Just Write it Down

Mike Pierce

The hardest part of responding to these questions is just writing it down. None of these require that you know a theorem or trick, but only that you verify an algebraic gadget has a desired structure.

1. Let *G* be a group, and let *A* be an abelian group. Let $\varphi: G \to \operatorname{Aut}(A)$ be a group homomorphism. Let $A \times_{\varphi} G$ denote the set $A \times G$ with the binary operation

$$(a,g)(a',g') = (a+\varphi(g)(a'),gg').$$

Prove that $A \times_{\varphi} G$ is a group. Why do we require that A be abelian?

2. Suppose that R and S are commutative rings and that M is a (R,S)-bimodule. This means that M is a left R-module and a right S-module and the actions are compatible, i.e. r(ms) = (rm)s, for all $r \in R$, $s \in S$, and $m \in M$. Let N be a left S-module. How does one define a left R-module structure on $M \otimes_S N$? What must you check to see that the action is well-defined? If we assume now in addition that N is a (S,R)-bimodule that can you say about $M \otimes_S N$? What if we don't assume that R and S are commutative?

Suppose now that R = k is a field, so M and N are vector spaces over k. If $\dim_k M = m$ and $\dim_k N = n$ and you are given bases for M and N, what is a natural choice of basis for $M \otimes_k N$?

- 3. For a commutative unital ring R and left R-modules M and N, does $\operatorname{Hom}_R(M,N)$ have any sort of R-module structure? Is it necessary to assume that R is commutative? What if M is a right R-module instead?
 - Suppose now that R = k is a field, so M and N are vector spaces over k. If $\dim_k M = m$ and $\dim_k N = n$ and you are given bases for M and N, what is a natural choice of basis for $\operatorname{Hom}_k(M, N)$?
- 4. For a unital ring R and a unitary left R-module M, write out the details of the left R-module isomorphism $R \otimes_R M \cong M$.
- 5. For a unital ring R and a unitary left R-module M, write out the details of the left

R-module isomorphism $M \cong \operatorname{Hom}_R(R, M)$.

6. For a left R-module M, recall the definition of the *dual* module $M^* = \operatorname{Hom}_R(M, R)$. For a ring R and left R-modules M and N, write down the details of the morphism of abelian groups

$$M^* \otimes_R N \longrightarrow \operatorname{Hom}_R(M, N)$$
.

Prove that this homomorphism is in fact an isomorphism if R is a field and M and N are finite-dimensional vector spaces over R.

7. For integers *m* and *n*, write out the details of the **Z**-bimodule isomorphism

$$\mathbf{Z}_{\mathbf{Z}_m} \otimes_{\mathbf{Z}} \mathbf{Z}_{\mathbf{Z}_n} \cong \mathbf{Z}_{\mathbf{Z}_{\gcd(m,n)}}.$$

8. Recall the definition of a *left exact functor*. Using left R modules A, B, C, and X and exact sequence $B \hookrightarrow C \twoheadrightarrow A$, write out the details that show $\operatorname{Hom}_R(X, -)$ is a left exact functor of R-modules. What can we require of X to make $\operatorname{Hom}_R(X, -)$ an exact functor?

Now recall the definition of a *contravariant functor*. Using left R modules A, B, C, and X and exact sequence $B \hookrightarrow C \twoheadrightarrow A$, write out the details that show $\operatorname{Hom}_R(-,X)$ is a contravariant left exact functor of R-modules. What can we require of X to make $\operatorname{Hom}_R(-,X)$ an exact functor?

For an (S, R)-bimodule X, consider the functor $(X \otimes_R -)$. What are the domain and codomain of this functor? Is it a covariant or contravariant functor? Is it left exact or right exact?

9. For a left R-module M, recall the definition of the dual module $M^* = \operatorname{Hom}_R(M,R)$ Write down the details of the natural homomorphism of R-modules $\theta_M \colon M \to M^{**}$. Prove that θ_M is an isomorphism if R is unital and M is free with finite basis over R.

For a homomorphism of left R-modules $f: M \to N$, write down the details of the natural map $f^*: M^{**} \to N^{**}$ such that the following diagram commutes.

$$M \xrightarrow{\theta_M} M^{**}$$

$$f \downarrow \qquad \qquad \downarrow f^*$$

$$N \xrightarrow{\theta_N} N^{**}$$

10. (EXTRA) Suppose that R and S are commutative unital rings, and we have a unital ring homomorphism $\varphi \colon R \to S$. Write down the details of the induced *restriction of scalars* functor $\Phi \colon S\text{-Mod} \to R\text{-Mod}$.

Now *S*, being a left *S*-module itself, can be regarded as a left *R*-module via this functor. Write down the details of the induced *extension of scalars* functor Mod- $R \rightarrow$ Mod-S (*right* modules) given as $(- \otimes_R S)$.