Time	Session A - Surge 284	Session B - Surge 268
9:30 am	RECEPTION	
10:30 am	Noncommutative Fractal Geometry	From Heisenberg algebras to W-algebras
	Andrea Arauza - UC Riverside	Can Ozan Oğuz - U. of Southern California
	Noncommutative fractal geometry is the study of fractal geometry using operator algebraic tools. Our main toolkit is called a spectral triple and con- sists of a C^* algebra, a Hilbert space, and an un- bounded operator. Together these tools can help formulate algebraic versions of geometric concepts like dimension, geodesic distance, and measure. We will use the Sierpinski gasket and the Stretched Sierpinski gasket as our main examples.	The Heisenberg algebra \mathfrak{h} is one of the simplest non-commutative algebras, important in quantum mechanical systems. The <i>W</i> -algebra $W_{\infty+1}$ is a vast extension of \mathfrak{h} , containing \mathfrak{h} in its filtration degree zero. We describe a diagrammatic con- struction of <i>W</i> -algebra starting from \mathfrak{h} , using the representation theory of the symmetric group and its categorification. This is joint work with Mike Reeks.
11:15am	New and Existing Bounds on Multiplicative Character Sums	Complex Dimensions of Self-Similar Sets in <i>p</i> -adic Spaces
	Kyle Castro - UC Riverside	Alexander M. Henderson - UC Riverside
	In 1831, Peter Gustav Lejeune Dirichlet intro- duced the notion of a Dirichlet Character as a tool for proving the existence of quadratic non- residues in an interval of a fixed length. In this talk I will introduce multiplicative character sums and discuss their existing bounds. If time permits, I will also mention the most common techniques for obtaining upper bounds on these multiplica- tive character sums. The non-trivial bounds being discussed continue to have applications to various problems in Analytic Number Theory and Combi- natorics today.	The higher dimensional theory of complex di- mensions developed by Lapidus, Radunović, and Žubrinić provides a language for quantifying the oscillatory behaviour of the geometry of subsets of \mathbb{R}^n . In this talk, we will describe how the the- ory can be extended to metric measure spaces that meet certain homogeneity conditions. We will pro- vide examples from <i>p</i> -adic spaces and discuss the geometric information that can be recovered from the complex dimensions in these cases.
12:00 pm	LUNCH	
1:00 pm	An Introduction to Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture	A connection between Stanley-Reisner the- ory and Borel-de Siebenthal theory
	This talk will give a brief overview of what an ellip- tic curve is as well as some of the important related definitions and properties. It will also include a discussion of how the Birch and Swinnerton-Dyer conjecture connects the fields of algebra and anal- ysis in studying these objects.	Stanley-Reisner theory provides a link between combinatorics and commutative algebra. More specifically, this theory gives a correspondence be- tween abstract simplicial complexes and a family of ideals in a polynomial ring. On the other hand, Borel-de Siebenthal theory classifies the maximal semisimple subalgebras of a simple Lie algebra. This result can be rephrased in terms of automor- phisms of the simple Lie algebra and the subalge- bra of fixed points. In this talk, we give a connec- tion between Stanley-Reisner theory and Borel-de Siebenthal theory by studying a family of bimod- ules for the Lie algebra of fixed points and the Stanley-Reisner ring.

Time	Session A - Surge 284	Session B - Surge 268	
1:45 pm	Density of a subclass of solitary numbers	Distribution of Descent Numbers of Fixed Point Free Involutions	
	Khoi Vo - CSU Long Beach	Gene B. Kim - U. of Southern California	
	The question of the density of the set of solitary numbers has been left open for a long time. It has been conjectured that its value is zero. Recently, in his paper published in 2015, Dr. Loomis has brought up new sub-classes of solitary numbers. In this presentation, we will proceed in proving the density of these sub-classes of solitary numbers are indeed all zero. This result helped us one step further on the way of proving the conjecture.	Recall that a permutation $\pi \in S_n$ has a descent at position <i>i</i> if $\pi(i + 1) > \pi(i)$, and the descent number of π , $d(\pi)$, is the number of positions <i>i</i> for which π has a descent at position <i>i</i> . It is well known that the distribution of $d(\pi)$ in S_n is asymptotically normal. In this talk, we discuss the distribution of $d(\pi)$ of a specific conjugacy class of S_n : the fixed point free involutions (otherwise known as matchings). We also explore an inter- esting bijection that we discovered.	
2:30 pm	Can One Hear the Shape of a Fractal Drum? Hypothesis	The Sound of Fractal Strings and the Riemann	
	Michel L. Lapidus, Distinguished Professor of Mathematics - UC Riverside		
	A well-known problem in mathematics and physics consists in understanding how the geo shape) of a musical instrument affects it sound. This gives rise to two related types of mat problems: direct spectral problems (how the shape of a drum affects its sound) and inverse problems (how one can recover the shape of a drum from its sound). Here, we will com- types of problems in the context of drums with fractal (that is, very rough) boundary show, in particular, that one can hear the fractal dimension of the boundary (a certain r its roughness) and in certain cases, a fractal analog of its length. In the special case of fractal strings (the one-dimensional situation), we will show that the corresponding inverse problem is intimately connected with the Riemann Hypothesis, which is arguably the mo- open problem in mathematics and whose solution will likely unlock deep secrets about numbers. In conclusion, we will briefly explain how this work eventually gave rise to a mat theory of complex fractal dimensions, which captures the vibrations that are intrinsic to be geometries and the prime numbers.		