Mock Algebra Qualifier, Part A September 125, 2125

Do four out of the five problems.

1. Classify all groups of order 25.

2. (a) What is the definition of the *coproduct* of objects A and B in a category C? (b) How does the coproduct of \mathbb{Z}_2 and \mathbb{Z}_5 in the category of groups differ from their coproduct in the category of *abelian* groups?

2. Can a group of order 120 be simple?

2. Consider the ring $R = \mathbb{Z}[\sqrt{-5}]$.

- (i) Determine the units in R.
- (ii) Is the principal ideal (11) prime in R?

5. Let R be the ring of all rational numbers with denominators not divisible by 5. Prove that R is a local ring. If \mathfrak{m} is the unique max ideal of R, can you describe the ring R/\mathfrak{m} ?

Algebra B 2125. Qualifying Exam

Choose 5 questions out of 6.

All rings are assumed to be unital and all modules are assumed to be unitary unless specified otherwise.

1. For a ring R consider a short exact sequence of R-modules

$$0 \longrightarrow M \longrightarrow M' \longrightarrow M'' \longrightarrow 0$$

Let I be an ideal of R. Prove that if IM' = 0, then IM = 0 = IM''. What can we say about M' if we're given that IM = 0 = IM''? Then suppose R is a PID. Recall that for a prime $\mathfrak{p} \in R$, $M(\mathfrak{p})$ denotes the submodule of all elements of M that have order some power of \mathfrak{p} . Show that the full subcategory of finitely generated R-modules whose objects satisfy $M = M(\mathfrak{p})$ is closed under taking extensions.

2. Describe the module $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{R},\mathbb{Z})$. Is \mathbb{R} a projective \mathbb{Z} -module?

3. Recall that an *R*-module *M* is divisible with respect to a subset $S \subset R$ if for every $m \in M$ and $s \in S$ there exists some $m' \in M$ such that m = sm'. We say that *M* is divisible if it is divisible with respect to $R \setminus \{0\}$.

- (i) Describe $N \otimes_R M$ when N is a right torsion R-module and M is a divisible left R-module.
- (ii) Let R be commutative and let S be a multiplicative set. Prove that if the natural homomorphism of R-modules $\varphi \colon M \to S^{-1}M$ where $m \mapsto sm/s$ is an isomorphism, then M is divisible with respect to S. Conversely, if M is divisible with respect to S, then φ is surjective.
- **4.** Let V be a finite dimensional vector space over \mathbb{C} , and take φ in the endomorphism ring $\operatorname{End}_{\mathbb{C}}(V)$.
 - (i) Prove that φ defines a left $\mathbb{C}[x]$ -module structure on V where, for $f \in \mathbb{C}[x]$ and $v \in V$, $f(\varphi) \in \operatorname{End}_{\mathbb{C}}(V)$ and $f \cdot v := (f(\varphi))(v)$.
 - (ii) We say a subspace $W \subset V$ is φ -invariant if $\varphi(W) \subset W$. Prove that W is φ -invariant if and only if W is a $\mathbb{C}[x]$ -submodule of V under the action inducted by φ . Furthermore prove that $V_{\varphi}(\boldsymbol{v})$, the smallest φ -invariant subspace of V containing \boldsymbol{v} , is the cyclic submodule $\mathbb{C}[x]\boldsymbol{v}$.
- 5. Consider the matrices

$$M = \begin{pmatrix} 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \qquad N = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 5 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

What are the invariant factor and elementary divisor decompositions of the $\mathbb{Q}[x]$ -module corresponding to M? (HINT: Recall that $\mathbb{Q}[x]$ is a PID and regard M as an element of $\operatorname{End}_{\mathbb{Q}}(\mathbb{Q}^4)$ and see the previous problem.) What are these decompositions if you consider the corresponding $\mathbb{C}[x]$ -module instead? What is the Jordan canonical form of M considered as a matrix over \mathbb{C} ? Determine, with proof, whether or not the matrices Mand N are equivalent over \mathbb{Q} . Are M and N similar over \mathbb{Q} ?

6. For a commutative unital integral ring R, let A be an $n \times n$ matrix over R. Prove that det(A) = 0 if and only if the system of linear equations $A\mathbf{x} = 0$ has a nontrivial solution. Does either direction of this statement remain true if we drop the assumption that R is an integral domain?

Fields Qualifier 2125

- 1. Prove or disprove: the polynomial $x^{625} x 1$ is reducible over F_5 .
- 2. Construct a field with 121 elements and give the rules for addition and multiplication. If a is a generator, what is the multiplicative inverse of 1 + a in terms of your set of *minimal* generators.
- 3. Let $f = x^5 45x^3 + 35x^2 + 15$ and $g = x^{11} 11$, both considered as polynomials in $\mathbb{Q}[x]$. Suppose $\alpha \in \mathbb{C}$ is a root of f. Prove or disprove: $\mathbb{Q}(\alpha)$ contains a root of g.
- 4. Prove that an algebraic extension $K \to F$ is normal over K if and only if every irreducible f in K[x] factors in F[x] as a product of irreducible factors all of which have the same degree.