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Research Statement
Murugiah Muraleetharan (Muralee)

My current research area is geometric evolution equations, in particular, evolution of curves
by curvature, mean curvature flow, and Ricci flow. I have also worked in Topology (Uniform
spaces) and Scientific computing (computational complexity in parallel programming) and have
two refereed papers in topology and one unpublished preprint in computational complexity.
First I would like to explain about my very recent work in evolution of curves by curvature
flow:

Let γ0 be a given smooth embedded convex closed plane curve and γ : S1 × [0, ω) → R2 be
a one parameter smooth family of embedded curves satisfying γ(., 0) = γ0. If k is the curvature
and N is the inward unit normal then we say that γ evolves by the curvature flow (or curve
shortening flow) if

∂γ

∂t
(p, t) = k(p, t)N(p, t), (p, t) ∈ S1 × [0, ω) (1)

The curvature vector k = kN . If we let s = st be the arclength on γt = γ(., t), then
k = (∂2/∂s2)γ and the equation (1) can be written in the following form ( ∂

∂t − ∂2

∂s2
t
)γ = 0

making the quasilinear parabolic nature of the equation apparent. The existence, regularity,
and long term behavior of solutions to this system have been extensively studied.
The first deep theorem about curvature flow was proved by Gage and Hamilton.

Theorem 1. [9] Under the curvature flow, a convex curve remains convex and shrinks to a
point. Furthermore it becomes asymptotically circular: If the evolving curve is dialated to keep
the enclosed area constant, then the rescaled curve converges smoothly to a circle. i.e. convex
curves shrink to round points.

For higher dimensions, Huisken [14] proved that under mean curvature flow convex hyper-
surface in Rn+1 contract smoothly to a single point in finite time and become spherical at the
end of the contraction. The above result is not generally true for nonconvex embedded hyper-
surfaces. A barbell with a long, thin handle develops a singularity in the middle in short time.
But under curvature flow for curves, Grayson [10] showed that the assumption of the convexity
of the initial curve can be removed, and the result holds for arbitrary smooth embedded closed
initial curves by showing embedded curves become convex without developing singularities.

Theorem 2. [10] Under the curvature flow, embedded curves becomes convex and thus eventu-
ally shrink to round points.

Later Grayson and Gage generalized the curvature flow to surfaces.

Theorem 3. [11] A closed curve moving on a smooth compact Riemannian surface by curvature
flow must either collapse to a point in a finite time or else converge to a simple closed geodesic
as t →∞.

Recently new direct proofs of Grayson’s theorem [10] for curvature flow of embedded curves
in planes have given by Hamilton [13] and Huisken [16]. Hamilton proved this using mono-
tonicity of isoperimetric estimates, and Huisken proved it by obtaining a lower bound for the
quotient of the extrinsic distance in the plane by the intrinsic distance along the curve.

We were able to extend the above techniques to the surface case and gave two different
proofs of Grayson’s theorem [11] for curvature flow of embedded curves in Riemannian surface,
one using Hamilton’s technique and the other one using Huisken’s technique [17], [18], and [21].
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We now state our main results: Let γ be a closed embedded curve evolving under the
curvature flow in a compact surface M . If a singularity develops in finite time, then the curve
shrinks to a point. So when t is close enough to the blow-up time ω, we may assume that the
curve is contained in a small neighborhood of the collapsing point on the surface. Using a local
conformal diffeomorphism φ : U(⊆ M) → U ′ ⊆ R2 between compact neighborhoods, we get a
corresponding flow in the plane which satisfies the following equation:

∂γ′

∂t
=

(
k′

J2
− ∇NJ

J2

)
N ′ (2)

where γ′(p, t) = φ(γ(p, t)), k′ is the curvature of γ′ in U ′, N ′ is the unit normal vector, and J
is smooth, bounded and bounded away from 0.

For a smooth embedded closed curve γ in R2, consider any curve Γ which divides the region
enclosed by γ into two pieces with areas A1 and A2, where A1 + A2 = A is the area enclosed
by γ. Let L be the length of Γ. Define

G(γ, Γ) = L2

(
1

A1
+

1
A2

)
, and G(γ) = inf

Γ
G(γ, Γ).

First, we proved the following theorem.
Theorem A. If γ′(·, t) is evolving by the parabolic flow (2), and t0 is close enough to the
blow-up time ω < ∞, then there is some ε > 0 such that G(γ′(·, t)) > ε for all t ∈ [t0, ω).
Define the extrinsic and intrinsic distance functions d, l : Γ× Γ× [0, T ] → R by

d(p, q, t) = |γ(p, t)− γ(q, t)|R2 and l(p, q, t) =
∫ q
p dst = st(q)− st(p) where Γ is either S1

or an interval.
Next, we proved the following two theorems.
Theorem B. Let γ : I × [0, T ] → R2 be a smooth embedded solution of the flow (2), where I
is an interval such that l is smoothly defined on I × I. Suppose d

l attains a local minimum at
(p0, q0) in the interior of I × I at time t0 ∈ [0, T ]. Then

d

dt

(
d

l

)
(p0, q0, t0) ≥ 0,

with equality if and only if γ is a straight line.
We now define the smooth function ψ : S1 × S1 × [0, T ] → R by ψ(p, q, t) := L(t)

π sin
(

l(p,q,t)π
L(t)

)
.

Theorem C. Let γ : S1× [0, T ] → R2 be a smooth embedded solution of the flow (2). Suppose
d
ψ attains a local minimum ( d

ψ )(p0, q0, t0) < 1 at some point (p0, q0) ∈ S1×S1 at time t0 ∈ [0, T ].
Then

d

dt

(
d

ψ

)
(p0, q0, t0) ≥ 0,

with equality if and only if d
ψ ≡ 1 or γ(S1, ·) is a circle.

Theorem D. Let γ be a closed embedded curve evolving by curvature flow on a smooth compact
Riemannian surface. If a singularity develops in finite time, then the curve converges to a round
point in the C∞ sense.
We proved the theorem D first using theorem A, and then using theorems B and C. First we can
find the dilation-invariant estimates for the derivatives of the curvature in term of the maximum
curvature, and obtains a sequence of dilations of the solutions along a blow up sequence which
converges to a smooth nontrivial family of convex curves γ∞. This limit is a solution of the
curvature flow, and is complete. If the singularities are of type I, then by Huisken’s monotonicity
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principle [15], the limit is a homothetically shrinking soliton, and the only embedded one is the
circle. Hence if the forming singularity is type-I, then the curve converges to a round point
in the C∞ sense. In type II singularity, the limit solution exists for all time with curvature
satisfying 0 < k ≤ 1, and k = 1 at the origin at t = 0. The strong maximum principle applied
to Harnack estimate [12] shows the limit is a translating soliton, the grim reaper. In the grim
reaper, a horizontal line segment has length L < π, while if it is high enough, it encloses an
arbitrarily large area A1, while there is still an arbitrarily large area A2 on the other side if we
go out far enough. If the grim reaper is to be the limit, then the original curve comes arbitrarily
close to it after translating, rotating, and dilating; all of which do not affect the constant G.
But then we must have G → 0, which is impossible.
Some results in Topology and Scientific Computing:

Out of my masters degree thesis, title - Generalizations of Filters and Uniform Spaces
(General Topology), I have two papers [6] and [7]. In my thesis, I extended the notion of a filter
F ∈ 22X

to that of a: prefilter F ∈ 2IX
, generalized filter f ∈ I2X

, and fuzzy filter φ ∈ IIX
.

A uniformity is a filter with some other conditions and I extended the notion of a uniformity
D ∈ 2IX×X

to that of: fuzzy uniformity D ∈ 2IX×X
, generalized uniformity d ∈ I2X×X

, and super
uniformity δ ∈ IIX×X

. I established categorical embeddings from the category of uniform spaces
into the categories of fuzzy uniform spaces, generalized uniform spaces, and super uniform spaces
and also categorical embeddings into the category of super uniform spaces from the categories
of fuzzy uniform spaces and generalized uniform spaces.

In my masters degree in computer science, I focused on Computational Complexity, and
Parallel and Scientific Computing. In my unpublished work [26], I implemented the parallel
LU-decomposition method for six different data layouts - column block, row block, column
cyclic, row cyclic, block grid and scatted grid. I used LogP model to analysis the running
time of algorithms since it’s not depend on the structure of the network and implemented
the algorithms using MPI. The result we got both from the theoretical analysis approaches
the implementation result as the matrix size increases. This shows that communication time
dominates when the matrix size is small, and computation time dominates when the matrix size
is large. By using the LogP model, we successfully predicted the running time of the algorithm.
Hence, the data layout should be carefully chosen since it takes an important role in parallel
implementation.

Current and Future work:

We have mentioned above how Hamilton and Huisken simplified Grayson’s theorem using
isoperimetric estimates to rule out certain type of behavior. They both have used previous
results concerning the classification of singularities - was based on Huisken’s monotonicity
formula and Hamilton’s Harnack estimates, in addition to their isoperimetric estimates to rule
of the type II singularities. We would like to get stronger bound on curvature so that we could
avoid using the heavy machineries and give a direct proof for evolving curves in the plane. In
the surface case, in addition to using Huisken’s monotonicity formula and Hamilton’s Harnack
estimates, we have been using Oaks’ result – if the initial curve is embedded, and the singularity
develops in finite time, then curves shrink to a point. The Oaks’result is based on a series of
papers by Angenent on a more general theory of parabolic equations for curves on surfaces. We
also expect to give a more direct proof for evolving curves in the surface.

We have been also working on curvature flow of curves in compact or complete Riemannian
manifold (Mn, g). In compact manifold, the short time existence for the flow is known but
for non-compact complete manifold we expect to prove the short time existence using Shi type
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estimates. These dilation invariant estimates can also give long time existence and play an
important role in singularity analysis. It is also interesting to study the evolution of curves in a
manifold when the underlying manifold evolves by Ricci flow. Perelman third paper deals with
this problem and has some results.

Sobolev imbedding and heat kernel estimates to study Ricci flows, especially in the case of
surgeries: The proof of the Poincaré conjecture contains two essential steps, one is the proof
of local non-collapsing with or without surgeries and the other is the classification of backward
limits of ancient κ solutions. Perelman used his W entropy to prove the local non-collapsing
for smooth Ricci flows and then used his new analytical functional, reduced length and volume
to proof non-collapsing with surgeries and also for the classification of the limits. But W
entropy and it’s monotonicity imply certain uniform Sobolev inequalities along Ricci flows,
and Qi Zhang used this to prove local non-collapsing results with or without surgeries and the
classification of the backward limits of ancient κ solutions. Thus, Zhang gave a simpler proof of
Poincaré conjecture using W entropy, Sobolev imbedding, and related heat kernel estimates, and
bypassed using the reduced distance and volume but still followed the framework by Perelman.
The reduced distance and volume are still needed for the proof of the Geometrization conjecture,
specifically for Perelman’s no local collapsing theorem II with surgeries. I have very interested
in the above recent work of Zhang and have been interested in to see whether it is possible to
give a simpler proof of the Geometrization conjecture using W entropy and related log Sobolev
inequalities and heat kernel estimates.
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