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Abstract

We continue the study, started in [8], of generalised filters. Prime prefilters have played a central role in the theory of (Lowen)
tuzzy uniform spaces and Lowen discovered a characterisation of the set of all minimal prime prefilters finer than a given
prefilter in terms of ultrafilters. We define the notion of a prime generalised filter and describe the set of all minimal prime g-
filters finer than a given g-filter in terms of ultrafilters. The relationship between prime prefilters and prime g-filters is revealed.
The behaviour of the images and preimages of g-filters are investigated. (© 1999 Elsevier Science B.V. All rights reserved.
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1. Prime g-filters

In [9, 10] the theory of compact subsets of a topo-
logical space is lifted into the fuzzy setting. This was
achieved with the aid of prime prefilters and the reader
is referred to these papers for a succinct theory of
prime prefilters. Prime prefilters also play a major role
in [2—5] where the theories of: Cauchy filters, com-
plete, precompact and bounded subsets of a uniform
space are lifted to the fuzzy setting.

We are led therefore to seek a suitable definition of
a prime g-filter which ties in with the theory of prime
prefilters.

We call a g-filter f on X prime if

VA.BCX, [f(AUB)= f(4)V[(B).

* Corresponding author. E-mail: mamb@warthog.ru.ac.za.

In [18], Lowen develops the theory of prime pre-
filters. We quote two really useful results, in terms of
the notation introduced in [2], from that paper.

Theorem 1.1 (Lowen). Let # be a prefilter on X
and let

P(F)
- {9l G is a prime prefilter and F C¥9}.
Then P(F ) has minimal elements.

Theorem 1.2 (Lowen). Let F be a prefilter on a
set X and let

P F)E

{9 € 2(F): G is minimal}.
Then

I F)={F V Fi: Fis an ultrafilter, F,C F}.
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This last theorem, which characterises the minimal
prime prefilters finer than a given prefilter, has found a
number of applications. With this in mind, we attempt
to construct a similar theory of prime g-filters.

We first find the connection between prime g-filters
and ultrafilters.

Lemma 1.3. Let [ be a filter on X and let 0 <o < 1.
Then

F is an ultrafilter < aly is a prime g-filter.

Proof. (=) Let [ be an ultrafilter. If AU B € F then
alp(4UB)= . Furthermore, since F is an ultra-
filter, A€F or B€F. Thus ale(A) V alg(B)=oa=
2 (AURB).

If4UB¢F then al;(4UB)=0. Since F is a filter,
A¢F and B¢ F and, hence, aly(4) V 2l(B)=0=
21g(4 U B).

(<) Let 21z be prime and let AUB€F. Then
2(AUBY=a=alg(4) V alg(B).

Therefore, alp(A)=2 or alg(B)=a and so A € F
or B€ . Thus F is an ultrafilter. ]

Theorem 1.4. Let | be a g-filter with ¢(f)=c. Then

[ is a prime < f. is an ultrafilter.
Proof. (=)
AUBE fo & [(AUB)=f(A)V f(B)=c
& f(A)=cor f(B)=c
< A€ foor BEf.
(<) If x<c then
i< f(AUB) = AUBE [ = /.
= f(AUB)=cand A€ f.or Be f.
= JA)V f(B)y=c=[f(4UB). [
Corollary 1.5. If [ is a prime g-filter with ¢(f)=c
then f*= f*= f. for each o € [0, ¢).

Proof. We have f. C /¥ and f. is an ultrafilter. Thus
for x € [0,c) we have f.= f*= (9 0O

The reader can check that if ACX, >0 and
F={{A4}) then

aly is a prime < A is a singleton.

If [ is a filter then we define

def

P(F) = {K: FCK, [K is an ultrafilter}.

We now investigate the situation with regard to
prime g-filters finer than a given g-filter.

Lemma 1.6. If f is a g-filter, a=c=c(f) and F €
P(f°) then olg is a prime g-filter with f <aly.

Proof. It follows from Lemma 1.3 that .l is a prime.
Furthermore, if A CX with f(4)>0then Ac f°CF
and so alp(Ad)=a=c= f(X)= f(4). O

Theorem 1.7. If [ is a prime g-filter with ¢(f)=c¢
and F = f. then [ =cly.

Proof. Let ACX. If f(4)>0 then A€ f'=f.=F
and hence f(A)=c=cle(4). If f(4)=0thenA¢F
and so f(4)=0=clg(4). I

Thus, the prime g-filters are precisely those g-filters
of the form a1y with F an ultrafilter. If f is a g-filter
on X, let

2) &f {g: ¢ is a prime g-filter and f <g}.

We now aim for the g-filter equivalent of Lowen’s
Theorem 1.2,

Theorem 1.8. If f is a g-filter with ¢(f)=c then
2(f)={alp: FEP(SY), a=c).

Proof. Let gc 2(f) with c(g)=x« and F=g,.
Then, by Theorem 1.7, g = a1y with F an ultrafilter.
Furthermore, since f'<g¢, we have o(f)<a=c(g)
and F D 1.

Conversely, if g=oly then, by Lemma 1.6
ge?(f). O

k]

For a g-filter f let us define

def . .. .
Pu(f)Z {g: ¢ isa minimal prime g-filter
and f <y}
It is now an easy matter to obtain a characterisation

of the minimal prime g-filters which are finer than a
given g-filter.
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Corollary 1.9. If 1 is a g-filter with ¢(f)=c then
Pl f)={clp FEP(SN)}.

Proof. Let g€ :2,(f). Then g=alg for some 2>¢
and some [ € P(f9). If a>c then we can choose f§
suchthatc < ff<oandthen h= 1y € 2(f)withh<y
and h # g which contradicts the minimality of g. [

Our next task is to find the relationship between
prime prefilters and prime g-filters. We first need the
following lemma.

Lemma 1.10. Ler (L, <) be a totally ordered set and
let (X, <) be a partially ordered set. Let

PP (L, <) — (X, <)
be decreasing functions in the sense that
Vo pel, (a<f= o)< o), Y(f)<y(a)).
Let F C X have the property
Vx, (xeF, x<y, =>yeF)
Then

Vae L, (p(a) e F or Yy(a)c F)
& (Vael,o(e)eF)or (VaeLy(a)eF).

Proof. We only have to show the forward implication
so suppose that there exists « € L such that ¢(x) € F.
We must show that y(f) € F for each € L. Now,

P EF = Y(a)EF.
Thus, if f <« then
() <Y(B) = WP)EF.
On the other hand, if < f§ then

P(Py=< (o) = @(B)&F (otherwise ¢(x) € F)
= Y(peF. ]

Corollary 1.11. Let I C R be an interval, X a set and
let .1 — (X)) be functions with the property
such that

Va,fel, (a<f= o(f)C o(a), Y(B)C y(a)).

and let F be a filter on X. Then
Vael, (p(a)eFory(a)elF)
S NVuel,p(a)eF)or Vel y(z)eF).

Theorem 1.12. Let f be a prime g-filter on a set X
with ¢( f)=c. Then F; is also a prime.

Proof. Let uVve #;. Then, according to Lemma 5.3
of [8], Theorem 1.4 and Corollary 1.5,

Vye[0,¢), (uVv vy =p Uvef_.=f oy

with F an ultrafilter on X. We therefore have
vy e[0,¢), (el or v el).

We now invoke Corollary 1.11 and claim that
(Vye0c)pu eF) or (Vyel0,0)v €F).
This, together with Lemma 5.3 of [8], shows that
uekForvelf. {1

Theorem 1.13. Let F be a prime prefilter on a set X
with o(F )=c. Then f7 is also a prime.

Proof. We need to show that fz(4AUB)< f5(A4) V
Jf7(B)for4,BCX.
To this end let 0 <a < f7(AUB). Then

a<c—inf Sz(4UB)
< AUBEF T =%,
& Ae Fyor Be Fy
(since #; is an ultrafilter)
= inf Sz(4)<c—aor inf Sz(B)<c — 2
= fr(d)=aor f7(B)=x
= fFA)V f7(B)=2.
Since « is arbitrary, we are done. []

Corollary 1.14. If f is a g-filter and F is a prefilter
then

[ is prime < F; is prime,

F is prime & [ Is prime.

Proof. The proof follows immediately from
Corollaries 5.13 and 5.14 in [8], 1.12 and 1.13. [
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2. Images and preimages

If h:X —Y is a function and fe/? is a g-filter
base on X then we define the direct image of f, de-
noted A( /'), by

A(f):2" —1,B— h(f)B)
def { sup f(A) if h(4)= B for some 4 C X,
= A(Ay=8

0 otherwise.

We will show that the theory generated by this
definition extends the corresponding theory of images
of filters and filter bases.

Theorem 2.1. If h: X — Y is a function and f is a
g-filter base on X then () is a g-filter base on Y.

Proof.

(1) Since f is non-zero, there exists 4 C X such that
J(A)>0and so h(f)(h(4))>0. In other words,
A(f') is non-zero.

(1) A(fHO) = supy 4, [(4) = £(0)=0.

(ii1) If B|, B, C Y then

A<h(f)B))Nh(f)B))
= A1, A2 CX: h(A))= B, h(4) =B,
and 2 < f(4)) A f(42)
= 43 CA N4 2< f(A3)
= ABy:=h(A3)C B, N By: A<h(f)NB3)

= (WONBINB)=  sup  h(f)(By)>u
B C BN B,

Thus, h(/YBI)Y AR UBY < (W(fINBI N By). [

Theorem 2.2. Ifh: X — Vis afunction, f is a g-filter

base on X and {h(f)) denotes the g-filter generated

by the g-filter base h( ') then:

(1) if f is a g-filter then (NBY= f(h™! [B]) for
each BCY;

(2) i f is a prime g-filter then (h( 1)) is a prime
g-filter:

(3) (h(/)) = th((f))).

Proof. (1) It is clear that

(h(ONB)= sup h(f)NB')= sup sup f(4)
B CB B CB hd)=p
= sup f(4)
MAYC R

and, since h(h~'[B])C B, we have f(h~'[B])<
(h(f))(B).

The reverse inequality follows from the fact that if
h(A) C B then 4 Ch~'[A(4)] C h~'[B] and, since f is
a g-filter, we have f(4)< f(h~'[B]).

(2) Let By, B, C Y. Then

(h(INBIUBy) = f(h™'[B,UB,))
=fG BV (B [BL))
= (W NBOV (h(f))(B).

Thus (A(f)) is prime.

(3)

(R(INBY= sup (f)(A)
AYC B
= sup sup f(4)= sup f(4)
WAYCBA' C 4 MA')C B

={(h(NB). [

If h:X — Y is a function and g€ 72 is a g-filter
base on Y then we define the preimage of g, denoted
h~'(g), by

NG :2Y — 1 Ars k' (g)4)

wr [ Sup g(B) if h™'[B)=4 for some BC Y,
h=1[B]=4

0 otherwise.

Theorem 2.3. If h:X -V is u Junction and ¢ is a
g-filter base on Y then h=Yg) is a g-filter base on
X if and only if g(B)=0 Jor all BCY such that
' [B] =0,

Proof. (=) Since 47 !(g) is a g-filter base on X we
have 0 =/4"1(g)(0) = SUP;,-1151-p 9(B)and, so, for all
BC Y such that h~'[B] =0, we have g(B)=0.

(<) (i) Since ¢ is non-zero, there exists BC Y
such that ¢(B)>0 and, so, RN g)h="[B]) =
SUPy 1187 1=p- 115 9(B') = g(B) > 0.

In other words, 4~ !(g) is non-zero.

(i) A~ (g )(0) = SUP,- 1151 Y(B) =0,
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(iii) If 4,4, C X then

a<h™' (@) A AR (g)(A2)
= 3B1,B,CY: h™'[Bi]l=41,h" ' [Bi]=4>
and o< g(B))ANg(B3)
= 3By C B NBy: a<y(B3)
= 43 =h""[B3] C A Ndy: x<h™ ' (g)(43)
= (A7 (g4 N 4,)

= sup h'l(g)(A3)>ac.

A}C_/ﬁﬁA;

Thus, A1 (g)(41) A B~ (g A2) <A™ (g))(A1 N Ay).
7]

Theorem 2.4. If h: X — Y is a function and g is a

g-filter base on Y then:

(1) if h is surjective then h™'(g) is a g-filter base,

(2) if g is a g-filter, y(BY=0 for all BC Y such that
WY B]=0 and h is injective, then h='(g) is a
g-filter.

(3) if g is prime g-filter, g(B) =0 for all BC Y such
that h="[B]=0 and h is injective then h="(g) is
a prime g-filter.

Proof. (1) Since 4 is surjective we have A~ '[B] =0
if and only if B=10 and so, for all BCY such that
h'[B)=0, g(B)=0.

(2) We just have to prove that, for each 4 C X,

(gAY = sup h™!(g)(A4")

AC4

= sup sup q(B)
A" CA h~1[B)=A’

= sup  g(B)<h"'(g)(A).
B8] C 4

If 2 < (h~'(g))(A4) then there exists B C ¥ such that
h~1[B] C 4 and x < g(B). We consider B’ = h(4)UB.
Since # is injective we have A~ ![B']=h"[h(4)]U
h=\[B] = 4.

On the other hand, since g is a g-filter, we have
g(B'Y=g(B)>a and so A~ (g)(A4)> .

(3) Let 41,42 CX. If a<h '(g)(4,U4,) then
there exists BC Y such that 2~ '[B]C A4, U4, and
o <g(B).

We consider B; = (h(4;)NB)U(B — h(X)) for i =
1,2. Since 4 is injective we have

W [B1=h""[h(4)N B]
=h7'[h(4)] " A (B)
=A4,Nh7'[B]C A4,

On the other hand, we have

B UBy = (h(4, UA;)NBYU(B — h(X))

=(h(h'[BDU(B - h(X))=B

and, since g is a prime g-filter, we have either
g(B1)>a or g(B,)> 2. Therefore, either h~'(g)(4)
>o or h~'(g)(A2)>a and so A7 '(g) is prime. 7}

We turn our attention to the correspondence be-
tween prefilters associated with g-filters and g-filters
associated with prefilters. Before we begin, we state
the following lemma and leave the simple proof to the
reader.

Lemma 2.5, Let h:X — Y be a function, n€l,
puel* andvel? then:

(1) AT =V A Lyixy;

(2) AN () > s

(3) (h(u))*=h(u*),

(4) ('Y =AY

We recall thatif £: X — ¥, # aprefilter base on X
and % a prefilter base on ¥, we define

WF)E {h(p): pe 7Y,
@)Y (' vive %),

The following lemma, some of which appears in
[2, Lemma 2.11], concerns images and preimages of
prefilters.

Lemma 2.6. If h: X — Y, # a prefilter base on X

and % a prefilter base on Y then:

(1) h(F) is a prefilter base on Y

(2) if F is a prefilter then (W(F )y ={vel': k™[]
eFY,

(3) if F is a prime prefilter then (h(F)) is prime;

(4) (h(F)) = (h[{F)));
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(5) if k" '[V]#£0 for each vEY then h™ (%) is a
prefilter base on X;

(6) if h is surjective then h=' (%) is u prefilter base
on X,

(7) if 4 is a prefilter, h"'[v]#0 for each ve§
and h is injective then h='(9) is a prefilter on X.

Theorem 2.7. Let h: X — Y be a function and .7 u
prefilter on X with ¢(F )=c¢>0, then

AR = S ey

Proof. We just have to prove that ({(h(f))* =
(Fiacry ) =((A(F))) " for each 0 < <c. Now

(R(fN) ={BCY: (h(fA)(B)>a}
={BCY: f5(h""[B])>u}
={BCY: T [BlE(f5)=F ),

IfBC Y and i~ '[B] € F¢~7*, there exists u € F and
< —a such that u = h~!{B]. Since u € F we have
h() e (7)) and h(ph) = (h(u)Y' € ((h(F)) .

On the other hand, B D h(h~'[B]) = h(y#) and so
B e ({(h(F))) 7 Therefore, B € (fuury)*

Conversely, if BC Y and Be€ ({h(F))) %, there
exists v € {A(.7)) and ff<c¢ — « such that v/ = B.

Since v (h(F)), there exists g€ .# such that
h(p)<v. Thus we have u<ha™'[h(p))<h™'[v] and
so i~ [v]e 7

Now A4~ '[Bl=h""[VV1=(h" '] e #* and it
follows that B€ ({(h(/)))*. [

Theorem 2.8. Let h: X — Y be a function and | u
g-filter on X with ¢( ') =c¢>0, then

R(CFD) =Ty

Proof. We just have to prove that ({(h(F)))) =
(F iy n) = ((h(f))) ™" for each 0<x <c.

Now ((h(Fp )Y ={BCY: Ive (h(F)). <
such that v/ = B} and

F s ) Y =R )T
={BCY: (h(/W(B)>c —a)
= {BCY: 34 CX such that

h(A)C(B) and f(A)>c¢ — a}.

Let B=v/ with ve (h(#;)) and f<o. Then
there exists p € F, such that A(u)<v. Therefore,
h(pPy=h(u)? CvP =B. Now we have 4=, CX,
WAYC B and f(A)= f(u’)>c — « and hence B &
(Finrp)

Conversely, let B C Y have the property that there
exists A C X with 4(4)C Band f(4) Y r>c - a Let
w=(c—t)ly V1, We intend to invoke Lemma 5.3
of [8] to show that i € .#,. To this end, let 0 < <c.

Ifyelec—tc)then y=Aand so f(u)= f(4A)=
t=c—.

Ify€[0,c—t)then ;' =X andso ()= f(X)=
c=e— 7.

We therefore have y' € f._. for all y€[0,¢) and
so u € Fy. Therefore, h(u) € h(F;) and (A(p)) ™' =
h(p™"y=h(4) € ({(h(F;)} ). Finally, since h(A) C B,
we also have B e ((h(F;)))". O

Theorem 2.9. Let h: X — Y be a function and 4 u
prefilter on Y with ¢(%) = c>0. then

<h“l(f’//)> :f(/z"t.”/))-

Proof. We just have to prove that ({A~'(f4)))* =
(Fon10oy) =™ (%)))~* for each 0< 2 <c.
Now

(" f))) ={4CX: 3B C Y such that
W' BIC A and fq(B)>ua}

={A4CX: 3IBCY such that
h™'[B]C 4 and Be %%},

So let BCY with A7 '[B]CA4 and Be w92,
Then there exist v€% and ff<c—a such that
B=vF_ Therefore, 4 '[v]eh (%) and. since
R UBl=h "D =D e (%)) and
h='[B] C A, we have A € ((h~' (%))~

Conversely, let 4=/" with ue(h~'(%9)) and
B8 <c—a. Then there exists v € % such that A~ [v] < .
Therefore, A~ '[WV]=h""])Y C P =4. Now we
have B=vC ¥, h"'[B]CA4 and B % * and so
Aeh"(fo)). O

Theorem 2.10. Let h:X — Y be a function and g a
g-filter on Y with c(g) =c¢ >0, then:

—1 Pl — T
T = F -1y
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IProof. We fust have to prove that ((h “(F 11" =
(F o)) = (th~"(g)))—* for each 0K <c.
Now ((h""(Z))) = {ACX : ue(h™ (%)),

T < o such that g =47 and
000 =D o)
=1{4CX: 34" C 4 such that
W (g A Yy>c — a}
={4CX: 4B C Y such that
h™'[B1C 4 and g(B)>c — a}.

So let A =p® with p€ (h~'(#,)) and f<a. Then,
there exists ve #, such that h~'[v]<p. There-
fore, h~'[v]1= (A "[v]) Cu’ =A. Now. we have
B=vCY, W' [BJCA and ¢(B)=g(V)>c — a
Thus 4 € (F -1y, )

Conversely, let BC ¥ with A~ '[B] C 4 and ¢(8) &'
t>c¢—a Letv=(c—1)lyV 1z We intend to invoke
Lemma 5.3 from [8] to show that v € .%,. To this end,
let 0<y<e.

If v€[c—tc¢) then vi =B and so g(v')=¢g(B)=
(=0 — 7.

If y&[0,c—1) then v =Y and so g(v')=¢g(Y)=
cze -0

We therefore have v'e€g._. for all y€[0,c¢)
and so ve %, Therefore, A '[v]eh (%) and
' = R ] = kT Ble (N (F))n.
Finally, since 4 '[B]CA4, we also have A&
(A= A 1
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