
MOCK QUALIFYING EXAMINATION, ALGEBRA, PART A, 2019

September n3, 2019

Solve any four questions; indicate which ones are supposed to be graded. You must

show all work and justify all statements either by referring to an appropriate theorem

or by providing a full solution.

1. Let G = Q/Z, where Q and Z are considered as additive groups. Prove that for

any positive integer n, G has a unique subgroup G(n) of order n, and that G(n) is

cyclic.

A subgroup G(n) < Q/Z of order n is finite, and so it must be finitely generated

by {ri}i∈{1...k} for some rational numbers ri. Let π : Q → Q/Z be quotient

map. Lift each of these generators ri to the unique element ai/ni ∈ [0, 1) ⊂ Q

such that π(ai/ni) = ri. Now let n = lcm(n1, . . . , nk) and

a = gcd

(
a1

n

n1
, . . . , ak

n

nk

)
.

By construction each of these elements ai/bi will be a multiple of a
n , This

means that the subgroup G(n) will be generated by π(a/n). Furthermore a and

n are relatively prime by construction, so there exists integers x and y such

that xa + ny = 1. This means that x an + y nn = 1
n , so π(1/n) is in G(n) too.

Since π(1/n) has order n, it too must generate G(n), and so G(n) is uniquely

characterized as being the cyclic subgroup of Q/Z that contains π(1/n).

2. For groups N1 E G1 and N2 E G2, provide a counterexample to each of the

following statements.

(a) G1
∼= G2 and N1

∼= N2 implies that G1/N1
∼= G2/N2.

(b) G1
∼= G2 and G1/N1

∼= G2/N2 implies that N1
∼= N2.

(c) N1
∼= N2 and G1/N1

∼= G2/N2 implies that G1
∼= G2.

(a) Let G1
∼= G2 be the dihedral group D6, symmetries of the regular hexagon,

with presentation 〈r, s | s2, rn, (rs)2〉. Now D6 has two normal subgroups

isomorphic to Z2: one generated by the reflection 〈s〉, and the other gen-

erated by a rotation of 180◦, 〈r3〉. But the quotients by these normal

subgroups are different: D6/〈s〉 = Z6 while D6/〈r3〉 = D3.

(b) Again let G1
∼= G2 be the dihedral group D6, and consider the subgroups

〈r〉 ∼= Z6 and 〈s, r2〉 ∼= D3. Since each of these subgroups have index two, so



they’re normal, and the quotient of D6 by each of them will be isomorphic

to Z2.

(c) Let G1 = D6 and G2 = Z12. Each of these has a normal subgroup of index

two, and so a quotient isomorphic to Z2, that is isomorphic to Z6.

3. Let R be a unital integral domain. For a nonzero element of s ∈ R, let S =

{1, s, s2, . . . }. Prove that S−1R ∼= R[x]/(xs− 1).

Solution by Jacob Garcia.

Discussion: Before we present the solution, a quick discussion on why we

might believe why this is true. When looking at the construction for S−1R,

we see that, essentially, we are choosing our favorite nonzero element s and

adding in an inverse, 1
s . So we are motivated to find a similar inverse for s in

R[x]/(xs− 1). Note that since we are taking the quotient with respect to the

ideal (xs− 1), we have that xs− 1 ≡ 0, and so xs ≡ 1. So in the quotient, the

indeterminate x is acting as an inverse for s. Thus, mapping 1
s to x should

produce the desired isomorphism.

Solution: We consider ϕ : S−1R→ R[x]/(xs−1) via ϕ( r
sn ) = rxn. This map

is well defined: Suppose r
sn = r′

sm . Without loss of generality, assume m ≥ n.

Then t(rsm − r′sn) = 0 for some t 6= 0, and since R is an integral domain, we

have 0 = rsn − r′sm = sn(rsm−n − r′), so as sn 6= 0, we have rsm−n − r′ = 0.

Then

ϕ
( r′
sm
)

= r′xm = (rsm−n)xm = r(sx)m−nxn = rxn = ϕ
( r
sn
)
.

Now we show ϕ is a ring homomorphism: Let r
sn and r′

sm be arbitrary.

Then ϕ( r
sn ) + ϕ( r

′

sm ) = rxn + r′xm, and ϕ( r
sn + r′

sm ) = ϕ( rs
m+r′sn

sm+n ) = (rsm +

r′sn)xm+n = r(sx)mxn + r′(sx)nxm = rxn + r′xm. This shows ϕ respects

addition. Now we check ϕ( r
sn )ϕ( r

′

sm ) = rxnr′xm = rr′(xm+n), and also see

ϕ( r
sn

r′

sm ) = ϕ( rr′

sm+n ) = rr′(xm+n).

ϕ is injective: Let r
sn and r′

sm be arbitrary, and assume m ≥ n. If ϕ( r
sn ) =

ϕ( r
′

sm ), then rxn = r′xm, so multiplying both sides by 1 gives rxn(sx)m =

r′xm(sx)n, i.e., (rsm − r′sn)xm+n = 0. In particular for x = 1, we get rsm −
r′sn = 0, so r

sn = r′

sm .

Finally, to show ϕ is surjective, we make the observation that since the



degree of xs− 1 is 1, every equivalence class of R[x]/(xs− 1) is represented by

a constant polynomial, and every constant polynomial is in some equivalence

class. So it suffices to show that ϕ surjects to the constant polynomial r for

each r ∈ R. This is easily seen by ϕ(r) = r.

Solution by Mike Pierce,

Notice that the RHS says that we’re appending an element x to R and

forcing it to be the inverse to s, which should inspire our choice of maps here.

First let ϕ denote the composite of the natural maps R ↪→ R[x]� R[x]/(xs−1)

and let r be shorthand for ϕ(r), noting that since ϕ is a ring homomorphism

we have ρr = ρ r. Since x s = 1, s is a unit in the quotient R[x]/(xs− 1) with

inverse x. Then we can extend ϕ to a homomorphism ϕ̃ : S−1R→ R[x]/(xs−1)

where ϕ̃ : r/(sn) 7→ r xn.

In the other direction we can start by defining a map θ : R[x]→ S−1R where

θ(r) = r/1 and θ(x) = 1/s. Then since θ(xs− 1) = (1/s)(s)− 1 = 0, this maps

factors through R[x]/(xs−1), giving us a map θ̃ : R[x]/(xs−1)→ S−1R. Then

we simply note that θ̃ and ϕ̃ are inverses, and we’re done.

4. Given a finite p-group G, prove that G has a normal subgroup of every order

dividing |G|.

It’s worth noting that this is close to, but not exactly, the first Sylow theorem.

Suppose that G has order pn. We’ll proceed inductively. So first note that

〈e〉 is normal, covering our base case. Let N be a normal subgroup of order pk

for some k < n, and consider the quotient G/N , letting π : G→ G/N denote

the quotient map. Note that since G/N is a p-group (of order pn−k) it has

nontrivial center, and so it’ll have some element of order p. Take aN in the

center of G/N or order p, and note that 〈aN〉 is a normal subgroup of G/N

of order p. We want to look at π−1 (〈aN〉). Since the homomorphic preimage

of a normal subgroup is normal, this will be a normal subgroup of G of order

p · pk = pk+1.

5.

(a) Define the characteristic of a ring.

(b) Assume that R is a commutative unitary ring having only one maximal ideal m.

Show that the characteristic of R is either zero or a power of a prime.

(c) For R as described in (b) show that if R/m has characteristic zero, then R contains

a field.



(d) Give an example of a ring R as in (b) of characteristic zero having a non-maximal

prime ideal P such that the characteristic of R/P is not zero.

(a) For a ring R suppose that there exists a positive integer n such that

r + r + · · ·+ r︸ ︷︷ ︸
n times

= 0 ∀r ∈ R .

If such an n exists, then the characteristic of R, denoted charR is the

smallest such n with this property. If no such n exists, we say that charR =

0. If R is a unital ring, then we can more simply define charR to be the

generator of the kernel of the unique ring homomorphism Z→ R.

(b) Let m be the unique max ideal in your ring. Suppose charR > 0, but for

the sake of contradiction that charR = nm for coprime n and m. You can

think of m and n as living in your ring. Let Ann(n) = {r ∈ R | nr = 0}
and Ann(m) = {r ∈ R | mr = 0} be the annihilators of these elements,

noting that m ∈ Ann(n) and n ∈ Ann(m) Recall that since n and m are

coprime, using the Euclidean algorithm you can find a and b such that

an+ bm = 1 in your ring, so Ann(n) + Ann(m) = R. This means that only

one of Ann(n) or Ann(m) can be in m, contradicting the fact that m is

maximal. So charR must be a power of a prime.

You could make basically the same argument using the principal ideals (m)

and (n) instead of the annihilators.

Here’s a very different-looking approach to saying the same thing. Since m

is maximal, R/m will be a field and must have characteristic either 0 or

pn. So the kernel of the unique homomorphism ι : Z→ R/m will be either

(0) or (pn) respectively. Now ι will pull back to a ring homomorphism

ι̃ : Z→ R such that this diagram commutes:

Z

R R/m

ι

ι̃

But then Ker ι̃ ⊂ Ker ι as a subgroup, and so it must be of the form either

(0) or (pnk) depending on the characteristic of R/m.

(c) If R/m has characteristic zero, then we have an injection Z ↪→ R/m, and like

in the last part this injection factors through the quotient Z ↪→ R� R/m.



So Z∩m = {0} in R, and since in a local ring m consists of all the non-units,

each element of Z is a unit, so Q ⊂ R.

(d) An example will be the ring Z[x] localized at (x, 2), so Z[x](x,2). An

important fact here that makes this a reasonable example to come up is

that the localization of a ring R at a prime ideal P will be a local ring RP ,

the max ideal being PP , and furthermore the prime ideals of RP will be

all be of the form QP for some prime ideal Q of R that is contained in P .

So for our particular example, we’re looking at the chain of prime ideals

(0) ↪→ (2) ↪→ (2, x) ↪→ Z[x]. The ideal (2)(2,x) will be prime in Z[x](x,2),

and since Z[x](x,2) is still unital, the quotient of Z[x](x,2) by (2)(2,x) will

have characteristic 2.



Mock Algebra Qualifying Examination, Fall 2019, Part b

Attempt any four, all questions are worth 10 points.

1. (a) Let R be a ring with identity and M a left module for R. Recall that M is indecom-

posable if M cannot be written as a direct sum of two non-zero submodules. Prove that if

f : M →M is a homomorphism of modules then f2 = f implies that either f = 0 or f = id.

(b) Suppose now that M is decomposable. Prove that there exists f : M →M a homomor-

phism of modules such that f2 = f and f different from zero and the identity.

(a) It’s not explicitly said, but we’re assuming M is indecomposable. Suppose that

f2 = f and that f 6= 1M . The key thing to note here is that if f2 = f , then f restricted

to the image of f must be the identity on that image. Notationally, f |Im f = 1Im f .

This means that if f is surjective, we’re done because then it would be the identity

on M . But if f is not surjective, it will have a nontrivial kernel. This means that the

short exact sequence Ker f ↪→M � Im f splits, with splitting map f : Im f →M , so

M = Ker f ⊕ Im f with Ker f and Im f nontrivial, contradicting our assumption that

M is indecomposable.

(b) Suppose M = A ⊕ B for nonzero A and B, and let f : M → M be the projection

map πA : M → A. Note that f2 = f , that f is neither zero nor the identity on M since

both A and B are nonzero.

Note also, we could have chosen the map πB , and that πB = 1M − πA, so these two

maps are orthogonal idempotents in EndR(M).

2. Suppose R is a ring with identity and e ∈ R such that e2 = e.

(a) Prove that (1− e) has the same property.

(b) Prove that Re ∩R(1− e) = {0}, and hence R = Re⊕R(1− e).
(c) Regarding the principal ideal Ra as a left R-module, prove that Ra is projective if and

only if the annihilator Ann(a) = {r ∈ R | ra = 0} is of the form Re for e such that e2 = e.

(a) Such an element e is called idempotent. Note that (1− e)2 = 1− 2e+ e = 1− e, so

1− e is idempotent.

(b) If we take some element re ∈ Re ∩R(1− e) we’ll have re = (re)e ∈ R(1− e)e = {0}.
Then since eR+ (1− e)R spans R, we have that R = Re⊕R(1− e).

(c) Consider the map ϕ : R � Ra where ϕ : r 7→ ra. Then Ann(a) = Kerϕ and we

have a short exact sequence Ann(a) ↪→ R� Ra. If Ann(a) is of the form Re for some

idempotent e, then since R = Re⊕R(1− e), the short exact sequence will split, which

means Ra is projective (and isomorphic to R(1− e)).

Conversely if Ra is projective, then the short exact sequence splits and we have

R ∼= Ann(a)⊕Ra. Now Ann(a) and Ra are both ideals (submodules) of R, so this ⊕
will actually be an internal direct sum since Ann(a) ∩Ra = {0} in R. There’s a subtly

here though: Ann(a) is a submodule of R via the inclusion map i in the short exact

sequence, but to realize Ra as a submodule of R we should really be considering the



splitting map ψ : Ra→ R such that ϕψ = 1Ra. Then while R ∼= Ann(a)⊕Ra, we only

have the equality with an internal direct sum R = i(Ann(a)) +Rψ(a). The difference

here is really only up to an automorphism of each of Ann(a) and Ra as submodules of

R. An important point though, is that the idempotent element e that we’re looking for

won’t necessarily be a, but will be ϕ(a) (which will be y in the proof, but I don’t bother

to flush that out). Considering the element 1 under this isomorphism:

R ∼= Ann(a)⊕Ra
1↔ (x, y)

1 = x+ y

And then multiplying though by y, we have y = xy+y2, but xy = 0 since Ann(a)∩Ra =

{0}. So y = y2 is an idempotent of R, and since for z ∈ Ra 1 = x+ y =⇒ z = 0 + zy,

y is the identity of Ra considered as a subring of R, and generates Ra, so Ra = Ry.

3. Let R be a ring with identity. Regard R as a right R-module in the usual way and let M

be a right R module. Prove that HomR(R,M) ∼= M as abelian groups.

Solution by Jacob Garcia.

Define f : HomR(R,M)→M via f(ϕ) = ϕ(1). Clearly f is well defined. If ϕ, ψ ∈
HomR(R,M), then f(ϕ+ ψ) = (ϕ+ ψ)(1) = ϕ(1) + ψ(1) = f(ϕ) + f(ψ). We can also

see that if f(ϕ) = 0, then ϕ(1) = 0, but then for all r ∈ R, ϕ(r) = rϕ(1) = r0 = 0,

so ϕ ≡ 0. This f is injective. Finally, for each m ∈ M , define ϕ via ϕ(r) = rm. Then

ϕ ∈ HomR(R,M) (as you can check) and f(ϕ) = m. Therefore, f is an isomorphism of

abelian groups.

4. Consider the ring R = C[x] of polynomials in an indeterminate x with coefficients in C.

(a) Let M be a torsion free module for R with two generators. Prove that M is free of rank

at most two.

(b) Prove that if M is a cyclic R-module and M 6= R then M is torsion. Under what condition

on the torsion ideal will M be simple?

(a) Since R is a PID and M is finitely generated, M being torsion free implies that M

is free. We can see this with the classification theorem for finitely generated modules

over PIDs: if M is torsion free, it’ll have not torsion summands, but only summands

isomorphic to R. Since M is generated by two elements, say a and b, every element of

M can be written as a sum of ra+ sb for some choice of r, s ∈ R. If M had rank greater

than two, then it would have three elements such that none of them can be written as

an R-linear combination of the others. But writing each of these elements in terms of a

and b will show that this cannot happen.

(b) Since M is a cyclic R-module, there is some m ∈ M such that M = Rm = {rm |
r ∈ R}. That is, we get a surjection π : R → M via the map r 7→ rm, and we have

M ∼= R/Kerπ. Since R 6= M , Kerπ is nonzero, and anything in Kerπ annihilates all of

M , so M is a torsion R-module.



Let Kerπ = I to clean up the notation to come. If M admits a quotient by a

submodule N , we have M/N ∼= (R/I)/N . But this means that N corresponds to some

ideal of R/I, which corresponds to some ideal of R that contains I. So this tells us that

if we want M to be simple (N trivial) we need to require that there be no ideals of R

that strictly contain I, so I needs to be maximal.

So M ends up being a field isomorphism to a quotient of R.

5. (a) Prove that if A and B are invertible n× n matrices with entries in an integral domain

R, then A+ rB is invertible in the quotient field K of R for all but finitely many r.

(b) Prove that the minimal polynomial of a linear transformation of an n-dimensional vector

space has degree at most n.

(a) For n×n matrices A and B which are invertible over an integral domain, the matrix

A+rB, for r ∈ K, is not invertible in K if and only if det(A+rB) = 0. But det(A+rB)

is just a polynomial in r. Furthermore it’ll be a non-constant polynomial of degree n

since the coefficient on rn will be det(B), and so it’ll have at most n roots in K. That

is, there will be at most n distinct values of r such that det(A+ rB) = 0.

(b) For your vector space over field k, fix a basis, so your linear transformation

can be thought of as a matrix M . The characteristic polynomial of M is defined

as det(M − xIn) ∈ k[x], and this will have degree at most n. Note that M is a root of

it’s characteristic polynomial since, letting x = M , we have det(M −MIn) = det(0) = 0.

The minimal polynomial of M , being the smallest monic polynomial of which M is a

root, must divide the characteristic polynomial, and so will have degree at most n.

6. Suppose that ϕ and ψ are commuting linear transformations of an n-dimensional vector

space E. Prove that if E1 is a ϕ-invariant subspace of E eigenspace of ϕ then E1 is also

ψ-invariant. Use this to prove that if ϕ and ψ both have linear elementary divisors then there

exists a basis of E with respect to which the matrix ϕ and the matrix ψ are both diagonal.

Take v ∈ E1. If ϕ and ψ commute, since

ϕv = λv =⇒ ψϕv = ψ (λv) =⇒ ϕ (ψv) = λ (ψv) ,

ψv is an eigenvector for ϕ too. This means that the eigenspace E1 is ψ-invariant.

Now ϕ and ψ both having linear elementary divisors is the same as saying there

exists bases of E relative to which ϕ and ψ are each (individually) diagonalizable, and

this is the same as saying that there exists bases of E consisting of eigenvectors for each

of ϕ and ψ.

There is a much easier version of this statement to prove, where we require that one of

ϕ or ψ have distinct elementary divisors. In this case, supposing ϕ has distinct elementary

divisors, E will decompose into dimE one-dimensional eigenspaces Eλ = 〈vλ〉, one for

each elementary divisor (x− λ). Then since each of these Eλ are ψ-invariant. each vλ

will be an eigenvector for ψ too. So the basis you’re looking for consists of these vλ.



To prove the question posed though, we’ve got to get our hands a bit dirtier.

Lemma 1 — Any ϕ-invariant subspace of E has a basis consisting of eigenvectors of ϕ.

Proof Let {λ1, . . . , λk} be the distinct eigenvalues of ϕ. Each of these eigenvalues

λi corresponds to an eigenspace Eϕ,λi
, and since E has a basis of eigenvectors of ϕ, we

can decompose E as
⊕

j Eϕ,λj (i.e. these eigenspaces cover all of E). Take w ∈W and

under this decomposition we can write w = v1 + . . . + vn where each vi is in Eϕ,λi
.

Since W is ϕ-invariant, we have that {w, ϕw, ϕ2w, . . . } are all in W . Then since ϕ is

linear, for any positive integer m we have

ϕm(w) = λm1 v1 + · · ·+ λmn vn .

Over each m ∈ {0, . . . , k − 1} this gives us a system of k linear equations
1 1 . . . 1

λ1 λ2 . . . λk
...

...
. . .

...

λk−11 λk−12 . . . λk−1k



v1

v2

...

vk

 =


w

ϕw
...

ϕk−1w

 .

The matrix on the left is the Vandermonde matrix of the {λ1, . . . , λk}, and will be

invertible since the {λ1, . . . , λk} are distinct. This means that we can write each vi as a

linear combination of the {w, ϕw, . . . , ϕk−1w} as
v1

v2

...

vk

 =


1 1 . . . 1

λ1 λ2 . . . λk
...

...
. . .

...

λk−11 λk−12 . . . λk−1k


−1

w

ϕw
...

ϕk−1w

 .

The point being that each vi must then be in W , and so the eigenspace decomposition

E =
⊕

j Eϕ,λj
restricts to a decomposition W =

⊕
j

(
Eϕ,λj

∩W
)
, and W will inherit a

basis of eigenvectors of ϕ from each Eϕ,λj
.

Now to finish things off, let {λ1, . . . , λk} be the distinct eigenvalues of ϕ, and let

{κ1, . . . , κr} be the distinct eigenvalues of ψ. Since ϕ and ψ are each diagonalizable, we

have two decompositions of E into eigenspaces for ϕ and ψ as

E =
⊕
j

Eϕ,λj
E =

⊕
j

Eψ,κj

Each one of these Eϕ,λj
is a ψ-invariant subspace since ϕ and ψ commute. And since

Eϕ,λj
is ψ-invariant, by Lemma 1 we we can restrict the decomposition of eigenspaces

of ψ to each Eϕ,λj , giving us a basis of Eϕ,λj of eigenvectors for both ϕ and ψ. Glueing

all the Eϕ,λj
back together into E Then this gives us a basis of E of eigenvectors for

both ϕ and ψ.

https://en.wikipedia.org/wiki/Vandermonde_matrix


Mock Algebra Qualifier 2019 - Part C

Do 4 out of the 5 problems.

(1) Let F be a splitting field over Q of the polynomial x4 − 5. Find all the

intermediate fields of F over Q, and indicate which ones are Galois over Q.

Solution by James Alcala.

First, factor the polynomial in the most obvious way:

x4 − 5 = (x2 + 51/2)(x2 − 51/2)

= (x+ i51/4)(x− i51/4)(x+ 51/4)(x− 51/4)

which indicates that we have four roots to work with. Because we

have complex roots, one of our group actions will correspond to com-

plex conjugation, and the other corresponds to multiplying 51/4 by i,

which will ’rotate’ our roots and generate a subgroup of our group of

automorphisms of order 4. One can either write out a presentation

of this group or draw out pictures of permutations of the roots to

find that this group is isomorphic to D4, which has ten total sub-

groups, with eight nontrivial. We can write out its presentation as

〈r, s | r2, s4, sr2 = r2s, rs = sr3, sr = r3s〉.

Think of r as multiplying 51/4 by i, and s as complex conjugation.

Because the splitting field of this polynomial, K = Q(i, 51/4), has degree

8 over Q and is Galois, the distinct subfields of K/Q will correspond

to distinct subgroups of the Galois group, exactly to the subgroup

that fixes that subfield. Here are the subgroups, complete with their



correspondence to subfields:

〈e〉 ⇐⇒ Q(i, 51/4)(a)

〈r2〉 ⇐⇒ Q(i, 51/2)(b)

〈sr2〉 ⇐⇒ Q(i51/4)(c)

〈rs〉 ⇐⇒ Q((1 + i)51/4)(d)

〈sr〉 ⇐⇒ Q((1− i)51/4)(e)

〈s〉 ⇐⇒ Q(51/4)(f)

〈r〉 ⇐⇒ Q(i)(g)

〈s, r2〉 ⇐⇒ Q(51/2)(h)

〈rs, sr〉 ⇐⇒ Q(i51/2)(i)

〈s, r〉 ⇐⇒ Q(j)

and their containments:

• The group at (a) is contained in the groups (b), (c), (d), (e), and

(f), and the they are index 2 subgroups of order 2; the subfield at

(a) is the splitting field of our original polynomial and contains the

fields (b), (c), (d), and (e) as subfields of index 2.

• The group at (b) is contained in the groups (g), (h), and (i) with

an index of 2; the field at (b) contains the the fields at (g), (h), and

(i) as subfields of index 2.

• The group at (c) is contained in the group (h) with index 2; the

field at (c) contains only the field at (h) as a subfield of index 2.

• The group at (d) is contained in the group (i) with index two;

similarly the field at (d) contains the field at (i) as a subfield of

index 2.

• The group at (e) is contained in the group at (i) with index two,

and the field at (e) contains the field (i) as a subfield of index two.

• The group (f) is contained in the group (h) with index two, and

the field (f) contains the field (h) with index two.



• The groups (g), (h) and (i) are all subgroups of the group (j) of

index two, and similarly the fields (g), (h) and (i) contain (J) as a

subfield of index two.

The extensions that are NOT Galois are (c), (f).

(2) Prove that Q(
√

2 +
√

3) = Q(
√

2,
√

3)
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(3) Let F be the splitting field of f ∈ K[x] over K. Prove that if an irreducible

polynomial g ∈ K[x] has a root in F , then g splits into linear factors over

F . (This result is part of a theorem characterizing normal extensions and

you may not, of course, quote this theorem or its corollaries).

Let u be a root of g in F let v be a root of g that is not necessarily

in F . Let G denote the splitting field of g over K. Both u and v are

roots of the irreducible polynomial g so there is some automorphism

ϕ ∈ AutK(G) that swaps v and u, because the Galois group acts

transitively on the roots of the polynomial. So K(v) ' K(u) via this

isomorphism. Now the heavy lifting thanks to Theorem 3.8 in Chapter

V of Hungerford: since F is a splitting field of f over K(u) and F (v) is

a splitting field of ϕf = f over K(v), then ϕ extends to an isomorphism

F ' F (v).

(But the proof of this theorem is long, and we aren’t even wielding

it’s full power, so maybe it’s not too hard to just prove the bit that we

need?)

K

K(v) K(u)

F

F (v)

http://math.ucr.edu/~mpierce/teaching/qual-algebra/docs/murray-qual-binder.pdf#page=141


But if F ∼= F (v), well then F and F (v) have the same degree over

K, so they must be equal. I.e, v ∈ F all along.

(4) Let p be a prime and n be any natural number.

(a) Prove that there exists an irreducible polynomial f of degree n in Zp[x].

(b) Let f ∈ Zp[x] be an irreducible polynomial of degree n. Determine with

proof the degree of the splitting field of f over Zp.

(c) Exhibit with proof irreducible polynomials of degree 2, 3, and 4 over Z2.

(a) If a monic polynomial f of degree n is reducible then it must have

a monic irreducible factor of degree i for some i ∈ {1, . . . ,m},
where m = bn/2c. We can simply count the possible number of

polynomials f and the possible number of irreducible factors, and

note that the former number is greater than the latter to conclude

that some f must be irreducible. There are pn ways to choose

the coefficients of f and, again choosing coefficients, there are

p+ p2 + · · ·+ pm possibilities of irreducible factor. Then we’re good

since

p+ p2 + · · ·+ pm =
pm+1 − p
p− 1

< pm+1 ≤ pn .

(b) Let F be a splitting field of f over Zp. Recall that the multiplicative

group of units of F must be cyclic∗. Letting u be a generator of

that cyclic group, note that u /∈ Zp, else it couldn’t generate all of

F . So F = Zp(u), and since u is a root of f and f is irreducible, u

has degree n over Zp, so [F : Zp] = n.

(∗) If you really want to prove that F×, the group of units of F ,

must be a cyclic group, notice first that it must be a finite abelian

group, so F× decomposes as Zm1 ⊕ · · · ⊕ Zmk
where the mi are

the invariant factors of the multiplicative group. So m1|m2| · · · |mk,

and all the elements of F× have order dividing mk. In particular

every element of F× is a root of xmk − 1 which has exactly mk

distinct roots, so |G| = mk and G ' Zmk

(c) There are many answers to this part. Since Z2 has characteristic

2 though, it’s probably smart to guess polynomials with an odd



number of terms that have non-zero constant term to ensure that

neither 0 or 1 is a root.

x2 + x+ 1 x3 + x+ 1 x4 + x+ 1

None of these have 0 or 1 as a root. Then since a reducible poly-

nomial of degree ≤ 3 must have a linear factor, the first three

polynomials must be irreducible. Now we’ve just got to check that

x4 + x+ 1 doesn’t factor into quadratics. If it did, its factorization

would look something like x4 + x+ 1 = (x2 + ax+ 1)(x2 + bx+ 1).

Cranking out the right-hand-side we see that the coefficients of

the x3 term and the x term both have to be (a + b), so such a

factorization can’t exist.

(5) Let F 7 be a cyclotomic extension of Q of order seven. If ζ is a primitive

seventh root of unity, what is the irreducible polynomial over Q of ζ + ζ−1?

You must justify your answer.

Solution by Nobel Williamson

Let ζ be a primitive 7-th root of unity. The minimal polynomial

of ζ over Q is the 7-th cyclotomic polynomial Φ7(x). Since xn − 1 =∏
d|n Φd(x) we have

Φn(x) =
xn − 1∏

d|n,d<n Φd(x)

and since n = 7 is prime, d = 1 so

Φ7(x) =
x7 − 1

x− 1
= x6 + x5 + x4 + x3 + x2 + x+ 1.

Note that since [F : Q] = 6 and since Q(ζ + ζ−1) is a proper subexten-

sion of F , it must be an extension of Q of degree either 2 or 3 which

means the degree of the minimal polynomial of ζ + ζ−1 over Q must

be either 2 or 3. Observe that



(ζ + ζ−1)3 + (ζ + ζ−1)2 − 2(ζ + ζ−1)− 1

= ζ3 + 3ζ + 3ζ−1 + ζ−3 + ζ2 + 2 + ζ−2 − 2ζ − 2ζ−1 − 1

= ζ3 + 3ζ + 3ζ6 + ζ4 + ζ2 + 2 + ζ5 − 2ζ − 2ζ6 − 1

= ζ6 + ζ5 + ζ4 + ζ3 + ζ2 + ζ + 1

= 0

So ζ + ζ−1 satisfies the polynomial f(x) = x3 + x2− 2x− 1. Now we

must check if f is irreducible over Q. Since it’s a degree 3 polynomial, if

it were reducible over Q, it would have a linear factor, hence a rational

root. However, the rational root test states that if a polynomial with

integer coefficients has a rational root p/q then p is a factor of the

constant term and q is a factor of the leading coefficient. Since both

the constant term and leading coefficient of f are 1, the only possible

rational roots for f are −1 and 1 which clearly are not roots. Hence,

f has no rational roots so it is irreducible over Q. Since ζ + ζ−1 is a

root of f , its minimal polynomial must divide f but f is irreducible so

f(x) = x3 + x2 − 2x− 1 is the minimal polynomial of ζ + ζ−1 over Q.


