

Algebra Qualifying Examination, Fall 2016, Part b

Answer any four of the following questions. All questions are worth 10 points

- 1. Let R be a commutative ring with identity and let a be a non-zero element in R. Suppose that P is a prime ideal properly contained in the principal ideal generated by a. Prove that P = aP. Suppose now that P is also principal. Prove that there exists $b \in R$ with (1-ab)P = 0. What can you conclude about P if R is an integral domain and a is not a unit.
- $\sqrt{2}$. (a) Let R be a commutative ring with identity and regard R as a module for itself via left multiplication. Prove that this module is simple iff R is a field.
- (b) Define a free module for a ring R. Suppose that R is a commutative ring with identity and satisfies the following condition: any submodule of a free module is free. Prove that R is a principal ideal domain.
- 3. Give examples to show that the following can happen for a ring R and modules M, N, (i) $M \otimes_R N \ncong M \otimes_{\mathbb{Z}} N$, where \mathbb{Z} is the ring of integers.
 - (ii) $u \in M \otimes_R N$ but $u \neq m \otimes n$ for any $m \in M$ and $n \in N$.
- (iii) $u \otimes v = 0$ but $u, v \neq 0$.
- 4. Suppose that E is a three dimensional vector space over a field F and $f: E \to E$ is a non-zero linear transformation. Prove that there exists bases B_1 and B_2 of E such that the matrix of f is exactly one of the following.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

5. Suppose that $D = (d_1, \dots, d_n)$ is a diagonal matrix where the d_i , $1 \le i \le n$ are not necessarily distinct. What are the elementary and invariant factors of D? Suppose that A is similar to D. What can you say about its elementary divisors and invariant factors?