), if p is prime and m € N?
(iii) Prove that if n = p1'p2®2 -+ - pp°* is the prime decomposition of n, then
1 1

1
#(n) =n(l— p_l)(l_ 1)—2)"'(1— p—k)-
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Some Answers and Hints to Exercises.

Exercise Set 1

(1) Use part (vi) of Theorem 1. The converse is false, since both numbers can

(
(

(
(
(

2)
3)
"
5)
6)

be equal to zero.

All converse statements are false. Show this by given a counterexample to
each of them.

Denote the smallest of the four consecutive integers by n. Express other
numbers in terms on n.

Explore for n =4,6,8,9,15,16,20,25. Pair the divisors a and n/a.

(i) Yes. (ii) No

Imitate (in a broad sense) the solution to Example 3.

(i) We use the method of mathematical induction. For n = 1, the state-
ment is correct, since 1> — 1 = 0 and 5|0. Suppose the statement is correct
forn = k > 1, i.e., 5/(k® — k). We want to show that the statement is
correct for n = k + 1, i.e., that 5|[(k +1)% — (k +1)]. Let A = k® — k and
B = (k+1)® — (k+1). Raising k + 1 to the fifth power, we obtain

B = (k® + 5k* +- 10k® + 10k* + 5k + 1) — (k + 1)
= (k° — k) + 5(k* + 2k3 + 2k* + k).

Therefore B = A+ 5C, where C' = k* + 2k3 + 2k? 4+ k. But 5/ A due to the
inductive hypothesis. So B is the sum of two addends each divisible by 5.
By Theorem 1 (iii), 5|B, and the proof is complete. O

Denote the average of the numbers by z. Explain that z must be one of
the numbers. Express other numbers in terms on z. Or denote the smallest
integer by y and express other numbers in terms on y.

Use the approach of the solution to Example 1.

Experiment. Notice a property of the total number of pieces you obtain.
Explore for the number of lockers from 1 to 30. Use another problem from
this Exercise Set.

Imitate (in a broad sense) the solution to Example 3.

Write N = @y, _1Gn_3...aG2a1ag, where a,_1 < an_o2 < ... <as <ay < ag
are the (decimal) digits. Then

9N = (10 — 1)(10" ta,_1 + 10" 2a, o + ... 10%az + 10a; + ao).
Distribute the product.

Exercise Set 2.

Use the approach of the solution to Example 6.

Use the approach of the solution to Example 7.

Use Theorem Theorem 2.

Use induction or the binomial theorem.

(ii) Write the smallest of your integers as 3k 4, where 0 < r < 3. Go over
all possible values of r. Parts (i) and (iii) can be done similarly.

Denote the smaller of your odd integers by 2n + 1. (2n — 1 is even better!)
Imitate (in a broad sense) the solution to Example 7

Write N = 10a + 5.
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(9) Divide each number by n. Look at the remainders.
(10) Divide each number by 5 with remainder. Go over different cases.
(11) Write N = 10a +r, 0 < r < 10. Or write N = 100a +r, 0 < r < 100.
(No.)
(12) Start experimenting with several fractions. It has to become clear after a
while.

Exercise Set 3

(1) Use the approach of the solution to Example 9.
(2) Use the approach of the solution to Example 9.
(3) (i) 1. Explore the last digit of smaller powers of 3 and see the pattern.
Or use the fact that the last digit of a number is the remainder of the
division of the number by 10.
(ii) The hint has already been given.
(4) A hint has already been given.
(5) Similar to our proof of part (iv).
(6) The answer is 16. Use the approach of the solution to Example 8.
(7) A hint has already been given. Also use the approach of the solution to
Example 8.
(8) First investigate what can be a remainder of the division of a square of an
integer by 7.
(9) A hint has already been given. First investigate what can be a remainder
of the division of a cube of an integer by 9.
(10) Show that ¢ is quite small. What else is clear about ¢?

Exercise Set 4.
W 4

(ii) ¢ =4k where k is an arbitrary integer.

(2) (i) the ged of two numbers must divide their difference;

(ii) the same idea as in (i);

(iii) Let d; = ged(a,b) and d2 = ged(a, a +b). Show that dy|dy and da|dy;
(iv) the ged of two numbers must divide every linear combination of the

numbers.

(3) The ged of two numbers divides their difference.

(4) Converse to (ii) is correct. Prove it. Converse to (iii) is false. Find a
counterexample.

(5) Use Theorem 6 (i).

(6) We have: ax = b (mod n) < nl(ax —b) <= dni|(da1z — db)
dnq|d(a1x — b)) <= ni|(a1z —b1) <= a1z =b; (mod nq).

(7) 421. Similar to Example 11(ii). A faster solution follows from the observa-
tion that N — 1 has to be divisible by 3,4,5,7.

(8) 419. Similar to Example 11(ii). A faster solution follows from the observa-
tion that N + 1 has to be divisible by 3,4,5,7.

(9) (1) {38+ 56s: s Z}. Similar to Example 11(ii).
(if) {1102+ 1400t : t € Z}. Substitute the general solution of part (i) into

the third congruence.
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(iii) Write the general solution of the first congruence by using one param-
eter, say t, and substitute it into the second congruence. Explain that
for some values of ¢ the second congruence will be satisfied too.

(10) It is sufficient to prove that each of the numbers 2,3,5 divides n® — n for all

n € N. (Why is that?)

(11) Use the definition of the ged of two numbers

(12) Explore. Find pairs of integers on which the Euclidian algorithm consists
of exactly 1, 2, 3, 4, 5, 6 divisions, respectively. Try to generalize.

(13) Assume m < n Prove that the ged of these numbers must divide 22" — 1.

The formula a® — b* = (a — b)(a* =1 + a* 20+ a* 32 + ... + abF =2 + bk 1)

may be useful.

Exercise Set 5.

(1) (a) {(z,y): ©=—-1—-10t,y =2+ 17¢t,t € Z};
(b) {(z,y): x=6—->5t,y=—-1—9t,t € Z};
(¢) no solutions. Your answers may look different, but they have to pro-
duce the same solution sets as in (a),(b),(c).
(2) (a), (b): Use the idea of the solution to Example 14 and the remarks at the
end of the section
3) (a) (0,0,0), ( 0,1),(3,4,5);
(b) (1,0),(~1,0), (9, 4);
(¢) (2.1),(~21),(8.13)
(4) Use induction on c¢. Both versions of mathematical induction will work.
(5) If z = 0, then y = 0. So (0,0) is a solution. If 2 # 0, then z|2y (why?).
Set y = kx, where k is an integer. Continue. Show that the only solution
distinct from (0,0) is (2, 2).
(6) Factor 23 — y3. Use the idea of the solution to Example 13. The answer is
{(57 6)7 (_67 _5)7 (_37 4)7 (_4’ 3)}
(7) Show that aly and b|z.
(8) Use (5.2)
(9) (i) Generalize the solution of problem 9 (iii) of Exercise Set 4.
(ii) Write n in the form n = 293°m, where ged(2,m) = ged(3,m) = 1.
Then use part (i).

Exercise Set 6.

(1) Let n be the smallest of the integers. Continue.
(2) n = 3. Show that one of the numbers is divisible by 3
(3) The following formuli may be useful in some of the problems:

a” —b" = (a—b)(a" ! + a"_2b—|— a4 a4+ 0" ) ,n > 1 and
a1+ 0 = (a +b)(a® — a®* o+ a2 — a4+ k> 1.
They can be proved by just multiplying the expressions in the right hand
sides and reducing similar terms.
Answers: (i), (iii): Yes; (ii),(iv)—(ix): No.
(4) Think about divisibility of the numbers by 2 or 3.



ELEMENTS OF NUMBER THEORY: LECTURE NOTES 35

(5) (i) Use our hint to problem 3 above. No (find a counterexample).
(ii) Use our hint to problem 3 above. No (give a counterexample).

(6) Use Theorem 10.

(7) (i) Similar to Example 15.

(ii) Similar to Example 15. Concentrate on a prime divisor of 40.

(8) A hint is already given.

(9) Explain that among three consecutive integers p — 1,p,p + 1 where p is
a prime > 5, one is divisible by 4, another is divisible by 2 and one is
divisible by 3. Or: divide p by 12 with the remainder and consider cases
corresponding to possible remainders.

(10) Use induction on n.

(11) (i) 14.

(ii) 6. First understand how to find the greatest powers of 2 which divides
1000! and 500!, respectively.

(12) Generalize several numerical examples, including those in problem 11 from
this exercise set.

(13) Imitate the Euclid’s proof that there are infinitely many primes. Suppose
there are only finitely many, say k, positive primes of the form 4n + 3. List
all of them in increasing order: 3 = p; < 7=ps < 11 =p3 < ... < pg.
Show that the number N = 4p1ps...px — 1 is

(a) of the form 4m + 3,
(b) not in the list and therefore is composite,
(¢) must be divisible by one of the primes from the list, but is not divisible
by any p;’s.
(14) Show that the binomial coefficient (Z) is divisible by p for all k, 1 < k < p.
(15) Think about the prime factorizations of the numbers 22" + 1, n > 0.
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