
MOCK QUALIFYING EXAMINATION, ALGEBRA, PART A, 2019

September n, 2019

Solve any four questions; indicate which ones are supposed to be graded. Each

question is worth 15 points. You must show all work and justify all statements either

by referring to an appropriate theorem or by providing a full solution.

1.

(a) List all isomorphism classes of abelian groups of order 120. Is there a simple group

of order 120?

(b) What is the maximal number of elements of order 5 in a group of order 120?

(c) How many conjugacy classes are there in S5?

(a) Note that 120 = 23 × 3× 5. There are only three abelian groups of order

120:

Z120 Z60 × Z2 Z30 × Z2 × Z2

Suppose for the sake of contradiction that your group G of order 120 is

simple. By the third Sylow theorem, the number of Sylow 5-subgroups of

G must divide 120 and be congruent to 1 (mod 5), so there can be either

1 or 6 Sylow 5-subgroups. But if there is only 1, then it’ll be normal in G

contradicting G being simple. So there must be 6 Sylow 5-subgroups. Let

X denote this set of Sylow 5-subgroups. By the second Sylow theorem, G

acts on this set X by conjugation, permuting the subgroups. This action

gives us a map ϕ : G→ S6 with each g ∈ G being sent to the permutation

that describes its action on X. But again, if G is simple and doesn’t have

a normal subgroup then Ker(ϕ) must be trivial, and ϕ must be injective,

telling us G ∼= Im(ϕ) < S6.

But we can strengthen this and say G ∼= Im(ϕ) < A6. Recall that for

H < Sn either H < An or exactly half of the elements of H are contained

in An. But in the latter case Im(ϕ) ∩ An would be an index 2 subgroup,

and index 2 subgroups are normal subgroups, contradicting G ∼= Im(ϕ)

being simple. So we have G ∼= Im(ϕ) < A6.

Now since |A6| = 6×5×4×3 = 360, Im(ϕ) will be an index three subgroup

of A6. Using the same trick as in the first paragraph, A6 will act on the set

of left cosets A6/Im(ϕ) and we’ll get a nonzero homomorphism A6 → S3.

But A6 is bigger than S3, so this homomorphism has a nontrivial kernel,



which will be a normal subgroup of A6. We know A6 is simple though, so

this is our contradiction. ⇒⇐

(b) By the previous proof, in a group of order 120 there is either a single Sylow

5-subgroup, or there are 6 Sylow 5-subgroups. Since every element of order

5 will be contained in a Sylow 5-subgroup, and the Sylow 5-subgroups of a

group must be conjugate (so they only intersect on {e}), in each of these

cases respectively there will be four elements of order 5 or 6 × 4 equals

twenty-four elements of order 5. To show that twenty-four is really the

maximal number of order 5 elements (and not four), we just need to find a

group of order 120 that has more than four elements of order 5. The group

S5 will do, noting all the all the five-cycles (· · · · ·) have order five, and

there are twenty-four five-cycles in S5.

(c) There are seven conjugacy classes of elements, one for each possible cycle-

type of a permutation of S5:

5 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1

This is because (1) every element of S5 can written uniquely as a product

of disjoint cycles, (2) the conjugate of a product of disjoint cycles is the

product of the conjugates of those cycles, and (3) conjugation preserves

cycle-type: for a cycle (n1 · · ·nk) for any σ ∈ S5 we have

σ(n1 · · ·nk)σ−1 = (σ(n1) · · ·σ(nk)) .

2. Let p > q be primes.

(a) Describe all groups of order p2 up to an isomorphism.

(b) Show that a group of order pnq, n > 0, is solvable.

(a) The proof of this requires two facts which may or may not be important.

Lemma 1 — If G/Z(G) is cyclic then G is abelian.

Proof First let Z = Z(G). Since G/Z is cyclic, there exists some g ∈ G
such that (gZ)n = aZ for any aZ ∈ G/Z. On the level of elements, given

any a ∈ G and any ζ ∈ Z we can find z ∈ Z such that (gz)n = gnzn = aζ .

In particular, a = gnznζ−1, so every element a ∈ G can be written as the

product of a power of g and an element in Z. Using this fact, we can take



a, b ∈ G and see that

ab = (gnza)(gmzb) = gngmzazb = gmgnzbza = gmzbg
nza = ba .

Lemma 2 — If G is a p-group then it has a nontrivial center.

Proof Let G act on itself by conjugation. Let g denote the orbit of g

and let Stab(g) denote the subset {h ∈ G|hgh−1 = g}. Note that there is a

natural bijection between g and G/Stab(g) because for h, k ∈ G

hgh−1 = kgk−1 ⇐⇒
(
k−1h

)
g
(
k−1h

)−1
= g

⇐⇒ k−1h ∈ Stab(g) ⇐⇒ kStab(g) = hStab(g)

So |g| = [G : Stab(g)] and since the orbits define an equivalence relation

on G,

|G| =
∑
i

[G : Stab(gi)]

for each gi representative of an orbit. We can rewrite this by separating out

the center of G and summing over the elements gi such that Stab(gi) � G:

|G| = |Z(G)|+
∑
i

[G : Stab(gi)] .

Since |G| = p, and [G : Stab(gi)] divides |G| for each Stab(gi), and the

center contains at least the identity, we have that |Z(G)| is a non-zero

power of p.

Now since the center of G is a subgroup, its order must divide the order of

G. The center of a p-group cannot be trivial so its order is either p or p2.

If its order is p2, then the entire group is abelian. Otherwise if the order

is p, then the quotient of G by its center is isomorphic to Zp. Since Zp is

cyclic, again we have that G is abelian.

(b) Let np denote the number of Sylow p-subgroups and recall that np divides

|G| and np ≡ 1 (mod p).

np ∈ {1, q, p, pq, . . . , pn, pnq} ∩ {1, 1 + p, 1 + 2p, . . . } .

But since p > q and piq 6≡ 1 (mod p), we have np = 1. All Sylow p-



subgroups are conjugate so since there is a unique Sylow p-subgroup, it is

normal in G and G is not simple.

3. The action of a group G on a set X is called transitive if for every x, x′ ∈ X there

exists a g ∈ G such that gx = x′.

(a) Show that the natural action of the symmetric group Sn on the set {1, . . . , n} is

transitive and find the stabilizer of an arbitrary element in that set.

(b) Suppose that a group G acts transitively on a set X. Prove that all the subgroups

StabGx, x ∈ X are conjugate and find [G : StabGx].

Solution by Jacob Garcia:

(a) Denote X = {1, 2, . . . , n}. Note that the action of Sn on X is via evaluation:

For τ ∈ Sn and m ∈ X, τ ·m = τ(m). Let m, k ∈ X be arbitrary. Then

the transposition (m k) is an element of Sn such that (m k) ·m = k. Thus

the action is transitive.

Let m ∈ X be arbitrary. By definition, StabSnm = {τ ∈ Sn : τ ·m = m},
and since the stabilizer of m is the collection of all permutations that fix m,

this is precisely the collection of all permutations on the remaining n− 1

elements. Thus, StabSn
m ∼= Sn−1.

(b) Let x, y ∈ X be arbitrary. Since the action is transitive, there exists

g ∈ G such that g · x = y. Notice that x = g−1 · y. We claim that

StabGy = g StabGx g−1. First let ghg−1 ∈ g StabGx g−1 be arbitrary.

Then ghg−1 ∈ StabGy since h ∈ StabGx and so ghg−1 · y = gh · x =

g · x = y. Now let h ∈ StabGy be arbitrary. Define k = g−1hg. Then

k ∈ StabGx since k · x = g−1hg · x = g−1h · y = g−1 · y = x. Therefore

h = gkg−1 ∈ g StabGx g
−1. This proves the claim.

We claim that [G : StabGx] = |X| for every x ∈ X. Let x ∈ X be arbitrary.

Denote H = StabGx. Let C = {gH : g ∈ G}, i.e. the collection of all cosets

of H. Define ϕ : C → X via ϕ(gH) = g · x. Then ϕ is surjective, as for

any y ∈ X, there exists g ∈ G such that g · x = y by transitivity, therefore

ϕ(gH) = g ·x = y. Also, ϕ is injective. If ϕ(gH) = ϕ(kH), then g ·x = k ·x,

so g−1k · x = x. Thus g−1k ∈ H, which gives gH = kH. Therefore ϕ is a

bijection, which proves the claim.

4. Recall that an element a of a ring is called nilpotent if an = 0 for some positive

integer n. Prove the following statements for an commutative unital ring R.



(a) The set of all nilpotent elements in R is an ideal.

(b) R is local if and only if for all x, y ∈ R, x+ y = 1R implies that x or y is a unit.

(c) If every non-unit in R is nilpotent then R is local.

(a) Note that 0 is nilpotent, and that r being nilpotent will mean−r is nilpotent.

Take two nilpotent elements x, y ∈ R and say xn = 0 and ym = 0. Then

their sum x+ y will be nilpotent since

(x+ y)n+m

= xnxm + xnxm−1y1 + · · ·+ xnx1ym−1 + xnym + xn−1y1ym+

· · ·+ x1yn−1ym + ynym

= (0)xm + (0)xm−1y1 + · · ·+ (0)x1ym−1 + (0)(0) + xn−1y1(0)+

· · ·+ x1yn−1(0) + yn(0)

= 0 .

And finally for any r ∈ R, since R is commutative we have (rx)n = rnxn =

0. So the nilpotent elements of R form an ideal.

(b) Suppose that R is local with unique max ideal m. This max ideal must

contain all the non-units of R, for otherwise if z is a non-unit not in m,

then z is contained in another max ideal by Zorn’s lemma, contradicting

the uniqueness of m. Now if x + y = 1R, we can’t have both x and y be

non-units since then x+ y = 1R ∈ m meaning m = R. So one of x or y has

to be a non-unit.

Conversely say that x + y = 1R implies one of x or y is a unit. Suppose

(for the sake of contradiction) that R is not local. Take two maximal ideals

mx and my. Since these ideals are maximal, mx + my = R, so there exists

some x ∈ mx and y ∈ my such that x+ y = 1R. But this means one of x

or y is a unit, and so one of mx or my is all of R. ⇒⇐

(c) We will use part (b) and show that if every non-unit of R is nilpotent then

we have that x+ y = 1R implies either x or y is a unit. If y is not a unit

already, then it will be nilpotent. Suppose that yn+1 = 0. Then we have

the x = 1R − y will have inverse (1 + y + y2 + · · ·+ yn), showing that x

must be a unit. So R is local.

5. Let R = Z× Z as an additive abelian group while the multiplication is defined

by (x, y) · (x′, y′) = (xy′ + yx′, yy′ − xx′); then R is a commutative ring with unity



1R = (0, 1). Answer the following questions (all answers must be justified).

(a) Is the ideal of R generated by (0, 5) prime?

(b) Is R a domain? If so, describe it’s field of fractions.

(c) Choose a maximal ideal M in R and describe the localization of R at M .

A key thing to notice here is that the ring R = Z× Z in question can be more

reasonably thought of as the ring of Gaussian integers Z[i] where the imaginary

part is the first component.

(a) No, the ideal (5) ∈ Z[i] is not prime since (1 + 2i)(1− 2i) = 1 + 4 = 5.

(b) Z[i] is certainly a domain since Z[i] ∼= Z[x]/(x2 + 1), and since Z[x] is a

domain and (x2 + 1) is irreducible in Z[x]. The field of fraction of Z[i] must

at least contain Q[i] since Q is the field of fractions of Z. So we must only

show Q[i] is a field, which it totally is. Take a+ bi ∈ Q[i] and 1
a2+b2 (a− bi)

is its inverse.

(c) The ideal generated by 1 + i in Z[i] is maximal since it’s index two. Since

it’s maximal it’s a prime ideal and the localization of any ring at a prime

ideal, denoted Z[i](i+i) in this instance, will be a local ring with unique

max ideal corresponding to (i+ i) ⊂ Z[i](i+i). I’m not sure what else there

is to say about it.



Mock Algebra Qualifying Examination, Fall 2019, Part b

Answer any four of the following questions. All questions are worth 10 points.

1. Let R be a commutative ring with identity and let a be a non-zero element in R. Suppose

that P is a prime ideal properly contained in the principal ideal generated by a. Prove that

P = aP . Suppose now that P is also principal. Prove that there exists b ∈ R with (1− ab)P = 0.

What can you conclude about P if R is an integral domain and a is not a unit?

Solution from Derek Lowenberg:

We have aP ⊂ P because P is an ideal. Since P ⊂ (a) we know that every p ∈ P can

be written p = ac for some c ∈ R. But since P is a prime ideal of a commutative ring,

ac ∈ P implies a ∈ P or c ∈ P . As P is properly contained in (a) we know that a /∈ P
therefore c ∈ P . Thus P ⊂ aP and we conclude P = aP .

Suppose P is principal, generated by p. As above, p = ac where c ∈ P , that is, c = bp

for some b ∈ R. Then p = abp. For any xp ∈ P (where x ∈ R) we have

(1− ab)xp = xp− abxp = x(p− abp) = 0

Thus (1− ab)P = 0. If R is an integral domain then (1− ab)xp = 0 implies 1− ab = 0

or xp = 0 and if a is not a unit we have 1− ab 6= 0 so xp = 0. Since this equation holds

for any element xp of P we conclude in this case that P = 0.

2. (a) Let R be a commutative ring with identity and regard R as a module for itself via left

multiplication. Prove that this module is simple iff R is a field. (b) Define a free module for a

ring R. Suppose that R is a commutative ring with identity and satisfies the following condition:

any submodule of a free module is free. Prove that R is a principal ideal domain.

(a) Suppose your R-module R is simple, and take nonzero x ∈ R. Since R has no

non-trivial submodules, the submodule generated by x, Rx = {rx | r ∈ R}, must be all

of R. In particular there must be some rx ∈ R such that rx.x = 1R, which shows that x,

an arbitary nonzero element of R, is a unit, so R is a field. Conversely recall that R is a

field iff it has no proper non-trivial ideals because everything in R must be a unit. A

submodule of R considered as an R-module would be an ideal of R, so R cannot have

any submodules, and must be simple.

(b) F is a free R-module if it has a basis {xi}i∈I ⊂ F such that the xi are linearly

independent and for any f ∈ F we have f = r1xj1 + · · ·+ rkxjk for a unique choice of

xj` ⊂ {xi}i∈I . Equivalently F is free if F ∼=
⊕

I R. Suppose that any submodule of a

free R-module is free and consider R as an R-module. Take any nonzero ideal I ⊂ R

and note that this is a submodule of R, so it too must be free. Let B be a basis of I as a

free R-module. Suppose (for the sake of contradiction) that B has at least two elements.

Take distinct u, v ∈ B and note that these elements cannot be linearly independent



since u, v ∈ R too, and we have (u)v − (v)u = 0. Therefore B can have at most one

element, and that element will principally generate the ideal I, so R is a PID.

3. Give examples to show that the following can happen for a ring R and modules M ,N ,

(i) M ⊗R N 6∼= M ⊗Z N , where Z is the ring of integers.

(ii) u ∈M ⊗R N but u 6= m⊗ n for any m ∈M and n ∈ N .

(iii) u⊗ v = 0 but u, v 6= 0.

(i) Take M ∼= R and N ∼= Z. Then R⊗R Z ∼= Z 6∼= R ∼= R⊗Z Z.

(ii) Let k be a field, and take M ∼= N ∼= k2 each with standard basis {e1, e2}. The tensor

e1 ⊗ e1 + e2 ⊗ e2 cannot be written as a simple tensor.

(iii) Consider Z2 ⊗Z Z3 and the simple tensor 1⊗ 2.

4. Suppose that E is a three dimensional vector space over a field F and f : E → E is a

non-zero linear transformation. Prove that there exists bases B1 and B2 of E such that the

matrix of f is exactly one of the following.1 0 0

0 1 0

0 0 1

 ,

1 0 0

0 1 0

0 0 0

 ,

1 0 0

0 0 0

0 0 0

 .

Since f : E → E is a nonzero linear transformation it must have rank either 1, 2, or 3,

where rankf = dim(Im f). Let M be the matrix of f with respect to the standard basis.

Let R1 and R2 and R3 be those matrices above such that Ri has rank i. M must be

equivalent to one of the Ri because equivalence partitions a set of matrices by rank. So

for some invertible matrices P and Q we have PMQ = Ri depending on the rank of f .

This P,Q will give us the bases B1 and B2 respectively, by selecting the columns/rows

of P and Q appropriately to get your basis vectors.

5. Suppose that D = (d1, . . . , dn) is a diagonal matrix where the di, 1 ≤ i ≤ n are not

necessarily distinct. What are the elementary and invariant factors of D? Suppose that A is

similar to D. What can you say about its elementary divisors and invariant factors?

Since the matrix D consists entirely of Jordan blocks of size 1, it will decompose into a

direct sum of 1× 1 matrices corresponding to those Jordan blocks.

M =


d1 0 . . . 0

0 d2 . . . 0
...

...
. . .

...

0 0 . . . dn

 = (d1)⊕ (d2)⊕ · · · ⊕ (dn)

In terms of the linear transformation that D defines on some n dimensional k-vector

space V (with a choice of basis), this decomposition gives us a k[x]-module decomposition



of V with respect to D

V ∼= k[x]�(x− d1) ⊕
k[x]�(x− d2) ⊕ · · · ⊕

k[x]�(x− dn)

And these {(x− d1), (x− d2), . . . , (x− dn)} are the elementary divisors of D. To talk

about the invariant factors of D we should write those diagonal entries with mulitplicity,

as {(d1,m1), (d2,m2), . . . , (dk,mk)} where di occurs mi times along the diagonal of D.

Then D will have characteristic polynomial

(x− d1)m1(x− d2)m2 · · · (x− dk)mk

and, again because the Jordan blocks have size 1, will have minimal polynomial

(x− d1)(x− d2) · · · (x− dk) .

This minimal polynomial is the generator of the annihilator of V in k[x] and hence

is the “largest” invariant factor. The next invariant factor will be the product of all

(x− di) such that mi ≥ 2.

V ∼= k[x]�(x− d1)(x− d2) · · · (x− dk) ⊕ · · ·

=

∞⊕
k=1

k[x]�∏
di∈{d1,...,dn},mi≥k(x− di)



Mock Algebra Qualifier 2019 - Part C

Do 4 out of the 5 problems.

(1) Let K be a field and f ∈ K[x]. Let n be the degree of f . Prove the

theorem which states that there exists a splitting field F of f over K with

[F : K] 6 n!.

Solution from Noble Williamson

We proceed by induction on n. If n = 1 or if f splits over K then

the result obviously holds. Suppose n > 1 and f does not split over K

then f has an irreducible factor g such that the degree of g is greater

than 1. Now we need the following lemma.

Lemma 3 — Let g be a monic irreducible polynomial in K[x] for some

field K then there exists a simple extension K(u) over K such that

[K(u) : K] = deg g and g(u) = 0.

Proof Let g be a monic irreducible polynomial and u a root of

g. Let deg g = d. Recall that for a simple algebriac extension K(u),

we have K(u) = K[u] and every element of K[u] is of the form f(u)

where f ∈ K[x]. Hence, by the division algorithm f = qg + r where

q, r ∈ K[x] and deg r < deg g so

f(u) = q(u)g(u) + r(u) = r(u) = c0 + c1u+ · · ·+ cmu
c

where c < d so {1, u, . . . , ud−1} spans K[u] = K(u). Linear indepen-

dence follows from the irreducibility of g so the dimension of K(u) as

a vector space over K is d.

Hence, there exists a simple extension K(u) over K such that g(u) =

0 and [K(u) : K] = deg g > 1. Since u is a root of g it is also a root of

f so we can write f = (x− u)h where h ∈ K(u)[x] and deg h = n− 1

then by the induction hypothesis there exists a splitting field F of h

over K(u) such that [F : K(u)] ≤ (n− 1)!. Since F is a splitting field

of h over K(u), F = K(u)(v1, . . . , vn−1) = K(u, v1, . . . , vn−1) where

{v1, . . . , vn−1} are the roots of h so F is a splitting field of f over K



and

[F : K] = [F : K(u)][K(u) : K] ≤ (n− 1)! deg g ≤ (n− 1)!n = n!.

(2) Let K be a subfield of R. Let L be an intermediate field of C/K. Prove

that if L/K is a finite Galois extension of odd degree, then L ⊆ R.

Solution from James Alcala

Let σ : C → C be complex conjugation. Since K ⊂ R, σ is a K-

homomorphism. Since L/K is finite dimensional and Galois, it is in

particular normal, so σ(L) = L by Hungerford, 3.14iii) (chapter on

Fields and Galois theory). In particular, σ|L is a K-automorphism of

L, so it is an element of AutKL. Because L/K is Galois, this group

has the same order as the extension, which is odd. Now, σ|L ∈ AutKL
means that < σ|L > must have order one or two. But if it were order

two, then that would be a subgroup of AutKL of order 2, which can’t

exist as |AutKL| is odd. So, < σ|L > has order one, which means

complex conjugation on L is the identity, so it cannot contain any

complex numbers, which implies the result.

Solution from Derek Lowenberg

To show L ⊂ R it suffices to show that i /∈ L. Suppose i ∈ L so

that K(i)/K is an intermediate field extension of L/K. By the Galois

correspondence we have that AutK(i)L is a subgroup of AutKL such

that [K(i) : K] = [AutKL : AutK(i)L]. However |AutKL| is odd but

[K(i) : K] = 2, thus it cannot divide |AutKL|, a contradiction. Hence

i /∈ L.

(3) Let K be a finite field of characteristic p. Prove that every element of K

has a unique p-th root in K.

Solution from Derek Lowenberg

The map K → K given by the pth power, x 7→ xp, is a ring ho-

momorphism: for a, b ∈ K we have apbp = (ab)p and (a + b)p =∑p
i=0

(
p
i

)
aibp−i = ap + bp since for i 6= 0, p we have that

(
p
i

)
is divisible



by p and is thus 0 in K. Since the pth power map is a nonzero ring

homomorphism from a field, its kernel is 0. Since an injective endomor-

phism of a finite set must also be surjective, the pth power map is an

isomorphism. Therefore each element of K has a unique pth root, given

by the inverse of this isomorphism.

(4) Let f(X) = x5 − 4x + 2 ∈ Q[x] Prove that f(x) = 0 is not solvable by

radicals over Q.

Solution by Jacob Garcia.

First, recall Theorem V.4.12 in Hungerford:

Theorem 4 — If p is prime and f is an irreducible polynomial of

degree p over Q which has precisely two non-real roots in the field of

complex numbers, then the Galois group of f is isomorphic to Sp.

Also see Corollary V.9.5 :

Theorem 5 — Let K be a field and f ∈ K[x]. If the equation f(x) = 0

is solvable by radicals, then the Galois group of f is a solvable group.

(A slightly stronger version of this fact can be found in Corollary

V.9.7.)

Now consider f ′(x) = 5x4 − 4. Usual calculus arguments show that

f ′(x) has two local extrema, and that f is increasing on (−∞,− 4

√
4
5
)∪

( 4

√
4
5
,∞), and is decreasing on (− 4

√
4
5
, 4

√
4
5
). Also note that f(−2) =

−22, f(0) = 2, f(1) = −1, and f(2) = 26. Thus by intermediate

value theorem, there exists real zeros between −2 and 0, between 0

and 1, and between 1 and 2. These are the only real zeros by the

increasing/decreasing information, and so by above theorem, f has

Galois group of S5. Then apply the contrapositive of the corollary for

the desired result.
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(5) Let F/K be a field extension whose transcendence degree is finite. Prove

that if F is algebraically closed, then every K-monomorphism F → F is in

fact an automorphism.

Solution from James Alcala.

Suppose that F/K is a field extension with finite transcendence de-

gree, F is algebraically closed, and σ : F → F is a K−monomorphism.

Let u ∈ F, and let S = {s1, s2, . . . , sn} be a transcendence base of F/K,

and consider the field L = K(σ(s1), σ(s2), . . . , σ(sn)). F is algebraic

over L (see justification below), so there exists a minimal polynomial

g ∈ L[x] such that g(u) = 0. Then σ−1(g) ∈ K(s1, s2, . . . , sn)[x] factors

completely in F. σ sends roots to roots, so every root of g is in the

image of σ. So because u is in the image of σ, ∃u′ such that σ(u′) = u,

so σ is surjective and hence a K−automorphism.

Solution from Derek Lowenberg.



Let F/K be a field extension whose transcendence degree n is finite.

Let σ : F → F be a K-monomorphism. Let {y1, . . . , yn} be a transcen-

dence base for F over K. Consider the field L = K(σ(y1), . . . , σ(yn)).

Since σ is injective, if there is some nonzero f ∈ K[x1, . . . , xn] such that

f(σ(y1), . . . , σ(yn)) = 0, then f(y1, . . . , yn) = 0, which is not true by

assumption. Hence σ(y1), . . . , σ(yn) are also algebraically independent.

Indeed, they also comprise a maximal algebraically independent set;

denote this by S.

This implies that F is algebraic over L, as follows: pick α ∈ F where

α /∈ S. Then S ∪ {α} is algebraically dependent, so there is some

h ∈ K[x0, x1, . . . , xn] such that

h(α, σ(y1), . . . , σ(yn)) = 0. Since S is algebraically independent, α must

appear in this expression, so that

h(α, σ(y1), . . . , σ(yn)) = p0(σ(y1), . . . , σ(yn))+· · ·+pm(σ(y1), . . . , σ(yn))αm = 0

Thus we see that α is algebraic over K(σ(y1), . . . , σ(yn)) = L. Of

course, the elements of S are also algebraic over L, so F is an algebraic

extension of L.

Let u ∈ F . Since F is algebraic over L, u has a minimal polynomial

in L[x], say g. Then σ−1(g) ∈ K(y1, . . . , yn) factors completely in F ,

as F is algebraically closed. Since σ sends roots to roots, we see that

every root of g is in the image of σ; in particular u is in the image of

σ. Therefore σ is also surjective, that is, a K-automorphism.


