MOCK QUALIFYING EXAMINATION, ALGEBRA, PART A, 2019

September n^2 , 2019

Solve any four questions; indicate which ones are supposed to be graded. You must show all work and justify all statements either by referring to an appropriate theorem or by providing a full solution.

1. Let G be a group, and let A be an abelian group. Let $\varphi \colon G \to \operatorname{Aut}(A)$ be a group homomorphism. Let $A \times_{\varphi} G$ denote the set $A \times G$ with the binary operation

$$(a,g)(a',g') = (a + \varphi(g)(a'),gg').$$

- (a) Prove that $A \times_{\varphi} G$ is a group.
- (b) Find a map $\varphi \colon \mathbb{Z}_2 \to \operatorname{Aut}(\mathbb{Z}_m)$ such that the dihedral group D_m is isomorphic to $\mathbb{Z}_m \times_{\varphi} \mathbb{Z}_2$. Do not forget to prove the isomorphism!

2. Let G be a finite group, and let Z(G) denote the *center* of G.

- (a) Prove that if G/Z(G) is cyclic, then G is abelian.
- (b) Prove that if Aut(G) is cyclic, then G is abelian.
- (c) Prove that if $\operatorname{Aut}(G)$ is nontrivial and cyclic, then $|\operatorname{Aut}(G)|$ must be even.
- (d) Prove that there is no group with infinite cyclic automorphism group.

3.

- (a) Prove that any subgroup of index 2 must be normal.
- (b) How many index 2 subgroups are there of a free group on two generators? Write down these subgroups in terms of their generators.

4. An element e in a ring R is said to be idempotent if $e^2 = e$. The center Z(R) of a ring R is the set of all elements $x \in R$ such that xr = rx for all $r \in R$. An element of Z(R) is called central. Two central idempotents f and g are called orthogonal if fg = 0. Suppose that R is a unital ring.

- (a) If e is a central idempotent, then so is $1_R e$, and e and $1_R e$ are orthogonal.
- (b) eR and $(1_R e)R$ are ideals and $R = eR \times (1_R e)R$.
- (c) If R₁,..., R_n are rings with identity then the following statements are equivalent.
 (i) R ≅ R₁ × · · · × R_n
 - (ii) R contains a set of orthogonal central idempotents e_1, \ldots, e_n such that $e_1 + \cdots + e_n = 1_R$ and $e_i R \cong R_i, 1 \le i \le n$.
 - (iii) $R = I_1 \times \cdots \times I_n$ where I_k is an ideal of R and $R_k \cong I_k$.

5.

- (a) Give an example of a category in which a morphism between two objects is epic if and only if it is surjective.
- (b) Give an example of a category C and of an epic morphism between two objects in C which is not surjective.

Mock Algebra Qualifying Examination, Fall 2019, Part b

Attempt as many questions as you like. A perfect score is 50.

Assume that all rings have identity.

1. (5 points) Let V be a vector space over a field K of dimension r. Let $f \in \text{Hom}_K(V, K)$. Prove that if f is non-zero, then it is surjective and determine the dimension of the kernel of f.

2. (7 points) (a) Suppose that R and S are commutative rings and that M is a (R, S)-bimodule. This means that M is a left R-module and a right S-module and the actions are compatible, i.e. r(ms) = (rm)s, for all $r \in R$, $s \in S$, and $m \in M$. Let N be a left S-module. How does one define a left R-module structure on $M \otimes_S N$? What must you check to see that the action is well-defined? If we assume now in addition that N is a (S, R)-bimodule that can you say about $M \otimes_S N$?

(b) (3 points) Suppose now that K is a field and let V, W be vector space over K. Use (a) to show that $V \otimes_K W$ is also a vector space over K. What is the most natural way to find a basis for $V \otimes_K W$?

3. (5 points) (a) Let V, W be vector spaces over a field K. How does one define a vector space structure on $\operatorname{Hom}_K(V, W)$? Suppose now that W = K. Given a basis for V, how would you produce a natural basis for $V^* = \operatorname{Hom}_K(V, K)$? More generally, if dim V = r and dim W = s and you are given bases for V and W, find a natural basis for $\operatorname{Hom}_K(V, W)$.

(b) (10 points) Let W be another vector space over K. Define the natural map of vector spaces $V^* \otimes W \to \operatorname{Hom}_K(V, W)$ and prove that it is an isomorphism of vector spaces.

4. (10 points) Let R be the polynomial ring $\mathbb{C}[t]$ in one variable with coefficients in the complex numbers and let I be the ideal generated by t^2 and let M = R/I. Prove that M has a proper non-zero submodule and that M cannot be written as a direct sum of proper non-zero submodules. Suppose now that we take J to be the ideal generated by t(t-1). Prove that the module N = R/J is isomorphic to a direct sum of two proper non-zero submodules.

5. (5 points) Prove that an $n \times n$ -matrix with entries in a field K is invertible iff 0 is not an eigenvalue of the matrix.

6. (10 points) What is the companion matrix A of the polynomial $q = x^2 - x + 2$? Prove that q is the minimal polynomial of A.

7. (10 points) Suppose that P_1 and P_2 are *R*-modules. Prove that $P_1 \oplus P_2$ is projective iff P_1 and P_2 are projective.

8. (10 points) Let $0 \to L \to M \to N \to 0$ be a short exact sequence of *R*-modules such that we have a short exact sequence

 $0 \longrightarrow \operatorname{Hom}_{R}(N, L) \longrightarrow \operatorname{Hom}_{R}(N, M) \longrightarrow \operatorname{Hom}_{R}(N, N) \longrightarrow 0$

Prove that the original short exact sequence is split.

Mock Algebra Qualifier 2019 - Part C

Do 4 out of the 5 problems.

- (1) Prove or disprove the following: If $K \to F$ is an extension (not necessarily Galois) with [F:K] = 6 and $\operatorname{Aut}_K(F)$ isomorphic to the Symmetric group S_3 , then F is the splitting field of an irreducible cubic in K[x].
- (2) Let $f = x^3 x + 1 \in \mathbf{F}_3[x]$. Show that f is irreducible over \mathbf{F}_3 . Let K be the splitting field of f over \mathbf{F}_3 . Compute the degree $[K : \mathbf{F}_3]$ and the number of elements of K.
- (3) Let $K \subseteq F$ be a finite dimensional extension.
 - (a) Define what it means for F to be separable over K.
 - (b) Prove from scratch that if K is a finite field then F is separable over K.
 - (c) Prove that if K is of characteristic zero then F is separable over K.
 - (d) Given an example of a non-separable finite dimensional extension.
- (4) Let F_{12} be a cyclotomic extension of \mathbb{Q} of order 12. Determine $\operatorname{Aut}_{\mathbb{Q}}(F_{12})$ and all intermediate fields.
- (5) Let $F = \mathbb{C}(t^4) \subset K = \mathbb{C}(t)$, where t is a formal variable. Compute the Galois group $\operatorname{Aut}_F(K)$, and determine its subgroups and corresponding intermediate fields.