
Putnam Practice Set #4

1. Show that the determinant of 

0 1 1 1 · · · 1
1 0 1 1 · · · 1
1 1 0 1 · · · 1
1 1 1 0 · · · 1
...

...
...

...
...

1 1 1 1 · · · 0


is nonzero.

Proof. If the above matrix is n× n then
0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

...
1 1 1 · · · 0




n− 2 −1 −1 · · · −1
−1 n− 2 −1 · · · −1
−1 −1 n− 2 · · · −1
...

...
...

...
−1 −1 −1 · · · n− 2

 =


−(n− 1) 0 0 · · · 0

0 −(n− 1) 0 · · · 0
0 0 −(n− 1) · · · 0
...

...
...

...
0 0 0 · · · −(n− 1)


Clearly the determinant of the right hand matrix is just the product of the diagonal entries, which
is nonzero (n is assumed to be at least 3). Since for any square matrices A and B, det(AB) =
det(A) det(B), we must have that the determinant of both matrices on the left hand side are nonzero
as well. (Check the n = 2 case by hand.)

2. If a, b, c > 0, is it possible that each of the polynomials P (x) = ax2 + bx + c, Q(x) = cx2 + ax + b,
R(x) = bx2 + cx + a has two real roots?

Proof. No. Using the discriminant, a polynomial Ax2 + Bx + C has two real roots if and only if
B2 − 4AC > 0. If all three of the above polynomials have 2 real roots, we have that b2 > 4ac and
a2 > 4bc and c2 > 4ab. Multiplying we have a2b2c2 > 64a2b2c2, which is a contradiction.

3. Consider a set S and a binary operation ∗, i.e., for each a, b ∈ S, a ∗ b ∈ S. Assume (a ∗ b) ∗ a = b for
all a, b ∈ S. Prove that a ∗ (b ∗ a) = b for all a, b ∈ S.

2001 A1. The hypothesis implies ((b ∗ a) ∗ b) ∗ (b ∗ a) = b for all a, b ∈ S (by replacing a by b ∗ a), and
hence a ∗ (b ∗ a) = b for all a, b ∈ S (using (b ∗ a) ∗ b = a).

4. In Determinant Tic-Tac-Toe, Player 1 enters a 1 in an empty 3× 3 matrix. Player 0 counters with a 0
in a vacant position, and play continues in turn until the 3× 3 matrix is completed with five 1’s and
four 0’s. Player 0 wins if the determinant is 0 and player 1 wins otherwise. Assuming both players
pursue optimal strategies, who will win and how?
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2002 A4. (partly due to David Savitt) Player 0 wins with optimal play. In fact, we prove that Player
1 cannot prevent Player 0 from creating a row of all zeroes, a column of all zeroes, or a 2×2 submatrix
of all zeroes. Each of these forces the determinant of the matrix to be zero.

For i, j = 1, 2, 3, let Aij denote the position in row i and column j. Without loss of generality, we may
assume that Player 1’s first move is at A11. Player 0 then plays at A22:1 ∗ ∗

∗ 0 ∗
∗ ∗ ∗


After Player 1’s second move, at least one of A23 and A32 remains vacant. Without loss of generality,
assume A23 remains vacant; Player 0 then plays there.

After Player 1’s third move, Player 0 wins by playing at A21 if that position is unoccupied. So assume
instead that Player 1 has played there. Thus of Player 1’s three moves so far, two are at A11 and A21.
Hence for i equal to one of 1 or 3, and for j equal to one of 2 or 3, the following are both true:

(a) The 2 × 2 submatrix formed by rows 2 and i and by columns 2 and 3 contains two zeroes and
two empty positions.

(b) Column j contains one zero and two empty positions.

Player 0 next plays at Aij . To prevent a zero column, Player 1 must play in column j, upon which
Player 0 completes the 2× 2 submatrix in (a) for the win.

Note: one can also solve this problem directly by making a tree of possible play sequences. This
tree can be considerably collapsed using symmetries: the symmetry between rows and columns, the
invariance of the outcome under reordering of rows or columns, and the fact that the scenario after
a sequence of moves does not depend on the order of the moves (sometimes called “transposition
invariance”).

Note (due to Paul Cheng): one can reduce Determinant Tic-Tac-Toe to a variant of ordinary tic-tac-
toe. Namely, consider a tic-tac-toe grid labeled as follows:

A11 A22 A33

A23 A31 A12

A32 A13 A21

Then each term in the expansion of the determinant occurs in a row or column of the grid. Suppose
Player 1 first plays in the top left. Player 0 wins by playing first in the top row, and second in the left
column. Then there are only one row and column left for Player 1 to threaten, and Player 1 cannot
already threaten both on the third move, so Player 0 has time to block both.

5. Two players, A and B, play the following game. Player A thinks of a polynomial with nonnegative
integer coefficients. Player B can pick any value x and ask Player A for the value of the polynomial
evaluated at x. Player B can pick any other value y and ask Player A for the value of the polynomial
evaluated at y. Show that Player B can always determine all of the coefficients of Player A’s polynomial.

Proof. Player B wins by doing the following. On her first guess, Player B asks for f(1) and thus receives
the sum of coefficients of f . Most importantly, this is an upper bound on any one coefficient. We write
n = f(1). Now Player B merely asks for f(m) for any m > n. Since m > n, if we write f(n+1) in base-
n notation, we get that f(x) = a0 +a1x+ · · ·+adx

d where f(n+1) = a0 +a1n
1 +a2n

2 + · · · adnd + · · ·
and a0 + · · · ad = n.

2



6. Does there exist a polynomial f(x) for which xf(x− 1) = (x + 1)f(x)?

Proof. No. Otherwise, for any positive integer n we would have

f(n) =
nf(n− 1)

n + 1
=

(n− 1)f(n− 2)

n + 1
= · · · = (−1)f(0)

(n + 1)
=

(−1)0f(−1)

n + 1
= 0.

Hence every positive integer n is a root of f , a contradiction.
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