MOCK QUALIFYING EXAMINATION, ALGEBRA, PART A, 2019

September n3, 2019

Solve any four questions; indicate which ones are supposed to be graded. You must
show all work and justify all statements either by referring to an appropriate theorem
or by providing a full solution.

1. Let G = Q/Z, where Q and Z are considered as additive groups. Prove that for
any positive integer n, G has a unique subgroup G(n) of order n, and that G(n) is
cyclic.

A subgroup G(n) < Q/Z of order n is finite, and so it must be finitely generated
by {7i}ic(1..ky for some rational numbers 7;. Let m: Q — Q/Z be quotient
map. Lift each of these generators 7; to the unique element a;/n; € [0,1) C Q
such that 7(a;/n;) = r;. Now let n = lem(ng,...,ng) and

n n
a=ged|ay—,...,ap— | .
ni n

By construction each of these elements a;/b; will be a multiple of &, This
means that the subgroup G(n) will be generated by 7(a/n). Furthermore a and
n are relatively prime by construction, so there exists integers z and y such
that za + ny = 1. This means that 2% + y2 = 1 so 7(1/n) is in G(n) too.
Since 7(1/n) has order n, it too must generate G(n), and so G(n) is uniquely
characterized as being the cyclic subgroup of Q/Z that contains m(1/n).

2. For groups N7 < G7 and Ny < (9, provide a counterexample to each of the
following statements.
(a) G1 = G2 and N7 = N, implies that G /N1 = G2 /Na.
(b) G1 = G4 and G1/N; = G3/N, implies that Ny & N,.
(¢) Ny 2 Ny and G1/Ny = G5 /Ns implies that G = G.

(a) Let G; = G4 be the dihedral group Dg, symmetries of the regular hexagon,
with presentation (r,s | s2,7", (rs)?). Now Dg has two normal subgroups
isomorphic to Zs: one generated by the reflection (s), and the other gen-
erated by a rotation of 180°, (r3). But the quotients by these normal
subgroups are different: Dg/(s) = Zg while Dg/(r3) = Ds.

(b) Again let G1 = G5 be the dihedral group Dg, and consider the subgroups
(ry = Zg and (s,r?) = Dj3. Since each of these subgroups have index two, so



they’re normal, and the quotient of Dg by each of them will be isomorphic
to Z2.

(¢) Let G1 = Dg and Gy = Zy5. Each of these has a normal subgroup of index
two, and so a quotient isomorphic to Zs, that is isomorphic to Zg.

3. Let R be a unital integral domain. For a nonzero element of s € R, let S =
{1,s,s%,...}. Prove that S™'R = R[z]/(zs — 1).

Solution by Jacob Garcia.

Discussion: Before we present the solution, a quick discussion on why we
might believe why this is true. When looking at the construction for S™'R,
we see that, essentially, we are choosing our favorite nonzero element s and
adding in an inverse, % So we are motivated to find a similar inverse for s in
R[z]/(xzs — 1). Note that since we are taking the quotient with respect to the
ideal (zs — 1), we have that s — 1 = 0, and so xs = 1. So in the quotient, the
indeterminate x is acting as an inverse for s. Thus, mapping % to x should
produce the desired isomorphism.

Solution: We consider ¢ : ST'R — R[z]/(xs—1) via (%) = ra™. This map

is well defined: Suppose % = . Without loss of generality, assume m > n.

sn sm

Then t(rs™ —r's™) = 0 for some ¢ # 0, and since R is an integral domain, we

have 0 = rs"™ — r/s™ = s"(rs™ "™ —1'), so as s" # 0, we have rs" " — 1’ = 0.
Then
r’ r
(p(s—m) =7'g™ = (rs™ M)a™ = r(sx)" "2 =ra” = @(S—n)

’
T

Now we show ¢ is a ring homomorphism: Let % and 7 be arbitrary.
Then (%) + ¢(&) = ra™ +r'z™, and o(& + &) = p(L5GE) = (rs™ +
r's™M) ™t = r(sx)™z"™ + r'(sx)"z™ = ra™ + r'z™. This shows ¢ respects

r/

addition. Now we check ¢(%)po(f7) = rx

sm

(s gm) = lsmtm) = rr/(a™*").

nplg™ = pr/ (™), and also see

¢ is injective: Let % and ST—,; be arbitrary, and assume m > n. If o(J7) =

’
T

@(&), then ra”™ = r'2™, so multiplying both sides by 1 gives ra"(sz)™ =

'™ (sx)™, ie., (rs™ —1r's™)a™*" = (. In particular for z = 1, we get rs™ —
len _ r o _ o'
r's"=0,s0 & = -

Finally, to show ¢ is surjective, we make the observation that since the



degree of s — 1 is 1, every equivalence class of R[z]/(zs — 1) is represented by
a constant polynomial, and every constant polynomial is in some equivalence
class. So it suffices to show that ¢ surjects to the constant polynomial r for
each € R. This is easily seen by ¢(r) = r.

Solution by Mike Pierce,

Notice that the RHS says that we’re appending an element x to R and
forcing it to be the inverse to s, which should inspire our choice of maps here.
First let ¢ denote the composite of the natural maps R < R[z| - R[z]/(zs—1)
and let 7 be shorthand for ¢(r), noting that since ¢ is a ring homomorphism
we have pr = pT. Since T3 = 1, s is a unit in the quotient R[x]/(zs — 1) with
inverse z. Then we can extend ¢ to a homomorphism ¢: S™'R — R[z]/(zs—1)
where @: r/(s™) — TT".

In the other direction we can start by defining a map 6: R[z] — S~!R where
O(r) =r/1 and 0(x) = 1/s. Then since 0(xs — 1) = (1/s)(s) — 1 = 0, this maps
factors through R[z]/(zs—1), giving us a map 6: R[z]/(zs—1) — S~'R. Then
we simply note that 6 and @ are inverses, and we’re done.

4. Given a finite p-group G, prove that G has a normal subgroup of every order
dividing |G|.

It’s worth noting that this is close to, but not exactly, the first Sylow theorem.

Suppose that G has order p™. We’ll proceed inductively. So first note that
(e) is normal, covering our base case. Let N be a normal subgroup of order p*
for some k < n, and consider the quotient G/N, letting 7: G — G/N denote
the quotient map. Note that since G//N is a p-group (of order p"~%) it has
nontrivial center, and so it’ll have some element of order p. Take a/V in the
center of G/N or order p, and note that (aN) is a normal subgroup of G/N
of order p. We want to look at 7=! ({(aN)). Since the homomorphic preimage
of a normal subgroup is normal, this will be a normal subgroup of G of order

p-pF = pFtl.

5.
(a) Define the characteristic of a ring.
(b) Assume that R is a commutative unitary ring having only one maximal ideal m.
Show that the characteristic of R is either zero or a power of a prime.
(c¢) For R as described in (b) show that if R/m has characteristic zero, then R contains
a field.



(d) Give an example of a ring R as in (b) of characteristic zero having a non-maximal
prime ideal P such that the characteristic of R/P is not zero.

(a) For a ring R suppose that there exists a positive integer n such that

r+r+---4+r=0VvVreR.
—_——

n times

If such an n exists, then the characteristic of R, denoted char R is the
smallest such n with this property. If no such n exists, we say that char R =
0. If R is a unital ring, then we can more simply define char R to be the
generator of the kernel of the unique ring homomorphism Z — R.

(b) Let m be the unique max ideal in your ring. Suppose char R > 0, but for
the sake of contradiction that char R = nm for coprime n and m. You can
think of m and n as living in your ring. Let Ann(n) = {r € R | nr = 0}
and Ann(m) = {r € R | mr = 0} be the annihilators of these elements,
noting that m € Ann(n) and n € Ann(m) Recall that since n and m are
coprime, using the Euclidean algorithm you can find a and b such that
an+bm =1 in your ring, so Ann(n) + Ann(m) = R. This means that only
one of Ann(n) or Ann(m) can be in m, contradicting the fact that m is

maximal. So char R must be a power of a prime.

You could make basically the same argument using the principal ideals (m)
and (n) instead of the annihilators.

Here’s a very different-looking approach to saying the same thing. Since m
is maximal, R/m will be a field and must have characteristic either 0 or
p™. So the kernel of the unique homomorphism ¢: Z — R/m will be either
(0) or (p™) respectively. Now ¢ will pull back to a ring homomorphism
r: Z — R such that this diagram commutes:

i
.
.
/
, L
7/

R—» R/m

But then Ker 7 C Ker: as a subgroup, and so it must be of the form either
(0) or (p"*) depending on the characteristic of R/m.

(¢) If R/m has characteristic zero, then we have an injection Z — R/m, and like
in the last part this injection factors through the quotient Z < R — R/m.



So ZNm = {0} in R, and since in a local ring m consists of all the non-units,
each element of Z is a unit, so Q C R.

An example will be the ring Z[z] localized at (z,2), so Z[r];2). An
important fact here that makes this a reasonable example to come up is
that the localization of a ring R at a prime ideal P will be a local ring Rp,
the max ideal being Pp, and furthermore the prime ideals of Rp will be
all be of the form @ p for some prime ideal @) of R that is contained in P.
So for our particular example, we're looking at the chain of prime ideals
(0) = (2) = (2,2) = Z[x]. The ideal (2)(2,4) will be prime in Z[z], 2),
and since Z[z](,, 2 is still unital, the quotient of Z[x](; 2) by (2)(2,s) Will
have characteristic 2.



Mock Algebra Qualifying Examination, Fall 2019, Part b
Attempt any four, all questions are worth 10 points.

1. (a) Let R be a ring with identity and M a left module for R. Recall that M is indecom-
posable if M cannot be written as a direct sum of two non-zero submodules. Prove that if
f: M — M is a homomorphism of modules then f? = f implies that either f = 0 or f = id.

(b) Suppose now that M is decomposable. Prove that there exists f: M — M a homomor-
phism of modules such that f2 = f and f different from zero and the identity.

(a) It’s not explicitly said, but we’re assuming M is indecomposable. Suppose that
f? = f and that f # 1;;. The key thing to note here is that if f2 = f, then f restricted
to the image of f must be the identity on that image. Notationally, f|im s = lims.
This means that if f is surjective, we’re done because then it would be the identity
on M. But if f is not surjective, it will have a nontrivial kernel. This means that the
short exact sequence Ker f — M — Im f splits, with splitting map f: Im f — M, so
M =Ker f @ Im f with Ker f and Im f nontrivial, contradicting our assumption that
M is indecomposable.

(b) Suppose M = A @ B for nonzero A and B, and let f: M — M be the projection
map m4: M — A. Note that f2 = f, that f is neither zero nor the identity on M since
both A and B are nonzero.

Note also, we could have chosen the map wg, and that 71 = 1), — w4, so these two
maps are orthogonal idempotents in Endz(M).

2. Suppose R is a ring with identity and e € R such that e? = e.
(a) Prove that (1 — e) has the same property.
(b) Prove that Re N R(1 — e) = {0}, and hence R = Re & R(1 — e).
(¢) Regarding the principal ideal Ra as a left R-module, prove that Ra is projective if and
only if the annihilator Ann(a) = {r € R | ra = 0} is of the form Re for e such that ¢ = e.

(a) Such an element e is called idempotent. Note that (1 —e)? =1—2e+e=1—¢, so
1 — e is idempotent.

(b) If we take some element re € Re N R(1 — e) we'll have re = (re)e € R(1 — e)e = {0}.
Then since eR + (1 — e)R spans R, we have that R = Re ® R(1 — e).

(¢) Consider the map ¢: R — Ra where ¢: r + ra. Then Ann(a) = Ker¢ and we
have a short exact sequence Ann(a) < R — Ra. If Ann(a) is of the form Re for some
idempotent e, then since R = Re & R(1 — e), the short exact sequence will split, which
means Ra is projective (and isomorphic to R(1 — e)).

Conversely if Ra is projective, then the short exact sequence splits and we have
R = Ann(a) ® Ra. Now Ann(a) and Ra are both ideals (submodules) of R, so this &
will actually be an internal direct sum since Ann(a) N Ra = {0} in R. There’s a subtly
here though: Ann(a) is a submodule of R via the inclusion map ¢ in the short exact
sequence, but to realize Ra as a submodule of R we should really be considering the



splitting map v: Ra — R such that @) = 1g,. Then while R = Ann(a) ® Ra, we only
have the equality with an internal direct sum R = i(Ann(a)) + Rt (a). The difference
here is really only up to an automorphism of each of Ann(a) and Ra as submodules of
R. An important point though, is that the idempotent element e that we’re looking for
won’t necessarily be a, but will be ¢(a) (which will be y in the proof, but I don’t bother
to flush that out). Considering the element 1 under this isomorphism:

R = Ann(a) ® Ra
1 (z,9)
l=z+y

And then multiplying though by y, we have y = xy+12, but 2y = 0 since Ann(a) N Ra =
{0}. So y = y? is an idempotent of R, and since for € Ra 1l =2 +y = 2z =0+ zy,
y is the identity of Ra considered as a subring of R, and generates Ra, so Ra = Ry.

3. Let R be a ring with identity. Regard R as a right R-module in the usual way and let M
be a right R module. Prove that Hompg(R, M) = M as abelian groups.

Solution by Jacob Garcia.

Define f: Hompg (R, M) — M via f(¢) = ¢(1). Clearly f is well defined. If ¢, ¢ €
Homp(R, M), then (g + 1) = (¢ +¥)(1) = o(1) + (1) = f(¢) + f(). We can also
see that if f(p) = 0, then (1) = 0, but then for all » € R, p(r) = re(1) = r0 = 0,
s0 ¢ = 0. This f is injective. Finally, for each m € M, define ¢ via ¢(r) = rm. Then
v € Homp (R, M) (as you can check) and f(¢) = m. Therefore, f is an isomorphism of
abelian groups.

4. Consider the ring R = CJz] of polynomials in an indeterminate x with coefficients in C.

(a) Let M be a torsion free module for R with two generators. Prove that M is free of rank
at most two.

(b) Prove that if M is a cyclic R-module and M # R then M is torsion. Under what condition
on the torsion ideal will M be simple?

(a) Since R is a PID and M is finitely generated, M being torsion free implies that M
is free. We can see this with the classification theorem for finitely generated modules
over PIDs: if M is torsion free, it’ll have not torsion summands, but only summands
isomorphic to R. Since M is generated by two elements, say a and b, every element of
M can be written as a sum of ra + sb for some choice of r, s € R. If M had rank greater
than two, then it would have three elements such that none of them can be written as
an R-linear combination of the others. But writing each of these elements in terms of a
and b will show that this cannot happen.

(b) Since M is a cyclic R-module, there is some m € M such that M = Rm = {rm |
r € R}. That is, we get a surjection 7: R — M via the map r — rm, and we have
M = R/Kerw. Since R # M, Ker 7 is nonzero, and anything in Ker 7 annihilates all of
M, so M is a torsion R-module.



Let Kerm = I to clean up the notation to come. If M admits a quotient by a
submodule N, we have M/N = (R/I)/N. But this means that N corresponds to some
ideal of R/I, which corresponds to some ideal of R that contains I. So this tells us that
if we want M to be simple (N trivial) we need to require that there be no ideals of R

that strictly contain I, so I needs to be maximal.
So M ends up being a field isomorphism to a quotient of R.

5. (a) Prove that if A and B are invertible n x n matrices with entries in an integral domain
R, then A 4 rB is invertible in the quotient field K of R for all but finitely many r.
(b) Prove that the minimal polynomial of a linear transformation of an n-dimensional vector

space has degree at most n.

(a) For n x n matrices A and B which are invertible over an integral domain, the matrix
A+rB, for r € K, is not invertible in K if and only if det(A+rB) = 0. But det(A+rB)
is just a polynomial in r. Furthermore it’ll be a non-constant polynomial of degree n
since the coefficient on 7™ will be det(B), and so it’ll have at most n roots in K. That
is, there will be at most n distinct values of 7 such that det(A + rB) = 0.

(b) For your vector space over field k, fix a basis, so your linear transformation
can be thought of as a matrix M. The characteristic polynomial of M is defined
as det(M — xI,) € k[z], and this will have degree at most n. Note that M is a root of
it’s characteristic polynomial since, letting = M, we have det(M — M1,,) = det(0) = 0.
The minimal polynomial of M, being the smallest monic polynomial of which M is a
root, must divide the characteristic polynomial, and so will have degree at most n.

6. Suppose that ¢ and 1 are commuting linear transformations of an n-dimensional vector
space E. Prove that if F; is a ¢-invariant-subspace—of K& eigenspace of ¢ then FE; is alse
1-invariant. Use this to prove that if ¢ and 1 both have linear elementary divisors then there
exists a basis of E with respect to which the matrix ¢ and the matrix ¢ are both diagonal.

Take v € F;. If ¢ and ¢ commute, since
=M = Yov=19 (M) = ¢{@v)=A(Yv),
v is an eigenvector for ¢ too. This means that the eigenspace Ej is t-invariant.

Now ¢ and 1 both having linear elementary divisors is the same as saying there
exists bases of E relative to which ¢ and ¢ are each (individually) diagonalizable, and
this is the same as saying that there exists bases of F consisting of eigenvectors for each
of ¢ and .

There is a much easier version of this statement to prove, where we require that one of
@ or ¥ have distinct elementary divisors. In this case, supposing ¢ has distinct elementary
divisors, E will decompose into dim E one-dimensional eigenspaces Ey = (v,), one for
each elementary divisor (z — A). Then since each of these F\ are t¢-invariant. each v
will be an eigenvector for ¥ too. So the basis you're looking for consists of these vy.



To prove the question posed though, we’ve got to get our hands a bit dirtier.

LEMMA 1 — Any p-invariant subspace of F has a basis consisting of eigenvectors of (.

Proof Let {\1,...,\;} be the distinct eigenvalues of ¢. Each of these eigenvalues
A; corresponds to an eigenspace E, y,, and since £ has a basis of eigenvectors of ¢, we
can decompose E as P i Eo, (i.e. these eigenspaces cover all of E). Take w € W and
under this decomposition we can write w = vy + ... + v, where each v; is in E,, y,.
Since W is g-invariant, we have that {w, pw, p?w,...} are all in W. Then since ¢ is

linear, for any positive integer m we have

e"(w) = Ao + -+ Aoy, .

Over each m € {0,...,k — 1} this gives us a system of k linear equations
1 1 S 1 V1 w
Al )\2 . >\k (5) (p’u}
PV L AN o lw

The matrix on the left is the Vandermonde matrix of the {A1,..., A}, and will be

invertible since the {A1, ..., Ay} are distinct. This means that we can write each v; as a
linear combination of the {w, pw, ..., " 1w} as
~1
v1 1 1 - 1 w
V2 A1 Ao - Ak pw
vy, VDY D o w

The point being that each v; must then be in W, and so the eigenspace decomposition
E =@, Ey,», restricts to a decomposition W = P, (Epx, NW), and W will inherit a
basis of eigenvectors of ¢ from each F ;. O

Now to finish things off, let {\1,..., A\x} be the distinct eigenvalues of ¢, and let
{K1,...,kr} be the distinct eigenvalues of 1. Since ¢ and v are each diagonalizable, we
have two decompositions of E into eigenspaces for ¢ and ) as

E = @ij E = @Ew,,{j
J J

Each one of these F, »; is a ¢-invariant subspace since ¢ and 1 commute. And since
E, », is ¢-invariant, by Lemma 1 we we can restrict the decomposition of eigenspaces
of ¢ to each Ey ,;, giving us a basis of E, , of eigenvectors for both ¢ and . Glueing
all the E, », back together into ' Then this gives us a basis of E of eigenvectors for
both ¢ and .


https://en.wikipedia.org/wiki/Vandermonde_matrix

MoCK ALGEBRA QUALIFIER 2019 - PART C
Do 4 out of the 5 problems.

(1) Let F be a splitting field over Q of the polynomial z* — 5. Find all the
intermediate fields of F' over Q, and indicate which ones are Galois over Q.

Solution by James Alcala.

First, factor the polynomial in the most obvious way:

(L’4 —5= (ZL‘2 + 51/2)(1,2 o 51/2)
= (x + 5 (x — 5" (x + 514 (x — 54

which indicates that we have four roots to work with. Because we
have complex roots, one of our group actions will correspond to com-
plex conjugation, and the other corresponds to multiplying 54 by 1,
which will rotate’ our roots and generate a subgroup of our group of
automorphisms of order 4. One can either write out a presentation
of this group or draw out pictures of permutations of the roots to
find that this group is isomorphic to D,, which has ten total sub-
groups, with eight nontrivial. We can write out its presentation as
(r,s|r? s sr? =r?s,rs = sr®, sr = r3s).

Think of » as multiplying 5/* by i, and s as complex conjugation.
Because the splitting field of this polynomial, K = Q(i, 5'/4), has degree
8 over Q and is Galois, the distinct subfields of K/Q will correspond
to distinct subgroups of the Galois group, exactly to the subgroup
that fixes that subfield. Here are the subgroups, complete with their



correspondence to subfields:

(e) <= Q(i,5"")(a)
(r’) <= Q(i,5'%)(0)
(sr?) = Q(i5*)(c)

(rs) <= Q((1+1)5"*)(d)
(sr) = Q((1-1)5"")(e)

(s) <= Q(Y))(f)

(r) <= Q(i)(9)

(s,7%) <= Q(5"%)(h)
(rs,sr) <= Q(i5Y?)(4)
(s,r) <= Q)

and their containments:

e The group at (a) is contained in the groups (b), (c), (d), (e), and
(f), and the they are index 2 subgroups of order 2; the subfield at
(a) is the splitting field of our original polynomial and contains the
fields (b), (c¢), (d), and (e) as subfields of index 2.

e The group at (b) is contained in the groups (g), (h), and (i) with
an index of 2; the field at (b) contains the the fields at (g), (h), and
(i) as subfields of index 2.

e The group at (c) is contained in the group (h) with index 2; the
field at (c) contains only the field at (h) as a subfield of index 2.

e The group at (d) is contained in the group (i) with index two;
similarly the field at (d) contains the field at (i) as a subfield of
index 2.

e The group at (e) is contained in the group at (i) with index two,
and the field at (e) contains the field (i) as a subfield of index two.

e The group (f) is contained in the group (h) with index two, and
the field (f) contains the field (h) with index two.



e The groups (g), (h) and (i) are all subgroups of the group (j) of
index two, and similarly the fields (g), (h) and (i) contain (J) as a
subfield of index two.

The extensions that are NOT Galois are (c), (f).

(2) Prove that Q(v2 ++v/3) = Q(v2,V/3)
Page 141 of Kayla’s Notes «

(3) Let F be the splitting field of f € K|z] over K. Prove that if an irreducible
polynomial g € K[z] has a root in F', then g splits into linear factors over
F. (This result is part of a theorem characterizing normal extensions and
you may not, of course, quote this theorem or its corollaries).

Let u be a root of g in F' let v be a root of ¢ that is not necessarily
in F. Let G denote the splitting field of g over K. Both u and v are
roots of the irreducible polynomial ¢ so there is some automorphism
¢ € Autg(G) that swaps v and u, because the Galois group acts
transitively on the roots of the polynomial. So K (v) ~ K(u) via this
isomorphism. Now the heavy lifting thanks to Theorem 3.8 in Chapter
V of Hungerford: since F is a splitting field of f over K (u) and F'(v) is
a splitting field of ¢ f = f over K (v), then ¢ extends to an isomorphism
F ~ F(v).

(But the proof of this theorem is long, and we aren’t even wielding
it’s full power, so maybe it’s not too hard to just prove the bit that we
need?)


http://math.ucr.edu/~mpierce/teaching/qual-algebra/docs/murray-qual-binder.pdf#page=141

But if F' = F(v), well then F' and F(v) have the same degree over
K, so they must be equal. I.e, v € F' all along.

(4) Let p be a prime and n be any natural number.
(a) Prove that there exists an irreducible polynomial f of degree n in Z,[xz].
(b) Let f € Z,[x] be an irreducible polynomial of degree n. Determine with
proof the degree of the splitting field of f over Z,,.
(c) Exhibit with proof irreducible polynomials of degree 2, 3, and 4 over Zs.

(a) If a monic polynomial f of degree n is reducible then it must have
a monic irreducible factor of degree i for some i € {1,...,m},
where m = |n/2]. We can simply count the possible number of
polynomials f and the possible number of irreducible factors, and
note that the former number is greater than the latter to conclude
that some f must be irreducible. There are p™ ways to choose
the coefficients of f and, again choosing coefficients, there are
p+p*+- -+ p™ possibilities of irreducible factor. Then we're good

since .
m
p___—Pp

p <pm+1§pn‘
p—1

(b) Let F be a splitting field of f over Z,. Recall that the multiplicative
group of units of F' must be cyclic*. Letting u be a generator of
that cyclic group, note that u ¢ Z,, else it couldn’t generate all of
F.So F =Z,(u), and since u is a root of f and f is irreducible, u
has degree n over Z,, so [F': Z,] = n.

(%) If you really want to prove that F*, the group of units of F,
must be a cyclic group, notice first that it must be a finite abelian
group, so F* decomposes as Z,,, ® --- & Z,,, where the m; are
the invariant factors of the multiplicative group. So my|ma| - - - |my,
and all the elements of F'* have order dividing my. In particular
every element of F'* is a root of ™ — 1 which has exactly my
distinct roots, so |G| = my, and G ~ Z,,,

(¢) There are many answers to this part. Since Z, has characteristic
2 though, it’s probably smart to guess polynomials with an odd



number of terms that have non-zero constant term to ensure that

neither 0 or 1 is a root.
2 3 4
r+x+1 +ar+1 r+x+1

None of these have 0 or 1 as a root. Then since a reducible poly-
nomial of degree < 3 must have a linear factor, the first three
polynomials must be irreducible. Now we’ve just got to check that
2% + 2 + 1 doesn’t factor into quadratics. If it did, its factorization
would look something like 2* + z + 1 = (2? + az + 1)(z* + bx + 1).
Cranking out the right-hand-side we see that the coefficients of
the 2 term and the z term both have to be (a + b), so such a
factorization can’t exist.

(5) Let F'; be a cyclotomic extension of Q of order seven. If { is a primitive
seventh root of unity, what is the irreducible polynomial over Q of ¢ + ¢™'?
You must justify your answer.

Solution by Nobel Williamson

Let ¢ be a primitive 7-th root of unity. The minimal polynomial
of ¢ over Q is the 7-th cyclotomic polynomial ®;(z). Since 2" — 1 =
[ L4, ®a(z) we have

" —1

a Hd|n,d<n Dq (x)

and since n = 7 is prime, d = 1 so

P, (2)

T—1 .
q)7(x):x 1:x6+$5+$4+$3+$2+$+1.
x_

Note that since [F': Q] = 6 and since Q(¢ + (') is a proper subexten-
sion of F', it must be an extension of Q of degree either 2 or 3 which
means the degree of the minimal polynomial of ¢ + ¢! over Q must
be either 2 or 3. Observe that



(CHCDHECHT) =2¢+) 1
= CH3+3T+CPHC 242 -2 -1
= CH3C+3C+C+E 2+ -20-2¢° -1
= C+CHI+E+C+C+1

= 0

So ¢ + ¢! satisfies the polynomial f(z) = 2 + 2% — 22 — 1. Now we
must check if f is irreducible over Q. Since it’s a degree 3 polynomial, if
it were reducible over Q, it would have a linear factor, hence a rational
root. However, the rational root test states that if a polynomial with
integer coefficients has a rational root p/q then p is a factor of the
constant term and ¢ is a factor of the leading coefficient. Since both
the constant term and leading coefficient of f are 1, the only possible
rational roots for f are —1 and 1 which clearly are not roots. Hence,
f has no rational roots so it is irreducible over Q. Since ¢ + ¢~ !is a
root of f, its minimal polynomial must divide f but f is irreducible so
f(x) = 2® + 2% — 22 — 1 is the minimal polynomial of ¢ + (= over Q.



