MOCK QUALIFYING EXAMINATION, ALGEBRA, PART A, 2019

September n^4 , 2019

Solve any four questions; indicate which ones are supposed to be graded. You must show all work and justify all statements either by referring to an appropriate theorem or by providing a full solution.

1. For a group G, let G' denote its commutator subgroup.

- (a) Prove that G' is normal in G.
- (b) Show that for any abelian group A, a homomorphism $G \to A$ must factor through the quotient G/G'.
- (c) Let $G^{(1)} = G', G^{(2)} = (G')'$, and in general $G^{(n)} = (G^{(n-1)})'$. Give an example of a group G such that $G^{(n)} \neq \langle e \rangle$ for any $n \in \mathbb{N}$.

2. Classify all groups of order 169.

3. An integral domain R is integrally closed if for any monic polynomial f over R, every root of f in Frac(R) is actually in R.

- (a) Prove that a unique factorization domain is integrally closed.
- (b) Give an example of a ring that is *not* integrally closed.

4.

- (a) Prove that a finite integral domain is a field. Is it true that a finite integral ring (non-commutative) is a division ring?
- (b) Does there exist a field such that its additive group structure and its multiplicative group of units are isomorphic?
- (c) (CHALLENGE) Prove that every finite division ring is a field.

5. For a set X let $\mathcal{P}(X)$ denote the set of a subsets of X. For $A, B \in \mathcal{P}(X)$ define the operations $AB := A \cap B$ and $A + B := (A \cup B) \setminus (A \cap B)$ (the symmetric difference of A and B).

- (a) Prove that $\mathcal{P}(X)$ is a commutative unital ring under these operations.
- (b) What is the characteristic of this ring? Prove that every ring R with the property that AA = A for all $A \in R$ must have this characteristic.
- (c) Prove that every finitely generated ideal of $\mathcal{P}(X)$ is principal.

Attempt any four, all questions are worth 10 points.

1. (a) Prove that every quotient of a divisible group is divisible.

(b) Let *B* be an abelian group. Prove that for any subgroup *A* of *B*, a homomorphism *A* to \mathbf{Q}/\mathbf{Z} must extend to a homomorphism *B* to \mathbf{Q}/\mathbf{Z} .

2. For a ring R, consider the commutative diagram

in the category of R-modules such that the top and bottom rows are exact.

(a) Suppose that there is a map $g \in \text{Hom}_R(B, Y)$ such that $hi_1 = i_2 g$. Prove that there exists a map $f \in \text{Hom}_R(A, X)$ such that $f\pi_1 = \pi_2 h$.

(b) Now suppose that there exists some map $f \in \text{Hom}_R(A, X)$ such that $f\pi_1 = \pi_2 h$. Does there necessarily exist a map $g \in \text{Hom}_R(B, Y)$ such that $hi_1 = i_2 g$?

3. Let V be a finite dimensional vector space over \mathbf{C} , and take φ in $\operatorname{End}_{\mathbf{C}}(V)$.

(a) Prove that φ defines a left $\mathbf{C}[x]$ -module structure on V where, for $f \in \mathbf{C}[x]$ and $\boldsymbol{v} \in V$, $f(\varphi) \in \operatorname{End}_{\mathbf{C}}(V)$ and $f.\boldsymbol{v} := (f(\varphi))(\boldsymbol{v})$.

(b) We say a subspace $W \subset V$ is φ -invariant if $\varphi(W) \subset W$. Prove that W is φ -invariant if and only if W is a $\mathbb{C}[x]$ -submodule of V under the action inducted by φ . Furthermore prove that $V_{\varphi}(\boldsymbol{v})$, the smallest φ -invariant subspace of V containing \boldsymbol{v} , is the cyclic submodule $\mathbb{C}[x]\boldsymbol{v}$.

4. Consider the matrices

$$M = \begin{pmatrix} 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \qquad N = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 5 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

(a) What are the invariant factor and elementary divisor decompositions of the $\mathbf{Q}[x]$ -module corresponding to M? What are these decompositions if you consider the corresponding $\mathbf{C}[x]$ -module instead? What about the decomposition as a $\mathbf{F}_5[x]$ -module where \mathbf{F}_5 is the field with five elements?

(b) What is the Jordan canonical form of M considered as a matrix over **C**? What is the Jordan canonical form over $\overline{F_5}$, the algebraic closure of F_5 ?

(c) Determine, with proof, whether or not the matrices M and N are equivalent over \mathbf{C} . Are M and N similar over \mathbf{C} ? Are M and N similar over \mathbf{F}_5 ?

6. Recall that a functor is exact if it takes short exact sequences to short exact sequences.

(a) Prove that if F is a finite dimensional free R-module, then $-\otimes_R F$ is an exact functor.

(b) Prove that if P is a finitely generated projective R-module, then $-\otimes_R P$ is an exact functor.

(c) (CHALLENGE) Prove that if R is a ring $\mathcal{P}(X)$ like in Question 5, Part A of this exam, then the functor $-\otimes_R M$ is exact for any R-module M.

Mock Algebra Qualifier 2019 - Part C

Do 4 out of the 5 problems.

- (1) Let F/k be a normal extension of fields and let K_0 be the maximal separable subextension of k. Show that K_0/k is normal.
- (2) Let F be a field and $p(x) \in F[x]$ an irreducible polynomial.
 - (a) Prove that there exists a field extension K of F in which p(x) has a root.
 - (b) Determine the dimension of K as a vector space over F and exhibit a vector space basis for K.
 - (c) If $\theta \in K$ denotes a root of p(x), express θ^{-1} in terms of the basis found in part (b).
 - (d) Suppose $p(x) = x^3 + 9x + 6$. Show p(x) is irreducible over **Q**. If θ is a root of p(x), compute the inverse of $(1 + \theta) \in \mathbf{Q}(\theta)$.
- (3) Let $f = x^5 45x^3 + 35x^2 + 15$ and $g = x^{11} 11$, both considered as polynomials in $\mathbf{Q}[x]$. Suppose $\alpha \in \mathbf{C}$ is a root of f. Prove or disprove: $\mathbf{Q}(\alpha)$ contains a root of g.
- (4) Given a tower of fields $F \to E \to K$, prove or disprove by providing a counterexample:
 - (a) If K is normal over F, then K is normal over E.
 - (b) If K is normal over E and E is normal over F, then K is normal over F.
 - (c) If K is separable over F, then K is separable over E and E is separable over F.
- (5) Let p be a prime number and $K = \mathbf{F}_{p^6}$ be a field with p^6 elements.
 - (a) Given an element of K, what are the possible degrees of it's minimal polynomial over \mathbf{F}_p ?
 - (b) For each possible degree, how many elements in K have a minimal polynomial with that degree?