
Putnam Practice Set #3

1. Show that ∑
n∈A

1

n
<∞,

where A is the set of positive integers that do not contain a ’9’ in their decimal expansion.

Proof. Let

Sn =
∑

m∈A with 10n−1≤m<10n

1

m
.

Since the terms in the sum are positive, the sum is the same as
∑
n→∞ Sn. Now we count the number

of terms summed up in Sn. These are the number of natual numbers between 10n−1 and 10n with
no ’9’ in their decimal expansion. There are exactly n digits in any such natural number. Since there
are no ’9’s and since the first digit cannot be 0, there are 8× 9n−1 possible choices. For each of these
choices, since m ≥ 10n−1, we have 1

m ≤
1

10n−1 . Therefore

Sn ≤
8× 9n−1

10n−1
= 8(

9

10
)n−1.

Since 9
10 < 1, the series

∑∞
n=1 8( 9

10 )n−1 converges as a geometric series. By comparison, the sum∑∞
n=1 Sn also converges.

2. Evaluate
∞∑
n=0

Arccot(n2 + n+ 1),

where Arccot (t) for t ≥ 0 denotes the number θ in the interval 0 < θ ≤ π/2 with cot θ = t.

A3 1986. There aren’t many series that are easy to evaluate. Typically, to evaluate a series it is
geometric, telescoping, or has a nice relation to a known Taylor series. The 1st and 3rd option don’t
seem hopeful, but maybe this is a telescoping series in disguise. Recall the difference formulae for sin
and cos

sin(A−B) = sin(A) cos(B)− cos(A) sin(B)

cos(A−B) = cos(A) cos(B) + sin(A) sin(B).

Thus

cot(A−B) =
cos(A−B)

sin(A−B)
=

cos(A) cos(B) + sin(A) sin(B)

sin(A) cos(B)− cos(A) sin(B)
=

cot(A) cot(B) + 1

cot(B)− cot(A)
.

Setting A = cot−1(a) and B = cot−1(b) gives us

cot−1(a)− cot−1(b) = cot−1(
ab+ 1

b− a
).

Setting b = n+ 1 and a = n gives us

cot−1(n)− cot−1(n+ 1) = cot−1(n2 + n+ 1).

Since cot−1(n)→ 0 as n→∞, our sum is telescoping and the sum is just cot−1(0) = π
2 .
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3. A not uncommon calculus mistake is to believe that the product rule for derivatives says that (fg)′ =

f ′g′. If f(x) = ex
2

, determine, with proof, whether there exists an open interval (a, b) and a non-zero
function g defined on (a, b) such that the wrong product rule is true for x in (a, b).

Proof. Let f(x) = ex
2

. The equation (fg)′ = f ′g′ becomes

ex
2

2xg(x) + ex
2

g′(x) = ex
2

2xg′(x).

Dividing by ex
2

gives
2xg(x) = (2x− 1)g′(x).

Or just

1 +
1

2x− 1
=
g′(x)

g(x)
.

Integrating both sides with respect to x gives

x+
ln |2x− 1|

2
= ln |g(x)|+ C,

for some constant C. Hence we can take

g(x) = ex
√

2x− 1,

and consider the interval ( 1
2 ,∞), where 2x− 1 > 0. Then

g′(x) = ex
√

2x− 1 + ex
1√

2x− 1
= ex

√
2x− 1(1 +

1

2x− 1
).

Therefore

(fg)′ =
d

dx

(
ex

2+1
√

2x− 1
)

= ex
2+x 1√

2x− 1
+ex

2+x(2x+1)
√

2x− 1 = ex
2+x
√

2x− 1(2x+1+
1

2x− 1
)

and

f ′g′ = ex
2

2xex
√

2x− 1(1 +
1

2x− 1
) = ex

2+x
√

2x− 1(2x+ 1 +
1

2x− 1
).

4. Find all real-valued continuously differentiable functions f on the real line such that for all x,

(f(x))2 =

∫ x

0

[(f(t))2 + (f ′(t))2] dt+ 1990.

Solution [B-1 1990]
Putting y = f(x) and differentiating the relationship gives 2yy′ = y2 + (y′)2 or (y − y′)2 = 0. So
y = y′. Integrating, y = Aex. But y(0) = ±

√
1990, so f(x) = ±

√
1990ex. The function is continuous,

so we cannot ”mix” the two solutions: either f(x) =
√

1990ex for all x, or f(x) = −
√

1990ex for all x.
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5. Let f be a real function on the real line with continuous third derivative. Prove that there exists a
point a such that

f(a) · f ′(a) · f ′′(a) · f ′′′(a) ≥ 0.

Solution [A-3 (1998)]
If at least one of f(a), f ′(a), f ′′(a), or f ′′′(a) vanishes at some point a, then we are done. Hence we
may assume each of f(x), f ′(x), f ′′(x), and f ′′′(x) is either strictly positive or strictly negative on
the real line. By replacing f(x) by −f(x) if necessary, we may assume f ′′(x) > 0; by replacing f(x)
by f(−x) if necessary, we may assume f ′′′(x) > 0. (Notice that these substitutions do not change
the sign of f(x)f ′(x)f ′′(x)f ′′′(x).) Now f ′′(x) > 0 implies that f ′(x) is increasing, and f ′′′(x) > 0
implies that f ′(x) is convex, so that f ′(x+ a) > f ′(x) + af ′′(x) for all x and a. By letting a increase
in the latter inequality, we see that f ′(x + a) must be positive for sufficiently large a; it follows that
f ′(x) > 0 for all x. Similarly, f ′(x) > 0 and f ′′(x) > 0 imply that f(x) > 0 for all x. Therefore
f(x)f ′(x)f ′′(x)f ′′′(x) > 0 for all x, and we are done.
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