Analysis and Implementation of Parallel
LU-Decomposition with Different Data Layouts

E. E. Santos M. Muraleetharan

June 2000

Abstract
In this paper we will analysis and implement the parallel LU-decomposition
method for six different data layouts - column block, row block, column
cyclic, row cyclic, blocked grid, and scattered grid. We use the LogP
model to analysis the running time of algorithms since it’s not depend on
the structure of the network and implement the algorithms using MPI.

1 Introduction
Solving a set of simultaneous linear equations is a fundamental problem that
occurs in diverse applications and is of central importance in numerical analysis.
A linear system can be expressed as a matrix equation in which each matrix
or vector element belongs to a field, typically the real numbers \(\mathbb{R} \). In principle,
there are two groups of methods for the solutions of linear systems:

1. Direct methods or elimination methods, the exact solution, in principle,
is determined through a finite number of arithmetic operations (in real
arithmetic leaving aside the influence of round-off errors).

2. Iterative methods generate a sequence of approximations to the solution
by repeating the application of the same computational procedure at each
step of the iteration.

A key consideration for the selection of a solution method for a linear system
is its structure. Roughly speaking, direct methods are best for full (dense)
matrices, whereas iterative methods are best for very large and sparse matrices.
We start with a set of linear equations in \(n \) unknowns \(x_1, x_2, \ldots, x_n \):

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\
 \vdots \quad \vdots \\
 a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n.
\end{align*}
\]
We can write the equations as a matrix-vector equation by letting $A = (a_{ij}), x = (x_j)$, and $b = (b_i)$, as
\[Ax = b \tag{1} \]
If A is nonsingular, $x = A^{-1}b$ is the unique solution vector.

Gaussian elimination is the classical procedure for solving linear equations. The very basic idea of the Gaussian elimination method is to use the first equation to eliminate the first unknown form the last $n - 1$ equations, then use the new second equation to eliminate the second unknown form the last $n - 2$ equations, etc. This way, by $n - 1$ such eliminations the given linear system is transformed into an equivalent linear system that is of triangular form.

\[
\begin{align*}
 b_{11}x_1 + b_{12}x_2 + \ldots + b_{1n}x_n &= z_1 \\
 b_{22}x_2 + \ldots + b_{2n}x_n &= z_2 \\
 \vdots \\
 b_{n-1,n-1}x_{n-1} + b_{nn}x_n &= z_{n-1} \\
 b_{nn}x_n &= z_n
\end{align*}
\]

The triangular system can be solved recursively by first obtaining x_n from the last equation, then obtaining x_{n-1} from the second to last equation, etc. This procedure is known as backward substitution,

\[x_n = z_n / b_{nn}, \]

\[x_i = \frac{1}{b_{ii}}(z_i - \sum_{k=i+1}^{n} b_{ik}x_k), \quad i = n - 1, n - 2, \ldots, 1 \]

Upper Triangularizing:

Assume that A is an $n \times n$ matrix. Gauss transformations M_1, \ldots, M_{n-1} can usually be found such that $M_{n-1} \ldots M_2 M_1 A = U$ is upper triangular. Observe that during the k^{th} step:

1. We are confronted with a matrix $A^{(k-1)} = M_{k-1} \ldots M_1 A$ that is upper triangular in columns 1 to $k - 1$.

2. The multipliers in M_k are based on the entries in column k, form rows $k+1$ to n of $A^{(k-1)}$. In particular, we need $a_{kk}^{(k-1)} \neq 0$ to proceed.

Noting that complete upper triangularization is achieved after $(n-1)$ steps. It is easy to check that

\[A = LU \]

where, $L = M_1^{-1} \ldots M_{n-1}^{-1}$. **Definition:** A factorization of a matrix A into a product

\[A = LU \]
of a lower triangular matrix \(L \) and upper triangular matrix \(U \) is called an \(LU \) decomposition of \(A \).

Observe that the decomposition is not unique. We will make the choice, \(L_{ii} = 1 \). The solution to the original \(Ax = b \) problem is then found by solving triangular systems:

\[
Ly = b, \quad Ux = y
\]

The LU decomposition is a “high level” algebraic description of Gaussian elimination.

We wish to point out that not every nonsingular matrix allows an LU decomposition. For example,

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]

has no LU decomposition.

However, since Gaussian elimination with row reordering always works, for each nonsingular matrix there is a permutation matrix \(P \) such that \(PA \) has an LU decomposition. A permutation matrix is just the identity with its rows re-ordered.

In order to control the influence of roundoff errors we want to keep the quotient \(a_{kj}^{(k-1)}/a_{kk}^{(k-1)} \) small; i.e. we want to have large pivot element \(a_{kk}^{(k-1)} \). Therefore, instead of only requiring \(a_{kk}^{(k-1)} \neq 0 \), in practice, either complete pivoting or partial row or column pivoting is employed. For complete pivoting, both the rows and columns are reordered such that \(a_{kk}^{(k-1)} \) has maximum absolute value in the \((n-k+1)\times(n-m+1)\) matrix remaining. For row(column) pivoting the rows(columns) are reordered such that \(a_{kk}^{(k-1)} \) has maximum absolute value in the \((k-1)\)th column(row). In this paper, we are only using partial row pivoting.

2 Computing LU-decomposition

We wish to construct an LU decomposition using recursive strategy. If \(n=1 \), then \(L = I_1 \) and \(U = A \). For \(n > 1 \), we break \(A \) into four blocks:

\[
A = \begin{pmatrix}
a_{11} & a_{12} \ldots a_{1n} \\
a_{21} & a_{22} \ldots a_{2n} \\
a_{n1} & a_{n2} \ldots a_{nn}
\end{pmatrix} = \begin{pmatrix}
a_{11} & w^T \\
v^T & A'
\end{pmatrix}
\]

\[
= \begin{pmatrix}
1 & 0 \\
\frac{v}{a_{11}} & I_{n-1}
\end{pmatrix} \begin{pmatrix}
a_{11} & w^T - \frac{vw^T}{a_{11}} \\
0 & A' - \frac{vw^T}{a_{11}}
\end{pmatrix}
\]

Where \(v \) is a size \((n-1)\) column vector, \(w^T \) is a size \((n-1)\) row vector, and \(A' \) is an \((n-1)\times(n-1)\) matrix. \(vw^T \) formed by taking outer product of \(v \) and \(w \). \(A' - \frac{vw^T}{a_{11}} \) is called schur complement of \(A \) with respect to \(a_{11} \). We now recursively find an LU decomposition of the schur complement. Let us say that \(A' - \frac{vw^T}{a_{11}} = L'U' \). Where \(L' \) is unit lower-triangular and \(U' \) is upper triangular.

\[
A = \begin{pmatrix}
1 & 0 \\
\frac{v}{a_{11}} & I_{n-1}
\end{pmatrix} \begin{pmatrix}
a_{11} & w^T \\
0 & L'U'
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
\frac{v}{a_{11}} & L'
\end{pmatrix} \begin{pmatrix}
a_{11} & w^T \\
0 & U'
\end{pmatrix} = LU
\]

3
LU-Decomposition Algorithm:
For $k=1$ to $n-1$
\[u_{kk} = a_{kk} \]
For $i=k+1$ to n
\[u_{ki} = a_{ki} \quad u_{kj} \text{ holds } w_i^T \]
\[l_{ik} = \frac{a_{ik}}{a_{kk}} \quad l_{ik} \text{ holds } v_i \]
For $i=k+1$ to n
\[a_{ij} = a_{ij} - l_{ik}u_{kj} \]

The six permutation of the indices i, j, and k give six different organizations of LU-decomposition, and we call these the “ijk” forms. The kij and kji forms are immediate update algorithms in that the elements of A are updated when the necessary multipliers are known. This is in opposition to the other forms, which are delayed update algorithms.

Generally, in solving a system of linear equations, $Ax = b$, we must pivot on off-diagonal elements of A to avoid dividing by 0. Dividing by any small value can result in numerical instabilities in the computation. Therefore we try to pivot on a large value.

LU-Decomposition Algorithm with pivoting:
For $k=1$ to $n-1$

choose l so that $|a_{lk}| = \max_{k \leq l \leq n} |a_{lk}|$, swap rows l and k

For $i=k+1$ to n
\[a_{ik} = \frac{a_{ik}}{a_{kk}} \]
For $j=k+1$ to n
\[a_{ij} = a_{ij} - a_{ik}a_{kj} \]

Here L and U are constructed by overwriting A. The parallelism in the above algorithm is trivial. At step k all $(n-k)^2$ scalar updates are independent. The pivoting, swapping, scaling, and updating steps could be parallelized with appropriate data layout.

3 LogP model

LogP is a model of a distributed-memory multiprocessor in which processors communicate by point-to-point messages. The model specifies the performance characteristics of the interconnection network, without describing the structure of the network. The main parameters of the model are:

L: an upper bound on the latency, or delay, incurred in communicating a message containing a numerical value from its source module to its target module.

o: the overhead, defined as the length of time that a processor is engaged in the transmission or reception of each message; during this time, the processor cannot perform arithmetic operations.

g: the gap, defined as the minimum time interval between consecutive message transmissions or consecutive message receptions a message.
P: the number of processor/memory modules

Therefore, on the LogP model, sending a fixed sized message from one processor to another processor will require $2\sigma + L$ time steps. All our parallel LU-decomposition algorithms will be analyzed on LogP.

4 Running time analysis on Sequential Algorithms based on LogP model

Sequential non-pivoting:

In non-pivoting sequential LU-decomposition, during kth iteration: scaling takes $(n - k)$ arithmetic operations and updating takes $(n - k)^2 \times 2$ arithmetic operations. So the total running time, $T_1 = \sum_{k=1}^{n-1} (n - k) + 2(n - k)^2 = \frac{2}{3}n^3 - \frac{1}{2}n^2 - \frac{n}{6}$

Sequential pivoting:

In pivoting sequential LU-decomposition, during kth iteration: pivoting takes $n - k - 1$; swapping rows takes n; scaling takes $(n - k)$; updating takes $2(n - k)^2$ operations. So the total running time, $T_2 = \sum_{k=1}^{n-1} (n - k - 1) + n + (n - k) + 2(n - k)^2 = \frac{2}{3}n^3 + n^2 - \frac{8n}{3} + 1$

From the analysis on sequential LU-decomposition algorithm with pivoting and without pivoting, we found that the pivot and swap processing did not change the asymptotic growth rate of the running time. We also notice that the computation time is to the power three of the matrix size. Due to the huge amount of computation time when the size of matrix increase, parallel LU-decomposition algorithms were implemented in order to achieve more efficient running time.

5 Running time analysis on Parallel Algorithms for Different Data Layouts based on LogP model

We will analysis the running time for the Parallel pivoting LU-decomposition algorithm on six different data layout. They are column block, column cyclic, row block, row cyclic, blocked grid, and scattered grid data layouts. Our goal is to show the influence of different data layout to the same algorithm.

5.1 Column and Row Data Layouts

Column Block Data Layout

In column block data layout, contiguous n/P columns are allocated to each processor. Finding absolute maximum element of the column is a local operation. However, after the maximum element is found or it is found that the matrix is singular matrix, it needs to be broadcasted related information to all the other processors. All the processors will then perform the swap operation or terminate the algorithm based on the information it received. When current
dominate processor \(P_k \) finished the scaling phase, it will broadcast the result to all the processor \(P_i \) \((i > k)\). Then, \(P_i \) \((i \geq k)\) will perform the update phase in parallel. We can find that \(P_i \) will be idle after \(i \)th iteration. This makes the parallel algorithm is not so efficient because the load balancing is poor.

During the \(k \)th iteration: finding maximum element takes \((n - k - 1)\); broadcast swap information takes \(L + g(P - 2) + 2a\); swapping rows takes \(\frac{a}{p} \); scaling phase takes \((n - k)\); broadcast multiplier takes \((n - k - 1)g + (P - \lceil \frac{kL}{n} \rceil - 1)(L + 2a)\); updating phase takes \(\frac{g}{p}(n - k) \) operations. So the total running time, \(T_3 = \sum_{k=1}^{n-1} (n - k - 1 + L + g(P - 2) + 2a + \frac{a}{p} + (n - k) + (n - k - 1)g + (P - \lceil \frac{kL}{n} \rceil - 1)(L + 2a) + \frac{g}{p}(n - k)) = \frac{n^3}{p} + (1 + \frac{3}{2})n^2 + O(n) \)

Row Block Data Layout

In row block data layout, contiguous \(n/P \) rows are allocated to each processor. Finding max element of the column is not a local operation anymore. Assume processor \(P_k \) is the current dominate processor, then for each processor \(P_i \) \((i > k)\), it will first find the local maximum number, which takes \(\frac{a}{p} - 1 \) steps. Then, by using tournament tree, we can get the maximum number in \(\log(P - \lceil \frac{kL}{n} \rceil - 1) \times (L + 20 + 1) \). After broadcasting pivoting related information to all the other processors, the processor who contains the maximum number will swap the \(max \)th row with current dominate processor with \(k \)th row. After pivoting, current dominate processor \(P_k \) will broadcast its current digonal element to all the processor \(P_i \) \((i > k)\) to let them perform the division phase in parallel. Finally, these processor need to broadcast the division result to all the processor \(P_i \) \((i > k)\). Then, \(P_i \) \((i \geq k)\) will perform the update phase in parallel. Same as the column block, we can find that \(P_i \) will also be idle after \(i \)th loop. Thus, the row block data layout also makes the parallel algorithm not so efficient.

During the \(k \)th iteration: finding maximum element takes \(\frac{a}{p} - 1 + \log(P - \lceil \frac{kL}{n} \rceil - 1) \times (L + 20 + 1) \); broadcast swap information takes \(L + g(P - 2) + 2a \); swap rows takes \(2[L + (n - 1)g + 2a] + n \); broadcast matrix[k][k] takes \(L + g(P - \lceil \frac{kL}{n} \rceil - 1) + 2a \); division phase takes \(\frac{a}{p} \); broadcast division information takes \((n - k - 1)g + (P - \lceil \frac{kL}{n} \rceil - 1)(L + 2a) \); update phase takes \(\frac{g}{p}(n - k) \) operations.

So the total running time, \(T_4 = \sum_{k=1}^{n-1} \left(\frac{a}{p} - 1 + \log(P - \lceil \frac{kL}{n} \rceil - 1) \times (L + 20 + 1) + L + g(P - 2) + 2a + 2[L + (n - 1)g + 2a] + n + \frac{a}{p} + (n - k - 1)g + (P - \lceil \frac{kL}{n} \rceil - 1)(L + 2a) + \frac{g}{p}(n - k) \right) = \frac{n^3}{p} + (1 + \frac{3}{2})n^2 + O(n) \)

Column Cyclic Data Layout

In column cyclic data layout, finding max element of the column is a local operation in current dominate processor. All the processors will then perform the swap operation or terminate the algorithm based on the broadcasted maximum information it received. When current dominate processor \(P_k \) finished the division phase, it will broadcast the result to all the processor \(P_i \) \((i > k)\). Then, \(P_i \) \((i \geq k)\) will perform the update phase in parallel. We can notice that since we assign the column cyclicly, the running time of this algorithm is more efficient.
During the kth iteration: finding maximum element takes \(n - k - 1 \); broadcast swap information takes \(L + g(P - 2) + 2\alpha \); swap rows takes \(\frac{\alpha}{\eta} \); division phase takes \((n-k) \); broadcast division information takes \((n-k-1)g + (P-1)(L+2\alpha) \); update phase takes \(2\left(\frac{n-k}{P}\right)^2 \) operations.

So the total running time, \(T_5 = \sum_{k=1}^{n-1} n - k - 1 + L + g(P - 2) + 2\alpha + \frac{\alpha}{\eta} + (n-k)f_d + (n-k-1)g + (P-1)(L+2\alpha) + \frac{(n-k)^2}{P^2}f_d = \frac{2n^3}{3P} + (1 + \frac{5}{2})n^2 + O(n) \).

Row Cyclic Data Layout

In row cyclic data layout, similar to the row block data layout, finding maximum number of the column is not a local operation, either. Then, by using tournament tree, we can get the maximum number in \(\log(P - \left[\frac{kL}{n}\right]) - 1 \times (L + 2\alpha + 1) \).

After broadcasting pivot related information to all the other processors, the processor who contains the maximum number will swap the maxth row with current dominate processor with kth row. After pivoting, current dominate processor \(P_k \) will broadcast its current diagonal element to all the processor \(P_i \) (\(i > k \)) to let them perform the division phase in parallel. Finally, these processors need to broadcast the division result to all the processor \(P_i \) (\(i > k \)). Then, \(P_i \) (\(i > k \)) will perform the update phase in parallel. Similar to the column cyclic data layout, it is also more efficient.

During the kth iteration: find max element takes \(\left[\frac{n-k}{P}\right] - 1 + \log P \times (L + 20 + 1) \); broadcast swap information takes \(L + g(P - 2) + 2\alpha \); swap rows takes \(2[L + (n-1)g + 2\alpha] + n \); broadcast matrix \(k \) takes \(L + g(P - 2) + 2\alpha \); division phase takes \(\left[\frac{n-k}{P}\right] \); broadcast division information takes \((n-k-1)g + (P-1)(L+2\alpha) \); update phase takes \(2\left(\frac{n-k}{P}\right)^2(n-k) \) operations.

So the total running time, \(T_6 = \sum_{k=1}^{n-1} \left[\frac{n-k}{P}\right] - 1 + \log P \times (L + 20 + 1) + L + g(P - 2) + 2\alpha + 2[L + (n-1)g + 2\alpha] + n + \left[\frac{n-k}{P}\right] + (n-k-1)g + (P-1)(L+2\alpha) + \left[\frac{n-k}{P}\right](n-k) = \frac{2n^3}{3P} + (1 + \frac{5}{2})n^2 + O(n) \).

Grid Data Layout

Blocked Grid Data Layout

In blocked grid data layout each processor is assigned \(n/\sqrt{P} \times n/\sqrt{P} \) submatrix block of \(A \) is assigned to each processor. This assignment leads to a load imbalance.

During the kth iteration the current dominate processor first has to get the part of kth column from other processors and then finds the absolute maximum. It then broadcast the this information to all other processors. If needed the swapping may occur between corresponding processors. Then scaling and sending appropriate partial rows and columns (multipliers) to corresponding processor will happen. Finally all the active processors will update the submatrix.

Getting the part of the kth column from other processors will take \(L + 2\alpha + (P-2 - \left[\frac{\lfloor gP\rfloor}{n}\right])g \); finding maximum takes \(n-k-1 \); Sending pivoting information takes \(\lfloor gP \rfloor(L + 2\alpha) + (\lfloor gP \rfloor - 1)g \); swapping takes \(L + 2\alpha + n/\sqrt{P} \); Sending partial kth row and column (multipliers) for updating takes \(4[L + 2\alpha + (P-2 - \left[\frac{\lfloor gP\rfloor}{n}\right])g] \);
\[(k \sqrt{P}/n)g + n/\sqrt{P} \]; updating takes \(2(n/\sqrt{P} \times n/\sqrt{P}) \cdot \sum_{k=1}^{n-1} L + 2o + (P - 2 - \lfloor k \sqrt{P}/n \rfloor)g + (n-k-1) + [\lfloor gP \rfloor] (L+2o) + ([\lfloor gP \rfloor] - 1)g + L + 2o + n/\sqrt{P} + 4L + 2o + (P - 2 - \lfloor k \sqrt{P}/n \rfloor)g + n/\sqrt{P}] + 2(n/\sqrt{P} \times n/\sqrt{P}) = \frac{2n^3}{P} + (5/\sqrt{P} + 1/2/2/P)n^2 + O(n)\]

Scattered Grid Data Layout

In scattered grid data layout, each processor receives a submatrix of \(A \) determined by a set of \(n/\sqrt{P} \) rows and columns, and they are scattered \(\sqrt{P} \) apart.

During the \(k^{th} \) iteration the current dominate processor first has to get the part of \(k^{th} \) column from other processors and then finds the absolute maximum. It then broadcast the this information to all other processors. If needed the swapping may occur between corresponding processors. Then scaling and sending appropriate partial rows and columns (multipliers) to corresponding processor will happen. Finally all the active processors will update the submatrix.

Getting the part of the \(k^{th} \) column from other processors will take \(L + 2o + (\sqrt{P} - 1)g \); finding maximum takes \(n - k - 1 \); Send pivoting information takes \([\lfloor gP \rfloor] (L + 2o) + ([\lfloor gP \rfloor] - 1)g\); swapping takes \(L + 2o + n/\sqrt{P} \); Sending partial \(k^{th} \) row and column (multipliers) for updating takes \(4L + 2o + (\sqrt{P} - 1)g + n/\sqrt{P} \); updating takes \(2(n - k)^2 / P \). \(\sum_{k=1}^{n-1} L + 2o + (\sqrt{P} - 1)g + (n-k-1) + [\lfloor gP \rfloor] (L + 2o) + ([\lfloor gP \rfloor] - 1)g + L + 2o + n/\sqrt{P} + 4L + 2o + (\sqrt{P} - 1)g + n/\sqrt{P} + 2(n-k)^2 / P = \frac{2n^3}{P} + (1/2 + 2/2/2/P)n^2 + O(n)\)

6 Implementation and Result

We implement two sequential LU-decomposition and six parallel LU-decomposition by the MPI on a serial of SUN workstation. We randomly creat matrix with 7 different sizes of \(4 \times 4 \), \(8 \times 8 \), \(16 \times 16 \), \(32 \times 32 \), \(64 \times 64 \), \(128 \times 128 \), \(256 \times 256 \) on 1,2,4,8 processors. For some data layouts we even use the 16 virtual processors. The following tables show the parallel running time divided by corresponding serial running time of our implementation.

7 Conclusion

In this paper, we saw the effects from different type of data layout to the same algorithm. The results we got both from theoretical analysis part and the implementation part are more matched each other when the matrix size increases. This shows that communication time dominates when the matrix size is small, and computation time dominates when the matrix size is large. Thus, to solve very large size matrix, parallel implementation is much better than the sequential implementation.

From the theoretical analysis results and our implementation results, we can see that the different of data layout do effects the running time of the parallel algorithm. While by using the LogP model, we successfully predict the running time of the algorithm. Hence, the data layout should also be carefully chosen since it takes an important role in parallel implementation.
References

<table>
<thead>
<tr>
<th>matrix size</th>
<th>P=2</th>
<th>P=4</th>
<th>P=8</th>
<th>P=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4*4</td>
<td>61.18</td>
<td>202.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8*8</td>
<td>48.9</td>
<td>88.98</td>
<td>3021.9</td>
<td></td>
</tr>
<tr>
<td>16*16</td>
<td>44.98</td>
<td>53.18</td>
<td>3281.75</td>
<td>30534.41</td>
</tr>
<tr>
<td>32*32</td>
<td>14.72</td>
<td>23.08</td>
<td>469.95</td>
<td>2576.09</td>
</tr>
<tr>
<td>128*128</td>
<td>3.84</td>
<td>3.96</td>
<td>66.7</td>
<td>118.98</td>
</tr>
<tr>
<td>256*256</td>
<td>1.89</td>
<td>1.87</td>
<td>34.67</td>
<td>56.8</td>
</tr>
</tbody>
</table>

Column Block Data Layout

<table>
<thead>
<tr>
<th>matrix size</th>
<th>P=2</th>
<th>P=4</th>
<th>P=8</th>
<th>P=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4*4</td>
<td>52.78</td>
<td>94.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8*8</td>
<td>47.56</td>
<td>88.09</td>
<td>6076.42</td>
<td></td>
</tr>
<tr>
<td>16*16</td>
<td>44.67</td>
<td>83.85</td>
<td>6818.69</td>
<td>15710.64</td>
</tr>
<tr>
<td>32*32</td>
<td>21.01</td>
<td>32.67</td>
<td>1156.09</td>
<td>2454.09</td>
</tr>
<tr>
<td>128*128</td>
<td>2.09</td>
<td>4.67</td>
<td>85.47</td>
<td>175.68</td>
</tr>
<tr>
<td>256*256</td>
<td>1.75</td>
<td>2.67</td>
<td>33.07</td>
<td>68.38</td>
</tr>
</tbody>
</table>

Column Cyclic Data Layout

<table>
<thead>
<tr>
<th>matrix size</th>
<th>P=2</th>
<th>P=4</th>
<th>P=8</th>
<th>P=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4*4</td>
<td>148.09</td>
<td>299.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8*8</td>
<td>50.67</td>
<td>99.38</td>
<td>2365.02</td>
<td></td>
</tr>
<tr>
<td>16*16</td>
<td>43.98</td>
<td>55.69</td>
<td>3286.09</td>
<td>30550.09</td>
</tr>
<tr>
<td>32*32</td>
<td>14.9</td>
<td>25.08</td>
<td>479.03</td>
<td>2557.98</td>
</tr>
<tr>
<td>128*128</td>
<td>2.94</td>
<td>2.64</td>
<td>64.46</td>
<td>119.45</td>
</tr>
<tr>
<td>256*256</td>
<td>1.91</td>
<td>0.67</td>
<td>33.79</td>
<td>50.89</td>
</tr>
</tbody>
</table>

Row Block Data Layout

<table>
<thead>
<tr>
<th>matrix size</th>
<th>P=2</th>
<th>P=4</th>
<th>P=8</th>
<th>P=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4*4</td>
<td>143.09</td>
<td>421.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8*8</td>
<td>125.58</td>
<td>236.99</td>
<td>10004.46</td>
<td></td>
</tr>
<tr>
<td>16*16</td>
<td>111.57</td>
<td>159.49</td>
<td>13062.34</td>
<td>35965.05</td>
</tr>
<tr>
<td>32*32</td>
<td>61.99</td>
<td>91.56</td>
<td>1441.67</td>
<td>2007.09</td>
</tr>
<tr>
<td>128*128</td>
<td>15.8</td>
<td>22.69</td>
<td>238.45</td>
<td>346.63</td>
</tr>
<tr>
<td>256*256</td>
<td>8.78</td>
<td>12.94</td>
<td>117.45</td>
<td>165.9</td>
</tr>
</tbody>
</table>

Row Cyclic data Layout

<table>
<thead>
<tr>
<th>matrix size</th>
<th>P=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4*4</td>
<td>1191.59</td>
</tr>
<tr>
<td>8*8</td>
<td>54.39</td>
</tr>
<tr>
<td>16*16</td>
<td>27.97</td>
</tr>
<tr>
<td>32*32</td>
<td>4.51</td>
</tr>
<tr>
<td>128*128</td>
<td>0.86</td>
</tr>
<tr>
<td>256*256</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Blocked Grid data Layout