Mock Algebra Qualifier, Part A September n, 2018

Do four out of the five problems.

- 1. (i) Prove that if Aut(G) is cyclic, then G is abelian.
- (ii) Prove that if |G| is finite and Aut(G) is cyclic, then $|\operatorname{Aut}(G)|$ must be even.
- (iii) Prove that there is no group with infinite cyclic automorphism group.

2. Given a finite *p*-group G, prove that G has a normal subgroup of every order dividing |G|.

3. Let R be a unital integral domain. For a nonzero element of $s \in R$, let $S = \{1, s, s^2, ...\}$. Prove that $S^{-1}R \simeq R[x]/(xs-1)$.

4. For a set X let $\mathcal{P}(X)$ denote the set of a subsets of X. For $A, B \in \mathcal{P}(X)$ define the operations $AB := A \cap B$ and $A + B := (A \cup B) \setminus (A \cap B)$ (the symmetric difference of A and B).

(i) Prove that $\mathcal{P}(X)$ is a commutative unital ring under these operations.

(ii) What is the characteristic of this ring? Prove that every ring R with the property that AA = A for all $A \in R$ must have this characteristic.

(iii) Prove that every finitely generated ideal of $\mathcal{P}(X)$ is principal.

5. (i) Prove that a finite integral domain is a field. Is it true that a finite integral ring (non-commutative) is a division ring? (FUN FACT: every finite division ring is a field. This is part of Wedderburn's little theorem.)

(ii) Does there exist a field such that its additive group structure and its multiplicative group of units are isomorphic?

Algebra B 2018. Qualifying Exam

Choose 4 questions out of 6.

All rings are assumed to be unital and all modules are assumed to be unitary unless specified otherwise.

1. Recall that a functor is exact if it takes short exact sequences to short exact sequences.

- (i) Prove that if F is a finite dimensional free R-module, then $-\otimes_R F$ is an exact functor.
- (ii) Prove that if P is a finitely generated projective R-module, then $-\otimes_R P$ is an exact functor.
- (iii) (CHALLENGE) Prove that if R is a ring $\mathcal{P}(X)$ like in Question 4, Part A of this exam, then $-\otimes_R M$ is exact for any R-module M.
- **2.** Let V and Ω be finite dimensional vector spaces over a field \boldsymbol{k} and let W, W' be subspaces of V.
 - (i) Prove that $\dim_{\mathbf{k}} V = \dim_{\mathbf{k}} W + \dim_{\mathbf{k}} (V/W)$.
 - (ii) For a homomorphism $\varphi \colon V \to \Omega$, prove that $\dim_{\boldsymbol{k}} V = \dim_{\boldsymbol{k}} (\operatorname{Ker} \varphi) + \dim_{\boldsymbol{k}} (\operatorname{Im} \varphi)$.
- (iii) Prove that $\dim_{\mathbf{k}} W + \dim_{\mathbf{k}} W' = \dim_{\mathbf{k}} (W \cap W') + \dim_{\mathbf{k}} (W + W').$

3. Let *B* be an abelian group. Prove that for any subgroup *A* of *B*, a homomorphism *A* to \mathbb{Q}/\mathbb{Z} must extend to a homomorphism *B* to \mathbb{Q}/\mathbb{Z} .

4. Let $R = \mathbb{C}[x]$.

- (i) Let M be a torsion-free module for R with two generators. Prove that M is free of rank at most two.
- (ii) Prove that if M is a cyclic R-module and $M \neq R$, then M is torsion. Under what condition on the torsion ideal will M be simple?

5. For a finitely generated $\mathbb{R}[x]$ -module M, recall that for $f \in \mathbb{R}[x]$, we have submodules $fM = \{fm \mid m \in M\}$ and $M[f] = \{m \in M \mid fm = 0\}.$

- (i) For an irreducible polynomial $\mathfrak{f} \in \mathbb{R}[x]$, prove that $M[\mathfrak{f}]$ admits the structure of a vector space over $\mathbb{R}[x]/(\mathfrak{f})$.
- (ii) Let $f = x^2 + 1$ and g = x + 1. In terms of their invariant factors, describe all the isomorphism classes of $\mathbb{R}[x]$ -modules M such that $\dim_{\mathbb{R}[x]} M = 5$ and that $f^r M = 0$ and $g^s M = 0$ for some r, s > 0.

6. For a field k, let $f \in k[x]$ be a monic polynomial. Prove that f is the minimal polynomial of it's companion matrix. Write down the companion matrix of the polynomial $x^3 - x^2 + 2x - 1$.

Fields Qualifier 2018

Do any 3 problems.

- 1. Let $f = x^3 x + 1 \in \mathbf{F}_3[x]$. Show that f is irreducible over \mathbf{F}_3 . Let K be the splitting field of f over \mathbf{F}_3 . Compute the degree $[L : \mathbf{F}_3]$ and the number of elements of L.
- 2. Let $F = \mathbb{C}(t^4) \subset K = \mathbb{C}(t)$, where t is a formal variable. Compute the Galois group $\operatorname{Aut}_F(K)$, and determine it's subgroups and corresponding intermediate fields.
- 3. Prove that in a finite field of characteristic p every element has a unique p^{th} root. Provide an example of an infinite field of characteristic p where this is not true.
- 4. Let F_{12} be a cyclotomic extension of \mathbb{Q} of order 12. Determine $\operatorname{Aut}_{\mathbb{Q}}(F_{12})$ and all intermediate fields.