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Abstract

In this paper we will analysis and implement the parallel LU-decomposition
method for six different data layouts - column block, row block, column
cyclic, row cyclic, blocked grid, and scattered grid. We use the LogP
model to analysis the running time of algorithms since it’s not depend on
the structure of the network and implement the algorithms using MPI.

1 Introduction

Solving a set of simultaneous linear equations is a fundamental problem that
occures in diverse applications and is of central importance in numerical analysis.
A linear system can be expressed as a matrix equation in which each matrix
or vector element belongs to a field, typically the real numbers R. In principle,
there are two groups of methods for the solutions of linear systems:

1. Direct methods or elemination methods, the exact solution, in principle,
is determined through a finite number of arithmetic operations (in real
arithmetic leaving aside the influence of round-off errors).

2. Iterative methods generate a sequence of approximations to the solution
by repeating the application of the same computational procedure at each
step of the iteration.

A key consideration for the selection of a solution method for a linear system
is its structure. Roughly speaking, direct methods are best for full (dense)
matrices, whereas iterative methods are best for very large and sparse matrices.
We start with a set of linear equations in n unknowns 1,2, ..., ZTy:

an® +apTy + ...+ anpr, = b,
21Ty + A2T2 + ...+ A2, T, = by,
Ap1T1 + Q2T + ...+ AnTrn = by



We can write the equations as a matrix-vector equation by letting A =
(ai;), 2 = (x;), and = (b;), as

Az =9 (1)

If A is nonsingular, z = A7!b is the unique solution vector.

GGaussian elemination is the classical procedure for solving linear equations.
The very basic idea of the Gaussian elimination method is to use the first equa-
tion to eliminate the first unknown form the last n — 1 equations, then use
the new second equation to eliminate the second unknown form the last n — 2
equations, etc. This way, by n — 1 such eliminations the given linear system is
transformed into an equivalent linear system that is of triangular form.

bll.’lfl +b12:'172 +...+b1”.’17v,,, =21
bapwy + ...+ bapxy = 22

bn—fl,n‘l-'I;nAl + bnnIn = Zpel
bnnxn = Zn

The triangular system can be solved recursively by first obtaining x, from
the last equation, then obtaining z,, ; from the second to last equation, etc.
This procedure is known as backward substitution,

Tp = Zn/bnny

1 n
T = “'T(Zi_ Z birxr), i=n—-1n-2,...,1
bii k=—it1

Upper Triangularizing:

Assume that A is an n xn matrix. Gauss transformations My, ..., M, 1 can
usually be found such that M,, ;... MM A = U is upper triangular. Observe
that during the k" step:

1. We are confronted with a matrix A% = M._,,... M A that is upper
triangular in columns 1 to k& — 1.

2. The multipliers in M} are based on the entries in column k, form rows
k+1 to n of A%~ In particular, we need ag;;"l) # 0 to proceed.

Noting that complete upper triangularization is achieved after (n-1) steps. It is
easy to check that

A=LU

where, L = M. M.
Definition: A factorization of a matrix A into a product

A=LU



of a lower triangular matrix L and upper triangular matrix U is called an LU
decomposition of A.

Observe that the decomposition is not unique. We will make the choice,
L;; = 1. The solution to the original Az = b problem is then found by solving
triangular systems:

Ly=band Ux=y

The LU decomposition is a “high level” algebraic description of Gaussion
elimination.

We wish to point out that not every nonsingular matrix allows an LU de-
composition. For example,

0 1
(1s)
has no LU decomposition.

However, since Gaussian elimination with row reordering always works, for
each nonsingular matrix there is a permutation matix P such that PA has an
LU decomposition. A permutation matriz is just the identity with its rows
re-ordered.

In order to control the influence of roundoff errors we want to keep the
(k—1)

z k—1 k—1 . o
quotient al y ) / agﬁ & ) small; i.e. we want to have large pivot element a,,

k
= g 6.z k-1 . . .
Therefor, instead of only requiring aik ) # 0, in practice, either complete

pwoting or partial row or column pivoting is employed. For complete pivoting,
both the rows and columns are reorderd such that aiﬁf” has maximum absolute
value in the (n—k+1) x (n —m+1) matrix remaining. For row(column) pivoting
the rows(columns) are reorderd such that ag;;_l) has maximum absolute value in
the (k— 1) column(row). In this paper, we are only using partial row pivoting.

2 Computing LU-decomposition

We wish to construct an LU decomposition using recursive strategy. If n=1,
then L = I, and U = A. For n > 1, we break A into four blocks:

ann | G12..a1n T
e —_ (€351 w
A= an1 | as9...Avp = f

v A

(ny ] Ap2...Apn

( 1 0 ) ai 1U1

e I vw
@11 n—1 0 A i

Where v is a size (n-1) column vector, w” is a size (n-1) row vector, and A’
is an (n — 1) x (n — 1) matrix. vw” formed by taking outer product of v and
w. A — % is called schur complement of A with respect to a;;. We now
recursively find an LU decomposition of the schur complement. Let us say that

a5 . . . - .
Al =28 = L'U’. Where L' is unit lower-triangular and U’ is upper triangular.

— L 0 ayp wh O\ 1 0 o wl )
4= ( ﬁ Lya ) ( 0o L'u ) # I 0 U = LU



LU-Decomposition Algorithm:
For k=1 to n-1

Ukk = Gk
For i=k+1 ton
Uy = W ug; holds wil
— Qi 19y
b = aLTi L;x. holds v;

For i=k+1 to n
For j=k+1ton
A5 = Qj5 — l.ikukj

The six permutation of the indices i, j, and k give six different organiztions
of LU-decomposition, and we call these the “ijk”forms. The kij and kji forms
are wmmediate update algorithms in that the elements of A are updated when
the necessary multipliers are known. This is in opposition ot the other forms,
which are delayed update algorithms

Generally, in solving a system of linear equations, Az = b, we must pivot
on off-diagonal elements of A to avoid dividing by 0. Dividing by any small
value can result in mumerical instabilies in the computation. Therefore we try
to pivot on a large value.

LU-Decomposition Algorithm with pivoting:

For k=1 to n-1
choose [ so that |a| = maxp<i<n |air|, swap rows [ and k
For i=k-+1 ton

. — Ak
Qi = akk

For j=k+1 ton
Ajj = Q45 — Ak ALy
Here L and U are constructed by overwriting 4. The parallelism in the
above algorithm is trivial. At step k all (n —k)? scalar updates are independent.
The pivoting, swapping, scaling, and updating steps could be parallelized with
appropriate data layout.

3 LogP model

LogP is a model of a distributed-memory multiprocessor in which processors
communicate by point-to-point messages. The model specifies the performance
characteristics of the interconnection network, without describing the structure
of the network. The main parameters of the model are:

L: an upper bound on the latency, or delay, incurred in communicating
a message containing a numerical value from its source module to its target
module.

o: the overhead, defined as the length of time that a processor is engaged in
the transmission or reception of each message; during this time, the processor
can not perform arithmetic operations.

g: the gap, defined as the minimum time interval between consecutive mes-
sage transmissions or consecutive message receptions a message.



P: the number of processor/memory modules

Therefore, on the LogP model, sending a fixed sized message from one pro-
cessor to another processor will require 20 + L time steps. All our parallel
LU-decomposition algorithms will be analyzed on LogP.

4 Running time analysis on Sequential Algorithms
based on LogP model
Sequential non-pivoting:

In non-pivoting sequential LU-decomposition, during kth iteration: scaling
takes (n — k) arithmetric operations and updating takes (n — k)* x 2 arithmetric

2 = - m -1 . 9 -
operations. So the total running time, T} = Z:l (n—k)+2(n-— k)“) = ;'nﬁ* -
1,2 _n '

3 —'g

Sequential pivoting:

In pivoting seqntial LU-decomposition, during kth iteration: pivoting takes
n—k—1; swapping rows takes n; scaling takes (n— k) ; updating takes 2(n —k)?
operations. So the total running time, T, = ?;11 (n—k-=1)4+n+(n-k)+
2m—k)P =2n’ +n® - +1

From the analysis on sequential LU-decomosition algorithm with pivoting
and without pivoting, we found that the pivot and swap processing did not
change the asymptotic growth rate of the running time. We also notice that
the computation time is to the power three of the matrix size. Due to the huge
amount of computation time when the size of matrix increase, parallel LU-
decomposition algorithms were impelemented in order to achieve more efficient
running time.

5 Running time analysis on Parallel Algorithms
for Different Data Layouts based on LogP model

We will analysis the running time for the Parallel pivoting LU-decomposition
algorithm on six different data layout. They are column block, column cyclic,
row block, row cyclic, blocked grid, and scattered grid data layouts. Our goal
is to show the influence of different datalayout to the same algorithm.

5.1 Column and Row Data Layouts

Column Block Data Layout

In column block data layout, contiguous n/P columns are allocated to each
processor. Finding absolute maximum element of the column is a local oper-
ation. However, after the maxinum element is found or it is found that the
matrix is singlar matrix, it needs to be broadcasted related information to all
the other processors. All the processors will then perform the swap operation
or terminate the algorithm based on the information it recieved. When current



dominate processor Py finished the scaling phase, it will broadcast the result to
all the processor I (i > k). Then, P; (i > k) will perform the update phase
in parallel. We can find that F; will be idel after ¢th iteration. This makes the
parallel algorithm is not so effient because the load balancing is poor.

During the kth iteration: finding maximum element takes (n — k — 1) ;
broadcast swap information takes L + g(P> — 2) + 20; swapping rows takes ;
scaling phase takes (n — k) ; broadcast multiplier takes (n — k — 1)g + (P —
1‘%] — 1)(L + 20); updating phase takes 2% (n — k) operations. So the total

running time, Ty = S i i —k—1+ L+ g(P - 2) + 20 + = (= k) F{n =
k—1)g+ (P-[2] - 1)(L+20) + &(n—k)] = '}—f + (14 2)n* + O(n)

Row Block Data Layout

In row block data layout, contiguous n/P rows are allocated to each pro-
cessor . Finding max element of the column is not a local operation anymore.
Assume processor Py, is the current dominate processor, then for each proces-
sor P; (i > k), it will first find the local maxinum number, which takes 5 — 1
steps. Then, by using tournament tree, we can get the maxinum number in
log(P — [ %1 — 1) x (L +20 +1). After broadcasting pivoting related infor-
mation to all the other processors, the processor who contains the maxninum
number will swap the mazth row with current dominate processor with kth row.
After pivoting, current dominate processor Py, will broadcast its current digonal
element to all the processor P; (i > k) to let them perform the division phase
in parallel. Finally,these processor need to broadcast the division result to all
the processor P; (i > k). Then, P; (i > k ) will perform the update phase in
parallel. Same as the column block, we can find that P; will also be idel after
ith loop. Thus, the row block data layout also makes the parallel algorithm not
so efficient.

During the kth iteration : finding maximum element takes 5 — 1+ log(F” —
[EP] —1) x (L +20+ 1) ; broadcast swap information takes ;L + g(P — 2) + 20;

n

swap rows takes 2[L + (n — 1)g+ 20] + n; broadcast matrix[k][k] takes L + g(P —

kPl _ 1) + 20; division phase takes Z ; broadcast division information takes
n S F

(n—k—-1)g+(P- [%1 —1)(L + 20); update phase takes 2% (n — k) operations.

So the total running time, Ty = Z:f[}—i —1+1log(P — [E£] — 1) x (L +

20+ 1)+ L+g(P-2)+20+2[L+(n—1)g+20]+n+ %+ (n—k—-1)g+(P—

['A-,I"| _ 1)(L + 20) + %(n = k)] = r;_j + (1 =f= 579 + }1‘5)71'2 + ()(Tl)

n

Column Cyclic Data Layout

In column cyclic data layout, finding max element of the column is a local
operation in current dominate processor. All the processors will then perform
the swap operation or terminate the algorithm based on the broadcasted max-
inum information it recieved. When current dominate processor P finished
the division phase, it will broadcast the result to all the processor P; (i > k).
Then, P; (i > k) will perform the update phase in parallel. We can notice that
since we assign the column cyclicly, the running time of this algorithm is more
efficient.



During the kth iteration : finding maximum element takes n —k — 1 ; broad-
cast swap information takes L+ g(P —2)+ 20; swap rows takes %; division phase

takes (n—k) ; broadcast division information takes (n—k—1)g+ (P —1)(L+20);

update phase takes Zﬂ

So the total running time, Ts = S p_n—k—1+ L+ g(P —2) + 20 + he

(n—K)fa+n—k—1g+(P—-1(L+20)+ JE— k) f,l )” +(1+Hn*+0(n).

operations.

Row Cyclic Data Layout

In row cyclic data layout, similar to the row block data layout, finding max
number of the column is not a local operation, either. Then, by using tourna-
ment tree, we can get the maxinum number in log(P — f%} —1)x (L+20+1).
After broadcasting pivot related information to all the other processors, the
processor who containg the maxninum number will swap the mazth row with
current dominate processor with kth row. After pivoting, current dominate
processor Py, will broadcast its current digonal element to all the processor P
(i > k) to let them perform the division phase in parallel. Finally,these proces-
sor need to broadcast the division result to all the processor P (i > k). Then,
P; (i > k) will perform the update phase in parallel. Similar to the column
cyclic data layout, it is also more effient.

During the kth iteration : find max element takes [ﬂ—"] —1+logP x(L+
20+ 1) ; broadcast swap information takes L + g(P — 2) + 20; swap rows takes
2[L + (n —1)g+ 20] + n; broadcast matrix[k][k] takes L + g(P — 2) + 20; division

hase takes [2=£] - ; broadcast division information takes (n — k — 1)g + (P —
p T g

1)(L + 20); update phaso takes 2[ 25 "] (n — k) operations.
So the total running time, T = Y1 [2 £ — 1 +1og P x (L +20+1) +
L+g(P-2)+20+2[L+ (n— 1)g +20]+n+ [5E +(n—k—1)g+ (P -

1)(L 4+ 20) + [5 k (n—k)=2 o —I—(l—}-J)n + O(n).

5.2 Grid Data Layouts

Blocked Grid Data Layout

In blocked grid data layout each processor is assigned n/+v/P x n/v/P sub-
matrix block of A is assigned to each processor. This assignment leads to a load
imbalance.

During the k' iteration the current dominate processor first has to get the
part of k' column from other processors and then finds the abslout maximum.
Tt then broadcast the this information to all other processors. If needed the
swapping may occur between coresponding processors. Then scaling and sending
appropriate partial rows and columns (multipliers) to corresponding processor
will happen. Finally all the active processors will update the submatrix.

Getting the part of the k" column from other processors will take L + 20 +
(P-2—- L"\/_J )g; finding maximum takes n—k—1; Sending pivoting information
takes [lgP)(L + 20) + ([lgP] — 1)g; swapping takes L + 20 + n/v/P; Sending
partial k" row and column (multipliers) for updating takes 4[L + 20+ (P —2 —

~1



|kvV/P/n])g+n/V/P]; updating takes 2(n/v/P xn//P). ““,'\';11 L+20+(P—2-
AP 1) g+ (n—k—1)+[IgP](L+20)+([lgP] = 1)g+L+20+n/VP+4[L+20+(P—
2= [kVP/n))g+n/VP+2(n/VPxn/VP) = B+ (5/VP+1/2-2/P)n’+0(n)
Scattered Grid Data Layout

In scattered grid data layout, each processor receives a submatrix of A de-
termined by a set of n./v/P rows and columns, and they are scattered VP apart.

During the k" iteration the current dominate processor first has to get the
part of k' column from other processors and then finds the abslout maximum.
It then broadcast the this information to all other processors. If needed the
swapping may occur between coresponding processors. Then scaling and sending
appropriate partial rows and columns (multipliers) to corresponding processor
will happen. Finally all the active processors will update the submatrix.

Getting the part of the k' column from other processors will take L + 20 +
(VP — 1)g; finding maximum takes n — k — 1; Send pivoting information takes
[lgP)(L+20)+ ([lgP] —1)g; swapping takes L+ 20+n/+/P; Sending partial k*"
row and column (multipliers) for updating takes 4[L + 20+ (VP —1)g+n/VP];
updating takes 2(n—k)2/P. 02 L+20+ (VP —-1)g+(n—k—1)+ [lgP)(L+
20)+([lgP]—=1)g+L+20+n/VP+4[L+20+(VP—-1)g+n/VP]+2(n—k)?/P) =
20 4 (1/2+2/VP + 1/P)n? + O(n)

6 Implementation and Result

We implement two sequential LU-decomposition and six parallel LU-decomosition
by the MPT on a seriel of SUN workstation. We ranomly creat matrix with 7
different sizes of 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64, 128 x 128, 256 x 256 on
1,2,4,8 processors. For some data layouts we even use the 16 virtual processors.
The following tables show the parallel running time divided by corresponding
serial running time of our implementation.

7 Conclusion

In this paper, we saw the effects from different type of data layout to the same
algorithm. The results we got both from theoretical analysis part and the im-
plementation part are more matched each other when the matrix size increases.
This shows that communication time dominates when the matrix size is small,
and computation time dominates when the matrix size is large. Thus, to solve
very large size matrix, parallel implementation is much better than the sequen-
tial implementation.

From the theoretical analysis results and our implementation results, we can
see that the different of data layout do effects the running time of the parallel
algorithm. While by using the LogP model, we successfully predict the running
time of the algorithm. Hence, the data layout should also be carefully chosen
since it takes an important role in parallel implemenation.
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matrix sizgP=2  |P=4 P=8 P=16
4*4 61.18 202.16
8*8 48.9 88.98 3021.9
1616 44.98 53.18| 3281.75| 30534.41
3232 14.72 23.08 469.95| 2576.09
128128 3.84 3.96 66.7 118.98
256256 1.89 1.87 34.67 56.8
Column Block Data Layout ) B
matrix size P=2 P=4 P=8 P=16
4*4 52.78 94.99
88 47.56 88.09| 6076.42
16*16 44.67 83.85| 6818.69| 15710.64
3232 21.01 32.67| 1156.09| 2454.09
128128 2.09 4.67 85.47 175.68
256256 1.75 2.67 33.07 68.38
Column Cyclic Data Layout
matrix size P=2 P=4 P=8 P=16
4*4 148.09 299.48
8°8 50.67 99.38] 2365.02] |
16*16 43.98 55.69| 3286.09| 30550.09
3232 14.9 25.08 479.03| 2557.98
128*128 2.94 2.64 64.46 119.45
256*256 1.91 0.67 33.79]  50.89
Row Block Data Layout
matrix size P=2 P=4 P=8 P=16
4*4 143.09 421.67
8"8 125.58 236.99| 10004.46 ]
16*16 111.57 159.49| 13062.34| 35965.05
32*32 61.99 91.56| 1441.67| 2007.09
128128 15.8 22.69 238.45| 346.63
256256 8.78 12.94 117.45 165.9
Row Cyclic data Layout

matrix size|P=4

44 | 10150

88 5430|

16*16 2l

3232 | a5t

128128 | 086]

256256 | 06|

Blocked Grid data Layout




