
Putnam Practice Set #7 - Solutions

1. Find the number R(n) of regions in which the plane can be divided by n straight lines.

A formula that fits the first few cases is R(n) = (n2 + n + 2)/2. We will prove by induction that it
works for all n ≥ 1. For n = 1 we have R(1) = 2 = (12 + 1 + 2)/2, which is correct. Next assume that
the property is true for some positive integer n, i.e.: R(n) = (n2 + n + 2)/2. We must prove that it is
also true for n + 1, i.e., R(n + 1) = (n2 + 3n + 4)/2.

Solution: So lets look at what happens when we introduce the (n + 1)st straight line. In general
this line will intersect the other n lines in n different intersection points, and it will be divided into
n + 1 segments by those intersection points. Each of those n + 1 segments divides a previous region
into two regions, so the number of regions increases by n + 1. Hence: R(n + 1) = R(n) + n + 1 =
(n2 + n + 2)/2 + n + 1 = (n2 + 3n + 4)/2. We are done by induction.

2. Define a set to be selfish if it has its own cardinality (number of elements) as an element of itself.
Find, with proof the number of subsets of {1, 2, . . . , n} that are minimal selfish sets; that is, subsets
that are selfish and do not properly contain any other selfish set.

Solution: Let fn denote the number of minimal selsh subsets of {1, 2, ..., n}. For n = 1 we have that
the only selsh set of {1} is {1}, and it is minimal. For n = 2 we have two selsh sets, namely {1}
and {1, 2}, but only {1} is minimal. So f1 = 1 and f2 = 1. For n ¿ 2 the number of minimal selsh
subsets of {1, 2, ..., n} not containing n is equal to fn−1 . On the other hand, for any minimal selsh set
containing n, by removing n from the set and subtracting 1 from each remaining element we obtain a
minimal selsh subset of {1, 2, ..., n}. (Note since {1} is selfish, 1 cannot be in the set.) Conversely, any
minimal selsh subset of {1, 2, ..., n− 2} gives raise to a minimal selsh subset of {1, 2, ..., n} containing
n by the inverse procedure. Hence the number of minimal selsh subsets of {1, 2, ..., n} containing n is
fn−2 . Thus fn = fn−1 + fn−2 , which together with f1 = f2 = 1 implies that fn = Fn (nth Fibonacci
number.)

3. Evaluate

8

√
2207− 1

2207− 1
2207− 1

2207−···

.

Solution: We will prove that the answer is (3 + 5)/2.
The value of the infinite continued fraction is the limit L of the sequence dened recursively x0 = 2207,
xn+1 = 2207 − 1/xn , which exists because the sequence is decreasing (induction). Taking limits in
both sides we get that L = 2007 − 1/L. Since xn > 1 for all n (also proved by induction), we have
that L1. If we call the answer r we have r8 = L, so r8 + 1/r8 = 2207. Then

(r4 + 1/r4)2 = r8 + 2 + 1/r8 = 2 + 2207 = 2209,

hence
r4 + 1/r4 =

√
2209 = 47.

Analogously,
(r2 + 1/r2)2 = r4 + 2 + 1/r4 = 2 + 47 = 49,

so
r2 + 1/r2 =

√
49 = 7.
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And
(r + 1/r)2 = r2 + 2 + 1/r2 = 2 + 7 = 9,

so
r + 1/r =

√
9 = 3.

From here we get r2 − 3r + 1 = 0, hence r = (3± 5)/2, but r = L1/8 ≥ 1, so r = (3 + 5)/2.

4. Prove that if we paint every point of the plane in one of three colors, there will be two points one inch
apart with the same color. Is this result necessarily true if we replace three by nine?

Solution: We can prove the rst part by way of contradiction. Assume that we have colored the points
of the plane with three colors such that any two points distance 1 at have different colors. Consider
any two points A and B at distance

√
3. The circles of radius 1 and center A and B meet at two points

P and Q, forming equilateral triangles APQ and BPQ. Since the vertices of each triangle must have
different colors that forces A and B to have the same color. So any two points at distance

√
3 have

the same color. Next consider a triangle DCE with CD = CE =
√

3 and DE = 1. The points D and
E must have the same color as C, but since they are at distance 1 they should have different colors,
so we get a contradiction.

For the second part, if we replace three by nine then we can color the plane with nine different colors
so that any two points at distance 1 have different colors: we can arrange them periodically in a grid of
squares of size 2/3× 2/3 as shown. If two points P and Q have the same color then either they belong
to the same square and PQ < (2/3)

√
2 < 1, or they belong to different squares and PQ ≥ 4/3 > 1.

5. Call a set of positive integers conspiratorial if no three of them are pairwise relatively prime. What
is the largest number of elements in any conspiratorial subset of integers 1 through 16?

Solution: A conspiratorial subset of S = {1, 2, ..., 16} has at most two elements from T = {1, 2, 3, 5, 7, 11, 13},
so it has at most 2+16−7 = 11 numbers. On the other hand all elements of S−T = {4, 6, 8, 9, 10, 12, 14, 15, 16}
are multiple of either 2 or 3, so adding 2 and 3 we obtain the following 11-element conspiratorial subset:
{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16} .

Hence the answer is 11.

6. Which is larger, 20102010 or 20112009?

Solutions: 20102010 is larger.

Let f(x) = (2010 + x)2010−x. Then setting y = f(x) we get

ln y = (2010− x) ln(2010 + x).

So
1

y
y′ = − ln(2010 + x) +

2010− x

2010 + x
.

Hence

f ′(x) = (2010 + x)2010−x
(

2010− x

2010 + x
− ln(2010 + x)

)
< 0

for x ∈ [0, 1]. (Since the first term is positive and the second term is negative. To see the second term
is negative, note that

2010− x

2010 + x
≤ 1 = ln e ≤ ln(2010 + x)

for all x in [0, 1].) Hence f is decreasing on this whole interval. Therefore

20102010 = f(0) > f(1) = 20112009.
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