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Abstract. First we give a truly short proof of the major blow up result [Si] on higher
dimensional semilinear wave equations. Using this new method, we also establish blow up
phenomenon for wave equations with a potential. This complements the recent interesting
existence result by [GHK], where the blow up problem was left open.

1. Introduction

We study the blow up of solutions to the following semilinear wave equation:

(1.1)

{
∆u− V u− utt + |u|p = 0 in Rn × (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Rn,

where ∆ = Σn
i=1∂

2/∂x2
i is the Laplace operator and V = V (x) is a potential. We consider

dimensions n ≥ 3 and exponents p ∈ (1, pc(n)), where pc(n) is the positive root of the
quadratic equation

(n− 1)p2 − (n+ 1)p− 2 = 0.

The number pc(n) is known as the critical exponent of the semilinear wave equation with
V = 0 (see [St] e.g.). The study of this equation has an interesting and exciting history.
We will only give a brief summary here and refer the reader to [St], [L], [DL] and a recent
paper [JZ] for details. Let the initial values be compactly supported and nonnegative. John
[J] proved that for n = 3 and 1 < p < pc(3), nontrivial solutions must blow up in finite
time. If p > pc(3), global solutions exist for small initial values. Glassey [G1-2] established
the same result in the case n = 2. Shaffer [Sc] proved that the critical power p = pc(n)
also belongs to the blow up case when n = 2, 3. In [GLS] the authors showed that when
p > pc(n) and n ≥ 3, (1.1) has global solutions for small initial values (see also [LS] and [T]).
When n ≥ 4 and 1 < p < pc(n), the blow up result was proven by Sideris in [Si]. The proof
is quite delicate, using sophisticated computation involving spherical harmonics. His proof
was simplified in the papers [R] and [JZ], where spherical harmonics still play an important
role. In this paper we discover a truly short proof of the blow up result using only a simple
test function. More importantly the proof carries over to the case when the potential V
is positive. It is a well known fact that the presence of potentials greatly increases the
complexity of wave motion. In fact there is not much progress in either the existence or blow
up problems in higher dimensional cases of (1.1). In the three dimensional case, it is known
that there exist global small solutions when p > pc(3) and V ∈ C∞

0 (R3) is nonnegative, see
[GHK]. In the same case, [ST] establishes, among other things, a blow up result for some
V ≤ 0. The current paper complements the result of [GHK] in dimension n = 3 and shows
the blow up of solutions in all dimensions n ≥ 3 when 1 < p < pc(n) and V is a nonnegative
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potential satisfying the following condition: There exist two functions φ0, φ1 ∈ C2(Rn) such
that

(1.2)

{
∆φ0 − V φ0 = 0, C−1

0 ≤ φ0(x) ≤ C0,
∆φ1 − V φ1 = φ1, 0 < φ1(x) ≤ C1(1 + |x|)−(n−1)/2e|x|,

with positive constants C0 and C1. We show (Lemma 3.1) that this condition is satisfied by
nonnegative potentials under very mild additional assumptions about regularity and behavior
at infinity.

We consider compactly supported nonnegative data (u0, u1) ∈ H1(Rn)× L2(Rn) :

(1.3) u0(x) ≥ 0, u1(x) ≥ 0 a.e., u0(x) = u1(x) = 0 for |x| > R.

Our main result is the following theorem.

Theorem 1.1. Let (u0, u1) satisfy (1.3) and V satisfy (1.2). Suppose problem (1.1) has a
solution (u, ut) ∈ C([0, T ), H1(Rn)× L2(Rn)) such that

supp(u, ut) ⊂ {(x, t) : |x| ≤ t+R}.

If 1 < p < pc(n), then T <∞.
In particular the conclusion holds if V is locally Hölder continuous and 0 ≤ V (x) ≤ C

1+|x|2+δ

for some C, δ > 0 and all x ∈ Rn.

When V = 0, we choose the functions{
φ0(x) = 1,
φ1(x) =

∫
Sn−1 e

x·ωdω, φ1(x) ∼ Cn|x|−(n−1)/2e|x| as |x| → ∞.

Since condition (1.2) holds, we can apply Theorem 1.1 and deduce the well known results of
John [J] and Sideris [Si].

The proof of Theorem 1.1 is given in Sections 2 and 3. To outline the method, we introduce

(1.4)

F0(t) =

∫
u(x, t)φ0(x)dx,

F1(t) =

∫
u(x, t)ψ1(x, t)dx, ψ1(x, t) = φ1(x)e

−t.

The assumptions on u imply that F0(t) and F1(t) are well-defined C2-functions for all t. By
a standard procedure, we derive a nonlinear differential inequality for F0(t). We also derive a
linear differential inequality for F1(t) and combine these to obtain a polynomial lower bound
on F0(t) as t→∞. Theorem 1.1 is a consequence of the lower bound and the blow up result
about nonlinear differential inequalities in Lemma 2.1.

In Section 3 we prove the existence of φ0 and φ1 in (1.2) when V is locally Hölder continuous
and 0 ≤ V (x) ≤ C

1+|x|2+δ for some C, δ > 0 and all x ∈ Rn. This relies on a latest sharp

estimate of heat kernels with a potential.

2. Proof of Theorem 1.1

We will use the following well known ODE result from p386[Si] e.g. to show that F0(t) in
(1.4) blows up in finite time.
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Lemma 2.1. Let p > 1, a ≥ 1, and (p− 1)a > q − 2. If F ∈ C2([0, T )) satisfies

(a) F (t) ≥ K0(t+R)a,

(b)
d2F (t)

dt2
≥ K1(t+R)−q[F (t)]p,

with some positive constants K0, K1, and R, then T <∞.

To show that F0 satisfies the above differential inequality for suitable a, q, we multiply
equation (1.1) by φ0 and integrate over Rn. Condition (1.2) on φ0 yields

d2F0(t)

dt2
=

∫
|u(x, t)|pφ0(x)dx.

Note that for a fixed t, u(·, t) ∈ H1
0 (Dt) where Dt is the support of u(·, t). Hence the above

equality is justified using integration by parts.
Estimating the right side by the Hölder inequality, we have∫

|u(x, t)|pφ0(x)dx ≥
∣∣∫ u(x, t)φ0(x)dx

∣∣p(∫
|x|≤t+R

φ0(x)dx
)p−1 .

By Condition(1.2),∫
|x|≤t+R

φ0(x)dx ≤ C0vol{x : |x| < t+R} = C0vol(Bn)(t+R)n.

Thus, we obtain the differential inequality

(2.1)
d2F0(t)

dt2
≥ L1(t+R)−n(p−1)|F0(t)|p

with some L1 > 0.
To show that F0 admits the lower bound in Lemma 2.1 (a), we relate d2F0/dt

2 to F1 using
again equation (1.1) and the Hölder inequality:

d2F0(t)

dt2
=

∫
|u(x, t)|pφ0(x)dx ≥

∣∣∫ u(x, t)ψ1(x, t)dx
∣∣p(∫

|x|≤t+R
[φ0(x)]−1/(p−1)[ψ1(x, t)]p/(p−1)dx

)p−1 .

By (1.2), the above becomes

(2.1′)
d2F0(t)

dt2
≥ C0 |F1(t)|p(∫

|x|≤t+R
[ψ1(x, t)]p/(p−1)dx

)p−1 .

The following lemmas estimate the numerator and denominator, respectively, and provide a
lower bound on d2F0/dt

2.

Lemma 2.2. Let V satisfy (1.2) and (u0, u1) satisfy (1.3). Assume that u meets the condi-
tions of Theorem 1.1. Then for all t ≥ 0,

F1(t) ≥
1

2
(1− e−2t)

∫
[u0(x) + u1(x)]φ1(x)dx+ e−2t

∫
u0(x)φ1(x)dx ≥ c > 0.
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Lemma 2.3. Let p > 1. Assume that φ0 and φ1 satisfy condition (1.2) Then for all t ≥ 0∫
|x|≤t+R

[ψ1(x, t)]
p/(p−1)dx ≤ C(t+R)n−1−(n−1)p′/2,

where p′ = p/(p− 1).

Taking the two lemmas for granted, we combine them with (2.1′) to obtain

d2F0(t)

dt2
≥ L2(t+R)n−1−(n−1)p/2, t ≥ 0,

where L2 > 0. Integrating twice, we have the final estimate

F0(t) ≥ L0(t+R)n+1−(n−1)p/2 +
dF0(0)

dt
t+ F0(0)

with some L0 > 0. When 1 < p < pc(n), it is easy to check that n + 1 − (n − 1)p/2 > 1.
Hence the following estimate is valid when t is large:

(2.2) F0(t) ≥ L0(t+R)n+1−(n−1)p/2.

Estimates (2.1), (2.2), and Lemma 2.1 with parameters

a ≡ n+ 1− (n− 1)p/2 and q ≡ n(p− 1)

imply Theorem 1.1 for all exponents p such that

(p− 1)(n+ 1− (n− 1)p/2) > n(p− 1)− 2 and p > 1.

It is easy to see that the solution set is p ∈ (1, pc(n)). The proof of Theorem 1.1 is complete,
assuming Lemma 2.2, 2.3 and the validity of (1.2). �

Proof of Lemma 2.2. We multiply equation (1.1) by a test function ψ ∈ C2(Rn+1) and
integrate over Rn × [0, t].

(2.3)

∫ t

0

∫
u(∆ψ − V ψ − ψss)dxds+

∫ t

0

∫
|u|pψ dxds

=

∫
(usψ − uψs)dx|s=t −

∫
(usψ − uψs)dx|s=0.

We will apply this identity to ψ = ψ1. Notice that for a fixed t, u(·, t) ∈ H1
0 (Dt) where Dt is

the support of u(·, t). Hence all terms involving lateral boundary vanish during integration
by parts. Notice also that

(ψ1)t = −ψ1, ∆ψ1 − V ψ1 − (ψ1)tt = 0,

and ∫
(usψ1 − u(ψ1)s)dx|s=t =

∫
(utψ1 + u(ψ1)t)dx− 2

∫
u(ψ1)tdx

=
d

dt

∫
uψ1dx+ 2

∫
uψ1dx.

Hence, (2.3) becomes

dF1(t)

dt
+ 2F1(t) =

∫
[u0(x) + u1(x)]φ1(x)dx+

∫ t

0

∫
|u(x, s)|pψ1(x, s)dxds.
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Since ψ1 > 0, we conclude that

dF1(t)

dt
+ 2F1(t) ≥

∫
[u0(x) + u1(x)]φ1(x)dx.

We multiply by e2t and integrate on [0, t]. Then

e2tF1(t)− F1(0) ≥ 1

2
(e2t − 1)

∫
[u0(x) + u1(x)]φ1(x)dx.

Dividing through by e2t, we obtain the lower bound in Lemma 2.2.

Proof of Lemma 2.3. Let I(t) be the integral in Lemma 2.3. Condition (1.2) shows that

I(t) ≤ area(Sn−1)C
p/(p−1)
1 e−p′t

∫ t+R

0

(1 + r)−(n−1)p′/2ep′rrn−1dr,

where p′ = p/(p− 1). Since r < r + 1, it is sufficient to show that

I(t) ≤ Ce−p′t

∫ t+R

0

(1 + r)n−1−(n−1)p′/2ep′rdr ≤ C(t+R)n−1−(n−1)p′/2.

This estimate is evident after splitting the last integral into two parts:∫ (t+R)/2

0

(1 + r)n−1−(n−1)p′/2erp′dr ≤ (1 + t+R)q1

∫ (t+R)/2

0

ep′rdr

≤ ep′R/2

p′
(1 + t+R)q1ep′t/2,

where q1 = max(0, n− 1− (n− 1)p′/2), and∫ t+R

(t+R)/2

(1 + r)n−1−(n−1)p′/2ep′rdr ≤ 2−q2(1 + t+R)n−1−(n−1)p′/2

∫ t+R

(t+R)/2

ep′rdr

≤ 2−q2ep′R

p′
(1 + t+R)n−1−(n−1)p′/2ep′t,

where q2 = min(0, n− 1− (n− 1)p′/2). This proves Lemma 2.3. �
To complete the proof of Theorem 1.1, it remains to prove the next Lemma 3.1. In the

special case V = 0, the next section is redundant.

3. existence of the two functions in (1.2)

In this section we prove

Lemma 3.1. Suppose V is locally Hölder continuous and 0 ≤ V (x) ≤ C
1+|x|2+δ for some

C, δ > 0 and all x ∈ Rn. Then exist two functions φ0 and φ1 satisfying (1.2), i.e.,{
∆φ0 − V φ0 = 0, C−1

0 ≤ φ(x) ≤ C0,
∆φ1 − V φ1 = φ1, 0 < φ1(x) ≤ C1(1 + |x|)−(n−1)/2e|x|.

Proof. Let H0 and H be the fundamental solutions of

∆u− u− ut = 0, ∆u− u− V u− ut = 0

in Rn × (0,∞), respectively. Then H0 = e−tG0 and H = e−tG, where G0 and G are the
fundamental solution of

∆u− ut = 0, ∆u− V u− ut = 0.
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By Theorem 1.1 (a) and Remark 1.1 in [Z1], there exists a positive constant c such that

cG0(x, t; y, 0) ≤ G(x, t; y, 0) ≤ G0(x, t; y, 0) =
cn
tn/2

e−
|x−y|2

4t

for all x, y ∈ Rn and t > 0. We should mention that the global lower bound is nontrivial
since one needs to keep the exact coefficient 1/4 in each exponential term.

Hence we have the following global bounds:

(3.1) cH0(x, t; y, 0) ≤ H(x, t; y, 0) ≤ H0(x, t; y, 0).

Let µ0 be a positive solution of ∆µ0 − µ0 = 0 such that µ0(x) ∼ e|x|/(1 + |x|)(n−1)/2. The
existence of such µ0 is well known and explained in the introduction. Consider the function

(3.2) u(x, t) ≡
∫

Rn

H(x, t; y, 0)µ0(y)dy.

Since for fixed (x, t), H(x, t; y, 0) decays super exponentially near infinity, the above integral
is well defined. Moreover, u is a solution to

(3.3) ∆u− u− V u− ut = 0.

By (3.1) and (3.2) we have

c

∫
Rn

H0(x, t; y, 0)µ0(y)dy ≤ u(x, t) ≤
∫

Rn

H0(x, t; y, 0)µ0(y)dy.

Since ∆µ0 − µ0 = 0, it is clear from differentiation that

µ0(x) =

∫
Rn

H0(x, t; y, 0)µ0(y)dy,

even though the righthand side apparently depends on time. Indeed,

∂

∂t

∫
Rn

H0(x, t; y, 0)µ0(y)dy = −
∫

Rn

(∆y − 1)H0(x, t; y, 0)µ0(y)dy

= −
∫

Rn

H0(x, t; y, 0)(∆y − 1)µ0(y)dy = 0.

Here we observe that integration by parts is legitimate since, for fixed t > 0 and x,
H0(x, t; y, 0) has super exponential decay near infinity while µ0 only grows exponentially.

Hence

(3.4) cµ0(x) ≤ u(x, t) ≤ µ0(x).

Differentiating (3.3) with respect to t, we obtain{
∆ut − ut − V ut − (ut)t = 0, (x, t) ∈ Rn × (0,∞),

ut|t=0 = ∆µ0 − µ0 − V µ0 ≤ 0.

Here we remark that under our assumption that V is locally Hölder continuous, it is not clear
whether utt exists. However, we can work on the finite difference of ut and use a standard
approximation argument to achieve the same result.

By the maximum principle, we know that ut(x, t) ≤ 0 everywhere. This and (3.4) show
that u(x, t) converges to a function φ1 = φ1(x) as t→∞. Moreover,

(3.5) cµ0(x) ≤ φ1(x) ≤ µ0(x).
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We are going to show that

(3.6) ∆φ1 − φ1 − V φ1 = 0.

To this end, let us consider the function w = w(x, t) =
∫ t+1

t
u(x, s)ds. Direct computation

shows that

∆w(x, t)− w(x, t)− V (x)w(x, t) = u(x, t+ 1)− u(x, t).

It is also clear that w(x, t) → φ1(x) when t→∞. Let η = η(x) be any function in C∞
0 (Rn).

Then we obtain∫
Rn

[w(x, t)∆η(x)− w(x, t)η(x)− V (x)w(x, t)η(x)]dx =

∫
Rn

[u(x, t+ 1)− u(x, t)]η(x)dx.

Letting t→∞, we have∫
Rn

[φ1(x)∆η(x)− φ1(x)η(x)− V (x)φ1(x)η(x)]dx = 0.

Since η is arbitrary and φ1 is locally bounded, we know that φ1 is a classical solution to
(3.6), which also satisfies (3.5). This proves the existence of φ1 in (1.2). The existence of φ0

under our assumption is well known (see [Z2] Theorem B e.g.). In fact it can be proven by
exactly the same method except that we drop the term −u everywhere. �

Remark 3.1. The decay condition for V is Lemma 3.1 can be generalized. In [Z1],
a necessary and sufficient condition for the validity of the sharp comparison result right
before (3.1) was found for all nonnegative V . This class of V resembles the Kato class in
mathematical physics. It overlaps with Ln/2(Rn). But they are not the same.
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