
MOCK QUALIFYING EXAMINATION, ALGEBRA, PART A, 2019

September n4, 2019

Solve any four questions; indicate which ones are supposed to be graded. You must

show all work and justify all statements either by referring to an appropriate theorem

or by providing a full solution.

1. For a group G, let G′ denote its commutator subgroup.

(a) Prove that G′ is normal in G.

(b) Show that for any abelian group A, a homomorphism G→ A must factor through

the quotient G/G′.

(c) Let G(1) = G′, G(2) = (G′)′, and in general G(n) = (G(n−1))′. Give an example of

a group G such that G(n) 6= 〈e〉 for any n ∈ N.

(a) Recall that the commutator subgroup G′ is the normal subgroup generated

by elements of the form aba−1b−1 for all a, b ∈ G. To prove G′ is a normal

subgroup, take x ∈ G′, and note that for any g ∈ G, gxg−1 = x
(
x−1gxg−1

)
is a product of two commutator elements, so it’s in G′.

(b) Without loss of generality, suppose that ϕ : G � A is surjective. For

any g, h ∈ G we’ll have 0 = ϕ(g)ϕ(h)ϕ(g)−1ϕ(h)−1 = ϕ(ghg−1h−1), so the

commutator subgroup G′ is a subgroup of the kernel of ϕ. This scenario

suggests the following diagram:

0 G′ G G/G′ 0

0 Kerϕ G A 0

1

ϕ

Then we need to build the map G/G′ → A, but this is just Question 2 on

part B of this exam.

(c) The point here is to recognize that if G(n) = 〈e〉 for some n that that means,

by definition, G is solvable. So we just need to know an example of a non-

solvable group. Consider A5, the alternating group on 5 letters. Remember

that A5 is simple, which means its only subgroups are 〈e〉 and itself. So

since we can find a nontrivial commutator element, (1 2)(2 3)(1 2)−1(2 3)−1 =

(1 3 2), the commutator subgroup must be all of A5.



2. Classify all groups of order 169.

Notice that 169 = 132. Such a group G of order 169 will be a p group of order

p2. This means that G will have a nontrivial center by the class equation. If

the center is all of G, then G is abelian. Otherwise if the center has order p,

then G modulo the center will have order p too. This means the quotient is

cyclic, which means G is abelian in this case too. So G must be abelian, so

there are two options.

G ∼= Z169 or G ∼= Z13 ⊕ Z13 .

3. An integral domain R is integrally closed if for any monic polynomial f over R,

every root of f in Frac(R) is actually in R.

(a) Prove that a unique factorization domain is integrally closed.

(b) Give an example of a ring that is not integrally closed.

(a) Take a monic polynomial xn + cn−1x
n−1 + · · · + c1x + c0 ∈ R[x] with a

root a
b ∈ Frac(R). So(a

b

)n
+ cn−1

(a
b

)n−1
+ · · ·+ c1

(a
b

)
+ c0 = 0

=⇒ an +
(
cn−1a

n−1b+ · · ·+ c1ab
n−1 + c0b

n
)

= 0

But then b divides cn−1a
n−1b+ · · ·+ c1ab

n−1 + c0b
n, and b divides zero,

so b must divide an. (This is where we’re using the fact that R is a UFD:

an factors uniquely, and that factorization must contain b.) But since
a
b ∈ Frac(R), (the fraction has to be “reduced” by construction), b must

be a unit, so a
b = ab−1 ∈ R.

(b) The ring k[x2, x3] is not integrally closed. Note this ring is not a UFD

because x6 = x2x2x2 = x3x3. Anyways, this is not integrally closed because

x is a root of the polynomial t2 − x2 ∈ k[x2, x3][t], and x is in the fraction

field of k[x2, x3] but not in k[x2, x3] itself.

4.

(a) Prove that a finite integral domain is a field. Is it true that a finite integral ring

(non-commutative) is a division ring?

(b) Does there exist a field such that its additive group structure and its multiplicative

group of units are isomorphic?

(c) (Challenge) Prove that every finite division ring is a field.



(a) Fix a finite integral domain k, and pick some a ∈ k. Consider the function

k→ k where x 7→ ax. This function is injective since ax = ay =⇒ x = y,

and so it’s surjective since k is finite. In particular, some element has to

map to 1. This’ll be a−1, so k is a field. And if k weren’t commutative, it’d

still be a division ring. If you consider the other map x 7→ xa, then you

similarly get a left inverse for a. And the left and right inverse must be

the same since, if you had left inverse x and right inverse y so that xa = 1

and ay = 1, you get

x = x1 = xay = 1y = y

(b) Nope. If your field k is finite, then k and k× have different cardinalities,

so there’s no way that they’re isomorphic. Now if k is infinite, for the sake

of contradiction suppose you have a group isomorphism ψ : k×
∼−→ k. Note

that −1 has order two in k×, so in k

0 = ψ(1) = ψ
(
(−1)2

)
= 2ψ(−1) .

We can’t have both ψ(1) = 0 and ψ(−1) = 0, so 1 = −1 and chark = 2.

But this means 2x = 0 for all x ∈ k, which means ψ(x)2 = 1 for all x ∈ k.

But

ψ(x)2 = 1 =⇒ (ψ(x)− 1)
2

= 0 ,

which only has a single solution ψ(x) ∈ k×.

(c) This is Wedderburn’s little theorem.

5. For a set X let P(X) denote the set of a subsets of X. For A,B ∈ P(X) define

the operations AB := A∩B and A+B := (A∪B) \ (A∩B) (the symmetric difference

of A and B).

(a) Prove that P(X) is a commutative unital ring under these operations.

(b) What is the characteristic of this ring? Prove that every ring R with the property

that AA = A for all A ∈ R must have this characteristic.

(c) Prove that every finitely generated ideal of P(X) is principal.

(a) J

(b) J

(c) J

https://en.wikipedia.org/wiki/Wedderburn's_little_theorem


Mock Algebra Qualifying Examination, Fall 2019, Part b

Attempt any four, all questions are worth 10 points.

1. (a) Prove that every quotient of a divisible group is divisible.

(b) Let B be an abelian group. Prove that for any subgroup A of B, a homomorphism A to

Q/Z must extend to a homomorphism B to Q/Z.

(a) If an abelian group G is divisible, this means that regarding G as an Z-module, the

module homomorphism ϕn : G → G given by g 7→ ng for an integer n is surjective for

all n ∈ Z. Suppose Q is a quotient of G, and let the quotient map be π : G � Q. For

an arbitrary q ∈ Q, since π and ϕn are surjective, there will be some g ∈ G such that

πϕn(g) = q. But then considering the map ϕ̃n : Q→ Q, we have

ϕ̃n : π(g) 7→ nπ(g) = π(ng) = πϕn(g) = q ,

so ϕ̃n is surjective and Q is divisible.

(b) First note that for any r ∈ Q and n ∈ Z we have r
n 7→ n rn = r. So Q is divisible, and

so Q/Z is divisible by part (a). Then a divisible abelian group is injective as an Z-module,

and you use the universal property to get the map B → Q/Z.

0 A B

Q/Z

2. For a ring R, consider the commutative diagram

0 B C A 0

0 Y Z X 0

i1 π1

h

i2 π2

in the category of R-modules such that the top and bottom rows are exact.

(a) Suppose that there is a map g ∈ HomR(B, Y ) such that hi1 = i2g. Prove that there exists a

map f ∈ HomR(A,X) such that fπ1 = π2h.

(b) Now suppose that there exists some map f ∈ HomR(A,X) such that fπ1 = π2h. Does there

necessarily exist a map g ∈ HomR(B, Y ) such that hi1 = i2g?

(a) Take some a ∈ A. Since π1 is surjective, there exists some c ∈ C such that π1(c) = a.

Let’s tentatively define the map f : A→ X such that f(a) = π2h(c). Now we’ve made a

choice of c here. To prove our function f is well-defined, we must prove that the value of

f(a) doesn’t depend on our choice of c in the preimage of a. So suppose we have c′ ∈ C
such that π1(c′) = a. Notice that since c and c′ both map to a, c− c′ is in the kernel of

π1. Since the top row is exact, there is a unique b ∈ B such that i1(b) = c− c′. Following

b down via g, since hi1 = i2g we get i2g(b) = h(c − c′). Then since the bottom row is



exact, following π2 we get 0 = π2i2g(b) = π2h(c − c′) = π2h(c) − π2h(c′), which means

π2h(c) = π2h(c′), so our map f is well-defined.

(b) Take b ∈ B, and consider i1(b) ∈ C. Since the top row is exact and fπ1 = π2h, we

have 0 = π2i1(b), and so π2hi1(b) = 0. So since hi1(b) is in the kernel of π2 and since the

bottom row is exact, there exists y ∈ Y such that i2(y) = hi1(b), and this y is unique since

i2 is injective. Then we can define g : B → Y where g(b) = y. This map is well-defined,

and hi1 = i2g by construction.

3. Let V be a finite dimensional vector space over C, and take ϕ in EndC(V ).

(a) Prove that ϕ defines a left C[x]-module structure on V where, for f ∈ C[x] and v ∈ V ,

f(ϕ) ∈ EndC(V ) and f.v :=
(
f(ϕ)

)
(v).

(b) We say a subspace W ⊂ V is ϕ-invariant if ϕ(W ) ⊂ W . Prove that W is ϕ-invariant if

and only if W is a C[x]-submodule of V under the action inducted by ϕ. Furthermore prove that

Vϕ(v), the smallest ϕ-invariant subspace of V containing v, is the cyclic submodule C[x]v.

(a) To make the notation cleaner, let fϕ denote f(ϕ). To verify that this does give us a

C[x]-module structure, we need to verify that for f, g ∈ C[x] and v,w ∈ V :

• (f + g).v = (f + g)ϕ(v) = fϕ(v) + gϕ(v) = f.v + g.v.

• (fg).v = (fg)ϕ(v) = (fϕ(v))(gϕ(v)) = (f.v)(g.v).

• f.(v + w) = fϕ(v + w) = fϕ(v) + fϕ(w) = f.v + f.w.

(b) If W is a C[x]-submodule of V under the action induced by ϕ, then for any w ∈W
we can take the polynomial x ∈ C[x] and see that x.w = xϕ(w) = ϕ(w) must be in W .

Conversely, if ϕ(w) ∈W for all w ∈W , then inductively ϕn(w) ∈W for any positive

integer n. Furthermore since W is a vector subspace of V , then it is closed under addition

and scalar multiplication by elements of C. This means that for any polynomial znx
n +

· · · + z1x + z0 ∈ C[x], the vector znϕ
n(w) + · · · + z1ϕ(w) + z0w ∈ W , so W is closed

under the action of C[x] and will be a C[x]-submodule of V .

4. Consider the matrices

M =


0 0 0 5

0 0 2 0

0 2 0 0

1 0 0 0

 N =


0 0 0 2

0 0 5 0

0 2 0 0

1 0 0 0

 .

(a) What are the invariant factor and elementary divisor decompositions of the Q[x]-module

corresponding to M? What are these decompositions if you consider the corresponding C[x]-

module instead? What about the decomposition as a F 5[x]-module where F 5 is the field with five

elements?

(b) What is the Jordan canonical form of M considered as a matrix over C? What is the Jordan

canonical form over F 5, the algebraic closure of F 5?

(c) Determine, with proof, whether or not the matrices M and N are equivalent over C. Are

M and N similar over C? Are M and N similar over F 5?



(a) Calculating the characteristic polynomial of M ,

det


−λ 0 0 5

0 −λ 2 0

0 2 −λ 0

1 0 0 −λ

 = −λ
(
− λ(λ2−4)

)
− 1
(
5(λ2 − 4)

)
= (λ2 − 5)(λ2 − 4)

= (λ2 − 5)(λ+ 2)(λ− 2)

Since these irreducible factors of the characteristic polynomial are distinct, M will have

just a single invariant factor over Q, f = (λ2 − 5)(λ+ 2)(λ− 2), and M will have three

elementary divisors (λ2 − 5), (λ+ 2), and (λ− 2). This corresponds to the decomposition

as a Q[x]-module

Q4 ∼= Q[x]�(f)
∼= Q[x]�(x2 − 5) ⊕

Q[x]�(x+ 2) ⊕
Q[x]�(x− 2) .

As a C[x]-module, that (x2 − 5) elementary divisor will factor as
(
x+
√

5
) (
x−
√

5
)
, but

these factors are distinct, so you still have a single invariant factor f , but now you have

four elementary divisors

C4 ∼= C[x]�(
x+
√

5
) ⊕ C[x]�(

x−
√

5
) ⊕ C[x]�(x+ 2) ⊕

C[x]�(x− 2) .

Now over F 5, 5 = 0, and our characteristic polynomial is now x2(x+ 2)(x− 2). Now we

have duplicate factors and we have to ask, is x and elementary divisor twice, or is the

elementary divisor x2? Ie. does x2 divide the minimal polynomial? (remember the minimal

polynomial is the highest invariant factor) To figure this out, we can manually compute

the minimal polynomial of M over F 5 to see if it’s x2(x+ 2)(x− 2) or x(x+ 2)(x− 2).

Doing so, we find that x2(x+ 2)(x− 2) is the minimal polynomial. So we still have a single

invariant factor, but now there are three elementary divisors.

F 4
5
∼= F 5[x]�(x)2 ⊕

F 5[x]�(x+ 2) ⊕
F 5[x]�(x− 2) .

(b) Looking at its C[x]-module decomposition, the Jordan canonical form of M over C

will be

M ∼


√

5 0 0 0

0 −
√

5 0 0

0 0 2 0

0 0 0 −2

 .

Next looking at F 5[x]-module decomposition of M , luckily the characteristic polynomial

factored completely over F 5[x], and we can see that the Jordan canonical form will be

M ∼


0 1 0 0

0 0 0 0

0 0 2 0

0 0 0 −2

 .



(c) Note that for an educated choice of invertible P and Q we have

PMQ =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




0 0 0 5

0 0 2 0

0 2 0 0

1 0 0 0




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =


0 0 0 2

0 0 5 0

0 2 0 0

1 0 0 0

 = N ,

so yes, M and N are equivalent over C. They are certainly not similar though. Doing a brisk

computation we see that the characteristic polynomial of N is (x2 − 2)(x2 − 10); similar

matrices must have the same characteristic polynomial. And M and N are similarly not

similar over F 5, having characteristic polynomials x2(x2 + 1) and x2(x2 + 3) respectively.

6. Recall that a functor is exact if it takes short exact sequences to short exact sequences.

(a) Prove that if F is a finite dimensional free R-module, then −⊗R F is an exact functor.

(b) Prove that if P is a finitely generated projective R-module, then −⊗RP is an exact functor.

(c) (Challenge) Prove that if R is a ring P(X) like in Question 5, Part A of this exam, then

the functor −⊗RM is exact for any R-module M .

(a) J

(b) J

(c) J



Mock Algebra Qualifier 2019 - Part C

Do 4 out of the 5 problems.

(1) Let F/k be a normal extension of fields and let K0 be the maximal separable

subextension of k. Show that K0/k is normal.

Solution by Derek Lowenberg:

To show the extension K0/k is normal, consider a polynomial f(x) ∈
k[x] which is irreducible over k and suppose that it has a root a ∈ K0 but

that it does not split into linear factors in K0. Since K/k is normal, there

is some b ∈ K that is a root of f(x) where b /∈ K0 hence b is inseparable.

That is, the minimal polynomial g(x) ∈ k[x] of b has a multiple root.

Now g(x) divides f(x), which contradicts the irreducibility of f(x) unless

f(x) = ug(x) for some u ∈ k, hence f(x) also has a multiple root. Let

h(x) ∈ k[x] be the minimal polynomial of a ∈ K0. Then h(x) is separable,

that is, has no multiple roots. However, since f(x) is irreducible and h(x)

divides it, we conclude that f(x) = vh(x) for some v ∈ k and hence f(x)

also has no multiple roots. Thus we arrive at a contradiction, showing

that no such f(x) exists. That is, every polynomial irreducible over k

either has no roots in K0 or it has all its roots in K0.

(2) Let F be a field and p(x) ∈ F [x] an irreducible polynomial.

(a) Prove that there exists a field extension K of F in which p(x) has a root.

(b) Determine the dimension of K as a vector space over F and exhibit a

vector space basis for K.

(c) If θ ∈ K denotes a root of p(x), express θ−1 in terms of the basis found in

part (b).

(d) Suppose p(x) = x3 + 9x+ 6. Show p(x) is irreducible over Q. If θ is a root

of p(x), compute the inverse of (1 + θ) ∈ Q(θ).

If p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 is irreducible, then K = F [x]/(p)

will contain a root of p. Namely, that root of p will be the image of x

under the quotient map F [x]→ F [x]/(p).

Now what K = F [x]/(p) a polynomial ring with a relation slapped on

it. Initially F [x] has basis {1, x, x2, . . . , xn, . . . } as an infinite dimensional

vector space over F . But when you mod out by p you are declaring



that xn = −an−1x
n−1 − · · · − a1x − a0. Ie, that any polynomial with

terms of degree n or higher can be rewritten in F [x]/(p) with terms of

degree less than n. So a possible basis of F [x]/(p) as a F vector space is

{1, x, . . . , xn−1}.

Now if θ is a root of p we have p(θ) = θn +an−1θ
n−1 + · · ·+a1θ+a0 = 0.

We can rearrange this equation to get an inverse for θ:

θn + an−1θ
n−1 + · · ·+ a1θ + a0 = 0

=⇒ θ
(
θn−1 + an−1θ

n−2 + · · ·+ a1
)

= −a0

=⇒ θ

(
− 1

a0
θn−1 − an−1

a0
θn−2 + · · · − a1

a0

)
= 1

If we specify p(x) = x3 + 9x+ 6 over Q, we can see that p is irreducible

by the Schönemann–Eisenstein theorem considering the prime 3. Finding

an inverse for (1 + θ) in K is a bit cumbersome, but do-able. Since

{1, x, x2} will be a basis for K over F , the inverse (1 + θ) must look like

(aθ2 + bθ + c) for some a, b, c ∈ Q (remember that x IS θ). Writing out

(1 + θ)(aθ2 + bθ+ c) = 1, multiplying those two polynomials together, and

remembering that θ3 = −9θ − 6, we arrive at a system of equations
−6b+ c = 1

−9a+ b+ c = 0

a+ b = 0

which we may solve to find a = −b = 1
4
, and c = 5

2
. So our inverse to

(1 + θ) is 1
4
θ2 − 1

4
θ + 5

2
.

(3) Let f = x5−45x3+35x2+15 and g = x11−11, both considered as polynomials

in Q[x]. Suppose α ∈ C is a root of f . Prove or disprove: Q(α) contains a root

of g.

J

(4) Given a tower of fields F → E → K, prove or disprove by providing a

counterexample:

(a) If K is normal over F , then K is normal over E.

(b) If K is normal over E and E is normal over F , then K is normal over F .



(c) If K is separable over F , then K is separable over E and E is separable

over F .

(a) J

(b) J

(c) J

(5) Let p be a prime number and K = F p6 be a field with p6 elements.

(a) Given an element of K, what are the possible degrees of it’s minimal

polynomial over F p?

(b) For each possible degree, how many elements in K have a minimal polyno-

mial with that degree?

(a) J

(b) J


