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Abstract: We consider a parabolic equation with a drift term�u+b∇u−ut = 0. Under
the condition divb = 0, we prove that solutions possess dramatically better regularity
than those provided by standard theory. For example, we prove continuity of solutions
when not even boundedness is expected.

1. Introduction

We aim to study the parabolic equation

�u(x, t)+ b(x, t)∇u(x, t)− ut (x, t) = 0, (x, t) ∈ Rn × (0,∞), (1.1)

where � is the standard Laplacian, b is a vector valued function and n ≥ 2. Standard
existence and regularity theory for this kind of equations has existed for several decades.
For instance when |b| ∈ Lp(Rn), p > n, the fundamental solution of (1.1) has a local in
time Gaussian lower and upper bound ([A]). Hence bounded solutions are Hölder con-
tinuous. In this paper we study the regularity problem of (1.1) for much more singular
functions b.

Several factors provide strong motivations for studying these kind of problems. The
first is to investigate a possible gain of regularity in the presence of the singular drift
term b. This line of research has been followed in the papers [St, KS, O, CrZ, Se].
Under the condition |b| ∈ Ln(Rn), Stampacchia [St] proved that bounded solutions
of �u + b∇u = 0 are Hölder continuous. In the paper [CrZ], Cranston and Zhao
proved that solutions to this equation are continuous when b is in a suitable Kato class,
i.e. limr→0 supx

∫
|x−y|≤r

|b(y)|
|x−y|n−1 dy = 0. In the paper [KS] Kovalenko and Semenov

proved the Hölder continuity of solutions when |b|2 is independent of time and is suffi-
ciently small in the form sense. See the next paragraph for a statement of their condition.
This result was recently generalized in [Se] to equations with leading term in divergence
form. In [O], Osada proved, among other things, that the fundamental solution of (1.1)
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has global Gaussian upper and lower bound when b is the derivative of bounded functions
(in distribution sense) and divb = 0. More recently in the paper [LZ], Hölder continuity
of solutions to (1.1) was established when |b|2 is form bounded and div b = 0. See the
next page for a description. We should mention that many authors have also studied the
regularity property of the related heat equation

�u+ V u− ut = 0.

Here V is a singular potential. We refer the reader to the papers by Aizenman and Simon
[AS], Simon [Si] and references therein. It is worth remarking that the current situation
exhibits fundamentally new phenomena comparing with that case.

Another motivation comes from the study of nonlinear equations involving gradient
structures. These include the Navier Stokes equations, which can be regarded as systems
of parabolic equations with very singular first order terms. Our result provides a different
proof of the well known fact that weak solutions to the two dimensional Navier-Stokes
equations are smooth (Corollary 2). For the three dimensional Navier-Stokes equations,
it is interesting to note that the singularity of the velocity field is covered by our theorem
(see the discussion at the end of the introduction).

In this paper we actually go much beyond the above kinds of singularities. A special
case of our result states that, under the assumption that divb = 0, weak solutions of
(1.1) are bounded as long as b ∈ Lploc(Rn) with p > n/2, n ≥ 4. For a time dependent
vector field b ∈ L2

loc(R
n × (0,∞)), it suffices to assume the general form bounded

condition: for a fixed m ∈ (1, 2], and φ ∈ C∞
0 (R

n × (0,∞)),

∫ ∫

Rn
|b(x, t)|mφ2dxdt ≤ k

∫ ∫

Rn
|∇xφ(x, t)|2dxdt,

where k is independent ofφ. Whenm = 2 and k is sufficiently small, we are in a situation
covered by the paper [KS] and [LZ]. The most interesting case is when m is close to 1.
It is widely assumed that solutions of (1.1) can be regular only if the above inequality
holds for m ≥ 2. However Theorem 1.1 below proves that weak solutions to (1.1) are
bounded as long as m > 1. In fact they are Lipschitz in the spatial direction. Hence b
can be almost twice as singular as allowed by standard theory, provided that divb = 0.

The above class of the drift term b includes and much exceeds the generalized Kato
class that has been studied in several interesting papers [ChZ, CrZ, G]. These functions in
general are not the derivative of bounded functions considered in [O] either (see Remark
1.1 below). Here is an example. Let b = b(x1, x2, x3) be a vector field in R3. If b has a
local singularity of the form c

|x|1+ε with a small ε > 0, then b is in this class. In contrast

all previous results at best allow singularities in the form of c
|x| .

In addition to the unexpected regularity result, we also prove that the fundamental
solution of (1.1) satisfies a global Gaussian like upper bound. An interesting feature of
the bound is that it is not just a perturbation. This means that the global bound holds when
b satisfies (1.2) with no additional smallness condition. Using the approximation result
in Sect. 2, the fundamental solution here means the minimum of pointwise limits of the
fundamental solution of (1.1) with b replaced by a sequence of smooth and divergence
free vector fields. An interesting fact is that the bound is no longer Gaussian, reflecting
the contribution given by the singularity of the drift term b.

In the Kato class case, local in time Gaussian bounds for the heat kernel with singular
drift terms were obtained in [Z], which was extended in [LS] recently.
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In this paper we use the following definition of weak solutions.

Definition 1.1. Let D ⊆ Rn be a domain and T ∈ (0,∞]. A function u such that
u, |∇u| ∈ L2

loc(D×[0, T ]) is a weak solution to (1.1) if: for anyφ ∈ C∞
0 (D×(−T , T )),

there holds
∫ T

0

∫

D

(u∂tφ − ∇u∇φ)dxdt +
∫ T

0

∫

D

b∇u φ dxdt = −
∫

D

u0(x)φ(x, 0)dx.

The assumption that ∇u is square integrable can be weakened. However we are not
seeking full generality here.

Now we are ready to state the main theorem of the paper.

Theorem 1.1. Suppose b satisfies:

(1) b ∈ L2
loc(R

n × [0,∞)) and divb(·, t) = 0;
(2) for a fixed m ∈ (1, 2] and any φ ∈ C∞(Rn × (0,∞)) with compact support in the

spatial direction,
∫ ∫

Rn
|b|mφ2dxdt ≤ k

∫ ∫

Rn
|∇φ|2dxdt, (1.2)

where k is independent of φ. Then the following statements hold.

(i) Weak solutions of (1.1) are locally bounded.
(ii) Weak solutions of (1.1) are Hölder continuous when b = b(x) and m = 2.

(iii) LetG be the fundamental solution of (1.1). There exist positive constants c1 and c2
such that, for any x, y ∈ Rn and t > s > 0,

G(x, t; y, s) ≤






c1(t−s)
[(t−s)|B(x,√t−s)|]m/(2(m−1))

[

exp
(
−c2

|x−y|m
(t−s)m−1

)
+ exp

(

−c2
|x−y|2
t−s

)]

, t − s ≤ 1,

c1
|B(x,√t−s)|

[

exp
(
−c2

|x−y|m
(t−s)m−1

)
+ exp

(

−c2
|x−y|2
t−s

)]

, t − s ≥ 1.

Remark 1.1. Note that the above upper bound reduces to the standard Gaussian upper
bound when m = 2. This case was recently investigated in [LZ]. Part (ii), follows from
[LZ], is here for completeness. If b ∈ Lp(Rn) with p > n/2, then it is well known that
(1.2) is satisfied. See [Si]. Hence we have

Corollary 1. Let u be a weak solution of the elliptic equation�u+ b∇u = 0. Suppose
b ∈ Lploc(Rn), p > n/2, n ≥ 4, and divb = 0. Then u is a bounded function.

Note that without the assumption of divb = 0, it is known ([St]) that u is Hölder
continuous when b ∈ Lploc with p = n.

Remark 1.2. Due to its importance and potential applications, we single out part of the
result of Theorem 1.1 in the three dimensional case as a corollary.

Corollary 2. Let D ⊆ Rn, n = 2, 3. Assume |b| ∈ L∞([0, T ], L2(D)) and divb = 0.
Suppose u is a weak solution of (1.1) in D × [0, T ]. Then u is locally bounded. In par-
ticular weak solutions to the two dimensional Navier-Stokes equation is smooth when
t > 0.
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Proof. It is enough to prove that the above condition on b alone implies that condition
(1.2) is satisfied for some m > 1. Here is a proof when n = 3. The case when n = 2
is dealt with similarly. Let us take m = 4/3 and p = 2/m = 3/2. Then, by Hölder’s
inequality,

∫ T

0

∫

D

|b|4/3φ2dxdt ≤
∫ T

0

(∫

D

|b|mpdx
)1/p (∫

D

φ2p/(p−1)dx

)(p−1)/p

dt

=
∫ T

0

(∫

D

|b|2dx
)2/3 (∫

D

φ6dx

)1/3

dt

≤ sup
t∈[0,T ]

(∫

D

|b|2(x, t)dx
)2/3 ∫ T

0

(∫

D

φ6dx

)1/3

dt

≤ C sup
t∈[0,T ]

(∫

D

|b|2(x, t)dx
)2/3 ∫ T

0

∫

D

|∇φ|2dxdt.

The last step is by Sobolev imbedding.
Now let u = (u1(x, t), u2(x, t)) be a weak solution to the 2 − d Navier-Stokes

equation

�u− u∇u− ∇P − ut = 0, div u = 0.

Then the curl of u, denoted by w, is a scalar satisfying

�w + u∇w − wt = 0.

By definition, u ∈ L∞((0,∞), L2(R2)). So Theorem 1.1 shows thatw is bounded when
t > 0. Hence u is smooth too when t > 0. 	


Discussion. Here we would like to speculate on some possible links between the regu-
larity problem of the 3-d Navier-Stokes equation and Corollary 2. Let u be a Leray-Hopf
solution to the 3-d Navier-Stokes equation

�u− u∇u− ∇P − ut = 0, div u = 0, |u(·, 0)| ∈ L2(R3).

Then it is well known that ‖u(·, t)‖L2(Rn) is non-increasing and hence uniformly
bounded. Therefore assuming only the pressure term P is sufficiently regular locally,
then Corollary 2 implies that u is bounded and hence smooth. It seems that all previous
regularity results either make some global restrictions on P or on the initial value u0.
We mention the recent interesting result of Seregin and Sverak [SS]. The authors proved
that u is smooth provided that u0 ∈ W 1,2 and P is bounded from below. See also [BG].
It would be interesting to see how far the method in this paper may go for the system
case.

The rest of the paper is organized as follows. In Sect. 2 we show some approximation
results of solutions of (1.1) under some singular drift term. Theorems 1.1 will be proven
in Sect. 3.
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2. Preliminaries

Since the drift term b in (1.1) can be much more singular than those allowed by the stan-
dard theory, the existence and uniqueness of weak solutions of (1.1) can not be taken
for granted. In order to proceed first we need to prove some approximation results. The
next proposition shows that Eq. (1.1) possesses weak solutions even when b satisfies the
assumption of Theorem 1.1.

Proposition 2.1. Let b be given as in Theorem 1.1 and bk be a sequence of smooth
divergence free vector fields. Suppose bk → b in L2(D × [0, T ]) norm and let uk be
the unique solution to






�uk + bk∇uk − ∂tuk = 0, in D × [0, T ]
uk(x, t) = 0, (x, t) ∈ ∂D × [0, T ],
uk(x, 0) = u0(x), u0 ∈ L2(Rn).

(2.1)

Then there exists a subsequence of {uk}, still denoted by {uk}, which converges weakly
in L2(D × [0, T ]) to a solution of (1.1).

Proof. Since divbk = 0, multiplying Eq. (2.1) by uk and integrating, one easily obtains

∫ T

0

∫

D

|∇uk|2dxdt +
∫

D

u2
k(x, T )dx =

∫

D

u2
0(x)dx.

Hence there exists a function u such that u, |∇u| ∈ L2(D × [0, T ]) and a subsequence
of {uk}, still denoted by {uk}, such that

uk → u, weakly in L2(D × [0, T ]);
∇uk → ∇u, weakly in L2(D × [0, T ]).

We will prove that u is a solution to (1.1).
Clearly uk satisfies, for any φ ∈ C∞

0 (D × [0, T ),

∫ T

0

∫

D

(uk∂tφ − ∇uk∇φ)dxdt +
∫ T

0

∫

D

bk∇uk φ dxdt

= −
∫

D

u0(x)φ(x, 0)dx. (2.2)

By the weak convergence of uk and ∇uk , we have

∫ T

0

∫

D

(uk∂tφ − ∇uk∇φ)dxdt →
∫ T

0

∫

D

(u∂tφ − ∇u∇φ)dxdt, k → ∞. (2.3)

Next, notice that

∫ T

0

∫

D

bk∇uk φdxdt −
∫ T

0

∫

D

b∇u φdxdt

=
∫ T

0

∫

D

(bk − b)∇uk φdxdt +
∫ T

0

∫

D

b(∇uk − ∇u) φdxdt.
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By the strong convergence of bk and the weak convergence of ∇uk , we see that
∫ T

0

∫

D

ukbk∇φdxdt −
∫ T

0

∫

D

b∇u φdxdt → 0, k → ∞. (2.4)

By (2.2) and (2.4) we obtain
∫ T

0

∫

D

(u∂tφ − ∇φ)dxdt +
∫ T

0

∫

D

b∇u φdxdt = −
∫

D

u0(x)φ(x, 0)dx,

i.e. u is a solution to (1.1). 	

Proposition 2.2. Suppose b ∈ C∞(Rn × [0,∞)) ∩ L∞ and divb = 0. Let G be the
fundamental solution of (1.1). Then, for any x ∈ Rn and t > s > 0,

∫

Rn
G(x, t; y, s)dy = 1,

∫

Rn
G(x, t; y, s)dx = 1.

Proof. Since b is smooth and bounded,G is smooth and has local Gaussian upper bound.
Hence we have

d

ds

∫

Rn
G(x, t; y, s)dy =

∫

Rn
[−�yG(x, t; y, s)+ b(y, s)∇yG(x, t; y, s)]dy = 0.

The other equality is proved similarly. 	

Proposition 2.3. LetQ ≡ D× [0, T ] withD ⊆ Rn being a smooth domain and T > 0.
Suppose that b ∈ C∞(Q) ∩ L∞(Q) and f ∈ L1(Q). Suppose u is a weak solution to






�u+ b∇u− ut = f, in Q

u(x, t) = 0, (x, t) ∈ ∂D × [0, T ]
u(x, 0) = 0.

(2.5)

Here the boundary condition is in the sense that u ∈ L2([0, T ],W 1,2
0 (D)). Then

u(x, t) = −
∫ t

0

∫

D

G(x, t; y, s)f (y, s)dyds.

Here G is the Green’s function of (1.1) with initial Dirichlet boundary condition in Q.

Proof. This result is trivial when f is bounded and smooth. When f is just L1, it is
known too. Here we present a proof for completeness.

Let ψ be a smooth function in Q. Since b is bounded and smooth, standard theory
shows that the following backward problem has a unique smooth solution:






�η − b∇η + ηt = ψ, in Q

η(x, t) = 0, (x, t) ∈ ∂D × [0, T ]
u(x, T ) = 0.

(2.6)

Moreover

η(y, s) = −
∫ T

s

∫

D

G(x, t; y, s)ψ(x, t)dxdt. (2.7)
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Since u is a weak solution to (2.5), we have, by definition
∫

Q

[−∇u∇η + b∇uη + uηt ]dxdt =
∫

Q

f ηdxdt.

Using integration by parts we have
∫

Q

u[�η − b∇η + ηt ]dxdt =
∫

Q

f ηdxdt.

By this, (2.6) and (2.7), we deduce
∫

Q

uψdxdt = −
∫ T

0

∫

D

f (y, s)

∫ T

s

∫

D

G(x, t; y, s)ψ(x, t)dxdt.

That is
∫

Q

uψdxdt = −
∫ T

0

∫

D

∫ t

0

∫

D

G(x, t; y, s)f (y, s)dyds ψ(x, t)dxdt.

The proposition follows since ψ is arbitrary. 	

Proposition 2.4. Suppose u is a weak solution of Eq. (1.1) in the cubeQ = D× [0, T ],
where b satisfies the condition in Theorem 1.1. HereD is a domain in Rn. Then u is the
L1
loc limit of functions {uk}. Here {uk} is a weak solution of (1.1) in which b is replaced

by smooth, divergence free bk such that bk → b strongly in L2(Q), k → ∞.

Proof. First we select a sequence of smooth, bounded, divergence free bk such that
bk → b strongly in L2(Q), k → ∞. Let D′ ⊂ D be a smooth sub-domain of D. Then
the following problem has a weak solution uk:






�uk + bk∇uk − (uk)t = 0, in Q′ = D′ × (0, T )
uk(x, t) = u(x, t), (x, t) ∈ ∂D′ × [0, T ]
uk(x, 0) = u(x, 0).

(2.8)

Clearly uk − u is a weak solution to the following:





�(uk − u)+ bk∇(uk − u)− (uk − u)t = (b − bk)∇u, in Q′ = D′ × (0, T )
(uk − u)(x, t) = 0, (x, t) ∈ ∂D′ × [0, T ]
(uk − u)(x, 0) = 0.

(2.9)

Here the boundary condition is in the sense that uk − u ∈ L2([0, T ],W 1,2
0 (D′)).

By our assumptions on b, bk and ∇u, we know that

(b − bk)∇u ∈ L1(Q′).

Since bk is bounded and smooth, Proposition 2.3 shows that

(uk − u)(x, t) = −
∫ t

0

∫

D′
G′
k(x, t; y, s)(b − bk)∇u(y, s)dyds.
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Here G′
k is the Green’s function of �u + bk∇u − ut = 0 in Q′ with Dirichlet initial

boundary value condition. By Proposition 2.2, or the local version of it, we have
∫

D′
G′
k(x, t; y, s)dx ≤ 1.

Hence
∫

D′
|uk − u|(x, t)dx ≤

∫ t

0

∫

D′
|b − bk||∇u(y, s)|dyds.

Hence
∫

D′
|uk − u|(x, t)dx ≤ ‖b − bk‖L2(Q′)‖∇u‖L2(Q′) → 0.

This proves the proposition. 	


3. Proof of Theorem 1.1

Using the approximation result of Sect. 2, we may and do assume that the vector field
b is bounded and smooth.

The beginning of the proof generally follows the classical strategy of using test
functions to establish L2 − L∞ bounds and weighted estimates for solutions of (1.1).
However it is well known that this method does not provide a sharp global upper bound
in the presence of lower order terms and the vector field b can not be as singular as
we are assuming. For instance there is usually an extraneous ect term when t is large.
Nevertheless, by using the special structure of the drift term and exploiting a special
role of the divergence of b, we show that this classical method can be refined to derive
sharp global bounds. In order to overcome the singularity of the drift term b, we need
to construct a refined test function. This is the key step in proving the bounds.

We divide the proof into five steps. For the sake of clarity we draw a flow chart for
the proof:

Step 1: Energy estimates using refined test function
⇒ Step 2: L∞ bound for weak solutions ((i) of Theorem 1.1)
⇒ Step 3: Weighted estimates
⇒ Step 4: Gaussian like upper bound ((iii) of Theorem 1.1);
Step 5: Proof of (ii)

Step 1. Caccioppoli inequality (energy estimates).
Let u be a solution of (1.1) in the parabolic cube Qσr = B(x, σr)× [t − (σ r)2, t].

Here x ∈ Rn, σ > 1, r > 0 and t > 0.
By direct computation, for any rational number p ≥ 1, which can be written as the

quotient of two integers with the denominator being odd, one has

�up + b∇up − ∂tu
p = p(p − 1)|∇u|2up−2. (3.1)

Here the condition on p is to ensure that up makes sense when u changes sign. One
can also just work on positive solutions now and prove the boundedness of all solutions
later. See Step 6 at the end of the section.
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Choose ψ = φ(y)η(s) to be a refined cut-off function satisfying

supp φ ⊂ B(x, σr); φ(y) = 1, y ∈ B(x, r); |∇φ|
φδ

≤ C

((σ − 1)r)
, 0 ≤ φ ≤ 1;

here δ ∈ (0, 1). By scaling it is easy to show that such a function exists,

supp η ⊂ (t − (σ r)2, t); η(s) = 1,

s ∈ [t − r2, t]; |η′| ≤ 2/((σ − 1)r)2; 0 ≤ η ≤ 1.

Denoting w = up and using wψ2 as a test function on (3.1), one obtains
∫

Qσr

(�w + b∇w − ∂sw)wψ
2dyds = p(p − 1)

∫

Qσr

|∇u|2w2u−2 ≥ 0.

Using integration by parts, one deduces
∫

Qσr

∇(wψ2)∇wdyds ≤
∫

Qσr

b∇w(wψ2)dyds −
∫

Qσr

(∂sw)wψ
2dyds. (3.2)

By direct calculation,
∫

Qσr

∇(wψ2)∇wdyds =
∫

Qσr

∇[(wψ)ψ]∇wdyds

=
∫

Qσr

[ ∇(wψ)( ∇(wψ)− (∇ψ)w)+ wψ∇ψ∇w]dyds

=
∫

Qσr

[
|∇(wψ)|2 − |∇ψ |2w2

]
dyds.

Substituting this to (3.2), we obtain
∫

Qσr

|∇(wψ)|2dyds ≤
∫

Qσr

b∇w(wψ2)dyds −
∫

Qσr

(∂sw)wψ
2dyds

+
∫

Qσr

|∇ψ |2w2dyds. (3.3)

Next notice that
∫

Qσr

(∂sw)wψ
2dyds = 1

2

∫

Qσr

(∂sw
2)ψ2dyds

= −
∫

Qσr

w2φ2η∂sηdyds + 1

2

∫

B(x,σr)

w2(y, t)φ2(y)dy.

Combining this with (3.3), we see that
∫

Qσr

|∇(wψ)|2dyds + 1

2

∫

B(x,σr)

w2(y, t)φ2(y)dy

≤
∫

Qσr

(|∇ψ |2 + η∂sη) w
2dyds +

∫

Qσr

b(∇w)(wψ2)dyds ≡ T1 + T2. (3.4)
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The first term on the right-hand side of (3.4) is already in good shape. So let us
estimate the second term as follows:

T2 =
∫

Qσr

b(∇w)(wψ2)dyds

= 1

2

∫

Qσr

bψ2∇w2dyds = −1

2

∫

Qσr

div(bψ2)w2dyds

= −1

2

∫

Qσr

divb(ψw)2dyds − 1

2

∫

Qσr

b∇(ψ2)w2dyds

= −1

2

∫

Qσr

divb(ψw)2dyds −
∫

Qσr

b(∇ψ)ψw2dyds

= −
∫

Qσr

b(∇ψ)ψw2dyds.

Here we just used the assumption that divb = 0.
The next paragraph contains the key argument of the paper.
Notice that for δ ∈ (0, 1), a ∈ (0, 2) and m ∈ (1, 2],

T2 ≤ |
∫

Qσr

b(∇ψ)ψw2dyds|

= |
∫

Qσr

bψ1+δ|w|2−a∇ψ
ψδ

|w|adyds|

≤
[∫

Qσr

|b|mψ(1+δ)m|w|(2−a)mdyds
]1/m

×
[∫

Qσr

(
|∇ψ |
ψδ

)m/(m−1)|w|am/(m−1)dyds

](m−1)/m

.

Take a, δ so that

(2 − a)m = 2, (1 + δ)m = 2.

Then

am/(m− 1) = a
2

2 − a

/(
2

2 − a
− 1

)

= 2, δ = (2/m)− 1 < 1.

These and the assumption on the cut-off function ψ show that

T2 ≤
[∫

Qσr

|b|m(ψw)2dyds
]1/m [∫

Qσr

c

[(σ − 1)r]m/(m−1)
w2dyds

](m−1)/m

.

This implies for any ε > 0,

T2 ≤ εm
∫

Qσr

|b|m(ψw)2dyds + C
ε−m/(m−1)

[(σ − 1)r]m/(m−1)

∫

Qσr

w2dyds. (3.5)

By our assumptions on b,
∫

Qσr

|b|m(ψw)2dyds ≤ k

∫

Qσr

|∇(ψw)|2dyds.
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Substituting the above to (3.5), we can find k1 < 1/2 and k2 > 0 such that

|T2| = |
∫

Qσr

b(∇w)(wψ2)dyds|

≤ k1

∫

Qσr

|∇(ψw)|2dyds + k2
1

((σ − 1)r)m/(m−1)

∫

Qσr

w2dyds. (3.6)

Combining (3.4) with (3.6), we reach
∫

Qσr

|∇(wψ)|2dyds +
∫

B(x,σr)

w2(y, t)φ2(y)dy

≤ C

((σ − 1)r)m/(m−1)

∫

Qσr

w2dyds, r ≤ 1, (3.7)

∫

Qσr

|∇(wψ)|2dyds+
∫

B(x,σr)

w2(y, t)φ2(y)dy ≤ C

((σ − 1)r)2

∫

Qσr

w2dyds, r ≥ 1.

(3.7′)

Step 2. L2 −L∞ bounds. It is known that (3.7) implies the following L2 −L∞ estimate
via Moser’s iteration.

sup
Qr

u2 ≤ C
1

|Qr |m/(2(m−1))

∫

Q2r

u2dyds, r ≤ 1. (3.8)

Here m > 1. Also, (3.7′) shows

sup
Qr

u2 ≤ C
1

|Qr |
∫

Q2r

u2dyds, r ≥ 1. (3.8′)

Indeed, by Hölder’s inequality,

∫

Rn
(φw)2(1+(2/n)) ≤

(∫

Rn
(φw)2n/(n−2)

)(n−2)/n (∫

Rn
(φw)2

)2/n

.

Using the Sobolev inequality, one obtains

∫

Rn
(φw)2(1+(2/n)) ≤ C

(∫
(φw)2

)2/n (∫

Rn
|∇(φw)|2

)

.

The last inequality, together with (3.7) implies, for some C1 > 0,

∫

Qσ ′r
u2pθ ≤ C

(

C1(rτ )
−m/(m−1)

∫

Qσr

u2p
)θ
,

where θ = 1 + (2/n).
When the dimension n is odd or u ≥ 0, we set τi = 2−i−1, σ0 = 1, σi = σi−1 − τi =

1 −�i1τj , p = θi . The above then yields, for some C2 > 0,

∫

Qσi+1r (x,t)

u2θi+1 ≤ C

(

Ci+1
2 r−m/(m−1)

∫

Qσi r (x,t)

u2θi
)θ

.
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After iterations the above implies

(∫

Qσi+1r (x,t)

u2θi+1

)θ−i−1

≤ C�θ
−j−1

C
−�(j+1)θ−j−1

2 (r−m/(m−1))�θ
−j
∫

Qr

u2.

Letting i → ∞ and observing that �∞
j=0θ

−j = (n+ 2)/2, we obtain

sup
Qr/2

u2 ≤ C

rm(n+2)/(2(m−1))

∫

Qr

u2.

This proves (3.8) either for odd n or for all n and nonnegative u. Similarly one proves
(3.8′).

In case n is even and u changes sign, we just regard u as a solution of Eq. (1.1) in
Rn+1 × (0, T ). Then the L∞ bound of u follows from the above.

Step 3. Weighted estimate. Let G be the heat kernel of (1.1). For a fixed λ ∈ R and a
fixed bounded function ψ such that |∇ψ | ≤ 1, we write

fs(y) = eλψ(y)
∫
G(y, s; z, 0)e−λψ(z)f (z)dz.

Here and later the integral takes place in Rn if no integral region is specified.
Direct computation shows that

∂s ||fs ||22 = 2
∫
(∂sfs(y))fs(y)dy

= 2
∫
eλψ(y)fs(y)

∫
∂sG(y, s; z, 0)e−λψ(z)f (z)dzdy

= 2
∫
eλψ(y)fs(y)�y

(∫
G(y, s; z, 0)e−λψ(z)f (z)dz

)

dy

+2
∫
eλψ(y)fs(y)b(y)∇y

(∫
G(y, s; z, 0)e−λψ(z)f (z)dz

)

dy

≡ J1 + J2. (3.9)

Following standard computation, we see that

J1 ≤ −2
∫

|∇fs(y)|2dy + 2cλ2
∫
fs(y)

2dy. (3.10)

Next we estimate J2. For simplicity we write

u(y, s) = e−λψ(y)fs(y),
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which is a solution to �u+ b∇u− ∂tu = 0 in Rn × (0,∞). Then

J2 = 2
∫
eλψ(y)fs(y)b(y)∇yu(y, s)dy

= −2
∫
div

(
eλψ(y)fs(y)b(y)

)
u(y, s)dy

= −2
∫

∇(eλψ(y)fs(y)
)
b(y)u(y, s)dy − 2

∫
eλψ(y)fs(y)u(y, s)divb(y)dy

= −2λ
∫
eλψ(y)fs(y)u(y, s)∇ψ(y)b(y)dy

−2
∫
eλψ(y)u(y, s)∇fs(y)b(y)dy − 2

∫
fs(y)

2divb(y)dy

= −2λ
∫
fs(y)

2∇ψ(y)b(y)dy − 2
∫
fs(y)∇fs(y)b(y)dy − 2

∫
fs(y)

2divb(y)dy

= −2λ
∫
fs(y)

2∇ψ(y)b(y)dy −
∫
fs(y)

2divb(y)dy.

In the last step we have used integration by parts.
Hence

J2 = −2λ
∫
fs(y)

2∇ψ(y)b(y)dy. (3.11)

Using an argument similar to that in the middle of Step 2, we see that

J2 ≤ 2λ
∫

Qσr

|bf 2−a
s ∇ψf as |dy

≤
[∫

|b|mf (2−a)m
s dy

]1/m

2λ

[∫
(|∇ψ |)m/(m−1)f

am/(m−1)
s dy

](m−1)/m

.

Here, as before a ∈ (0, 2) and (2 − a)m = 2, am/(m− 1) = 2.
It follows that, for any ε > 0,

J2 ≤ ε

∫
|b|mfs(y)2dy + cε−1/(m−1)λm/(m−1)

∫
fs(y)

2dy.

Combining this with the estimate for J1, we have

∂s ||fs ||22 ≤ −2
∫

|∇fs(y)|2dy + c1(λ
m/(m−1) + λ2)

∫
fs(y)

2dy + ε

∫
|b|mfs(y)2dy.

Here c1 may depend on ε.
Writing

F(s) ≡ ||fs ||22, H(s) ≡ −2
∫

|∇fs(y)|2dy + ε

∫
|b|mfs(y)2dy,

the above differential inequality can be written as

∂sF (s) ≤ c1(λ
m/(m−1) + λ2)F (s)+H(s).
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Hence

F(s) ≤ ecz(λ)sF (0)+ eCz(λ)s
∫ s

0
e−z(λ)τH(τ)dτ,

where

z(λ) ≡ λm/(m−1) + λ2.

That is

F(s) ≤ ecz(λ)sF (0)+ eCz(λ)s
[

− 2
∫ s

0

∫
|∇(fτ (y)e−z(λ)τ/2)|2dydτ

+ε
∫ s

0

∫
|b|m(fs(y)e−z(λ)τ/2)2dydτ

]

.

Taking ε sufficiently small and using the condition on b we conclude that

||fs ||22 ≤ ecz(λ)s ||f ||22 = ec(λ
m/(m−1)+λ2)s ||f ||22. (3.12)

Step 4. Gaussian-like upper bound. For simplicity we only prove the bound for
G(x, t; y, 0). We just prove the inequality t ≤ 1. When t ≥ 1, the situatioin is sim-
pler and the proof is omitted. Now consider the function

u(y, s) = e−λψ(y)fs(y)

which is a solution to �u+ b∇u− ∂tu = 0 in Rn × (0,∞). Here ψ is a function such
that |∇ψ | ≤ 1 and whose precise values are to be chosen later. Applying (3.8) with
Q√

t/2(x, t) = B(x,
√
t/2)× (3t/4, t), we obtain

u(x, t)2 ≤ C
1

|Q√
t/2(x, t)|m/(2(m−1))

∫ t

3t/4

∫

B(x,
√
t/2)

u2.

From (3.12), it follows that

e2λψ(x)u(x, t)2 ≤ Ce2λψ(x) 1

|Q√
t/2(x, t)|m/(2(m−1))

∫ t

3t/4

∫

B(x,
√
t/2)

u2

= C
1

|Q√
t/2(x, t)|m/(2(m−1))

∫ t

3t/4

∫

B(x,
√
t/2)

e2λ[ψ(x)−ψ(z)]f 2
s

≤ Ce2λ
√
t t

[t |B(x,√t)|]m/(2(m−1))
ec(λ

m/(m−1)+λ2)t ||f ||22.

Taking the supremum over all f ∈ L2(B(y,
√
t)) with ||f ||2 = 1, we find that

e2λ[ψ(x)−ψ(y)]
∫

B(y,
√
t/2)

G(x, t; z, 0)2dz

≤ Ce4λ
√
t+c(λm/(m−1)+λ2)t t

[t |B(x,√t)|]m/(2(m−1))
. (3.13)

Note that the second entries of the heat kernel G satisfies the equation

�u− ∇(bu)+ ∂su = 0.
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Hence it satisfies

�u− b∇u+ ∂su = 0.

Therefore we can use (3.8) backward on the second entries of the heat kernel to conclude,
from (3.13), that

G(x, t; y, 0)2 ≤ C

[
1

|Q√
t/2(y, t)|m/(2(m−1))

]∫ t/4

0

∫

B(y,
√
t/2)

G(x, t; z, s)2dzds

≤ C
t2

[t |B(x,√t)|]m/(m−1)
e4λ

√
t+c(λm/(m−1)+λ2)t−2λ[ψ(x)−ψ(y)].

This shows, since λ
√
t ≤ c1 + c2λ

2t ,

G(x, t; y, 0)2 ≤ C
t2

[t |B(x,√t)|]m/(m−1)
ec(λ

m/(m−1)+λ2)t−2λ[ψ(x)−ψ(y)].

Now we select ψ so that ψ(x)− ψ(y) = |x − y|. Then it follows

G(x, t; y, 0)2 ≤ C
t2

[t |B(x,√t)|]m/(m−1)
ec(λ

m/(m−1)+λ2)t−2λ|x−y| ≡ C(t)eQ(λ). (3.14)

Here for simplicity, we write

Q(λ) ≡ c(λm/(m−1) + λ2)t − 2λ|x − y|.
Now we choose λ to be a positive number satisfying

λ1/(m−1) + λ = a|x − y|/t, (3.15)

where a > 0 will be chosen in a moment. Then

Q(λ) = cλ(λ1/(m−1) + λ)t − 2λ|x − y| = (ca − 2)λ|x − y|.
Taking a = 1/c, we see that

Q(λ) = −λ|x − y|. (3.16)

Next we consider two separate cases.

Case 1. |x − y|/t ≥ 1. Then from (3.15), there exists c0 > 0 such that λ ≥ c0. Hence
λ ≤ c1λ

1/(m−1) because m ≤ 2. By (3.15), λ ≥ c2(|x − y|/t)m−1. This shows, via
(3.16),

Q(λ) ≤ −c3
|x − y|m
tm−1 . (3.17)

Case 2. When |x−y|/t ≤ 1. In this case (3.15) implies thatλ ≤ c0 and henceλ1/(m−1) ≤
c1λ. Therefore, by (3.15), λ ≥ c2|x − y|/t . Hence

Q(λ) ≤ −c3|x − y|2/t. (3.18)

Substituting (3.17) and (3.18) to (3.14), we obtain

G(x, t; y, 0)≤ c1t

[t |B(x,√t)|]m/(2(m−1))

[

exp

(

−c2
|x − y|m
tm−1

)

+exp

(

−c2
|x − y|2

t

)]

.

This proves the upper bound for G.
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Step 5. Proof of (ii). Since the proof is identical to that in [LZ], we omit the details.

Final Remark. Using a Nash type estimate, it is easy to prove that G(x, t; y, s) ≤
c/(t − s)n/2. It would be interesting to combine this bound with the bound in (iii) to get
a sharper bound. The same could be said about the lower bound.

Acknowledgement. We thank Professor Vitali Liskevich and Victor Shapiro for helpful conversations.

References

[A] Aronson, D.G.: Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup.
Pisa 22, 607–694 (1968)

[AS] Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrdinger operators.
Comm. Pure Appl. Math. 35(2), 209–273 (1982)

[BG] Berselli, Luigi, C., Galdi, Giovanni, P.: Regularity criteria involving the pressure for the weak
solutions to the Navier-Stokes equations. Proc. Am. Math. Soc. 130(12), 3585–3595 (2002)

[ChZ] Chen, Z.Q., Zhao, Z.: Diffusion processes and second order elliptic operators with singular
coefficients for lower order terms. Math. Ann. 302(2), 323–357 (1995)

[CrZ] Cranston, M., Zhao, Z.: Conditional transformation of drift formula and potential theory for
1
2�+ b()∇. Commun. Math. Phys. 112(4), 613–625 (1987)

[G] Gerhard, W.D.: The probabilistic solution of the Dirichlet problem for 1
2� + 〈a,∇〉 + b with

singular coefficients. J. Theoret. Probab 5(3), 503–520 (1992)
[KS] Kovalenko, V.F., Semenov, Yu.A.: Co-semigroups in the spaces Lp(Rd) and Ĉ(Rd) generated
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