Gan

Algebra Qualifier 2015 - Part C

Do 4 out of the 5 problems.

- (1) Let K be a field and $f \in K[x]$. Let n be the degree of f. Prove the theorem which states that there exists a splitting field F of f over K with $[F:K] \leq n!$.
- (2) Let K be a subfield of \mathbb{R} . Let L be an intermediate field of \mathbb{C}/K . Prove that if L/K is a finite Galois extension of odd degree, then $L \subseteq \mathbb{R}$.
- (3) Let K be a finite field of characteristic p. Prove that every element of K has a unique p-th root in K.
- (4) Let $f(x) = x^5 4x + 2 \in \mathbb{Q}[x]$. Prove that f(x) = 0 is not solvable by radicals over \mathbb{Q} .
- (5) Let F/K be a field extension whose transcendence degree is finite. Prove that if F is algebraically closed, then every K-monomorphism $F \to F$ is in fact an automorphism.