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QI S. ZHANG

Abstract. We prove that the Cheng-Yau gradient estimate on positive harmonic functions
on manifolds with non-negative Ricci curvature is globally stable under certain perturbation
of the metric. In some cases, one only needs the condition Ricci(x) ≥ − ε

1+d(x)2+δ with δ > 0
and ε(> 0) being sufficiently small. Whether such stability holds is a question that has been
circulating for some time.

1. Introduction

One of the most useful inequalities in geometric analysis is the Cheng-Yau estimates on
the gradient of positive harmonic functions.

Theorem (Cheng-Yau). Let M be a complete manifold with dimension n ≥ 2, Ricci(M) ≥
−k, k ≥ 0. Suppose u is any positive harmonic function in a geodesic ball B(x0, r) ⊂ M.
There holds

(1.1) sup
B(x0,r/2)

|∇u|
u

≤ cn
r

+ cn
√
k,

where cn depends only on the dimension n.

When the manifold M has nonnegative Ricci curvature, i.e. k = 0, then the Cheng-Yau
estimate becomes

(1.2) sup
B(x0,r/2)

|∇u|
u

≤ cn
r
,

which is sharp as indicated in the Euclidean case. However even if M contains a small
compact region where the Ricci curvature is not nonnegative, estimate (1.1) becomes very

much different from (1.2) when r is large, due to the presence of the
√
k term. Whether

estimate (1.2) is stable under perturbation has been an open question for some time, in
light of the known stability results on weaker properties of harmonic functions, such as the
Harnack inequality.

The goal of the paper is to confirm that (1.2) is stable when the nonpositive part of the
Ricci curvature is sufficiently small in an integral sense.

Let us mention that some smallness for the nonpositive part of the Ricci curvature is
necessary for gradient estimate (1.2) to hold. For instance if the non-positive part of the
Ricci curvature is so large that M admits a bounded nonconstant harmonic function, then
clearly (1.2) can not hold.

Throughout the paper ∆ is the Laplace-Beltrami operator, d(x, y) is the distance between
x and y; and d(x) is the distance between x and a fixed reference point. |B(x, r)| denotes
the volume of the geodesic ball of radius r centered at x.

Date: September 8, 2004.
1



2 QI S. ZHANG

Let us layout the basic assumptions to be used in the paper. As to be explained later,
these assumptions are stable under certain perturbation of the metric.

Assumption (A). M is a complete noncompact Riemannian manifold satisfying the volume
doubling property.

|B(x, 2r)| ≤ 2ν |B(x, r)|
for all x ∈M, r > 0 and some ν > 0. n = dim(M) ≥ 2.

Assumption (B). The heat kernel G of the Laplace-Beltrami operator satisfies a Gaussian
upper bound:

G(x, t; y, 0) ≤ B1

|B(x,
√
t)|
e−b1d

2(x,y)/t,

for some b1, B1 > 0, and all x, y ∈M and t > 0.
Several conditions are well known to be equivalent to assumptions (A) and (B). For in-

stance, it was proved in [5] that assumptions (A) and (B) together are equivalent to the
following relative Faber-Krahn inequality:

(FK). For all x ∈M , r > 0, and every non-empty subset Ω ⊂ B(x, r),

λ1(Ω) ≥ c

r2

(
|B(x, r)|
|Ω|

)2/ν

.

Here λ1(Ω) is the first Dirichlet eigenvalue of Ω and c > 0.

It is also known that (A) + (B) ⇔ (A) + (B′), where (B’) is:
Assumption (B’). The following Sobolev inequality holds for all φ ∈ C∞

0 (B(x, r)), x ∈M,
r > 0, and a fixed α > 2.( ∫

φ2α/(α−2)dy
)(α−2)/α ≤ S0|B(x, r)|−2/α

∫ (
r2|∇φ|2 + φ2

)
dy.

See [11]. Moreover (A)+(B) is also equivalent with (A) + a Poicaré inequality (See [11] and
[5]). Further (A)+(B) are equivalent to (A)+ a mean value inequality (see [8].) There is
an extensive literature on manifolds satisfying various global conditions including the ones
mentioned above. We refer the interested reader to [6], [12] and the reference therein.

There exist many manifolds satisfying assumptions (A) and (B), among them manifolds
which are quasi isometric to manifolds with nonnegative Ricci curvature; connected sums of
two copies of IRn. See for example [2]

Next we introduce the conditions on the non-positive part of the Ricci curvature that will
imply the global Cheng-Yau estimate (1.2). The conditions, in general integral form first,
will be elucidated in the Corollary below by simple conditions. Essentially, the non-positive
part of the Ricci curvature is required to be small and decay sufficiently fast near infinity.

Let λ = λ(x) be the lowest eigenvalue of Ric(x), x ∈M. We will use the notation

(1.3) V (x) = λ−(x) = (|λ(x)| − λ(x))/2.

Assumption (C). V ∈ L∞(M) and there exists ε0 > 0 and K > 0 such that
(1.4){

(1).N(V ) ≡ supx∈M

∫∞
0

∫
M

e−d(x,y)2/t

|B(x,
√
t)| V (y)dydt < ε0,

(2). for all φ ∈ C∞
0 (B(x, r)),

∫
M
V (y)φ2(y)dy < 1

11n

∫
M
|∇φ(x)|2dx+ K

r2

∫
M
φ2(y)dy,

Here is the main result of the paper.
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Theorem 1.1. Suppose M satisfies assumptions (A), (B). There exists ε0 > 0 depending
only on the parameters in (A) and (B) so that if assumption (C) for Ricci curvature holds
then the following statement holds.

Let u be a positive harmonic function in the ball B(x, r), then

sup
y∈B(x,r/2)

|∇u(y)|
u(y)

≤ C0

r
.

Here C0 depends only on the parameters in the assumptions : ν, b1, B1, ε0, K and n.

Remark 1.1. The condition on V in the theorem in many cases simply means that

Ric(x) ≥ − ε

1 + d(x)2+δ

for some sufficiently small ε > 0 and δ > 0. This is indicated in Corollary 1.1 below. In
general, item one in condition (1.4) is a Kato type condition and item 2 takes the form of
Hardy’s inequality i.e. for f ∈ C∞

0 (IRn), n ≥ 3,

(n− 2)2

4

∫
IRn

1

|x|2
f(x)2dx ≤

∫
IRn

|∇f |2(x)dx.

For versions of Hardy’s inequality in manifolds, see the paper [1]. In many situations the
first item implies the second one, as in the case of the corollary.

Corollary 1. Suppose M satisfies the Sobolev inequality (B’) with α = n and that |B(x, r)|
is comparable with rn, n > 2, i.e. there exists a > 0 such that a−1rn ≤ |B(x, r)| ≤ arn for
all x ∈M and r > 0. Then the gradient bound (1.2) holds if

Ric(x) ≥ − ε

1 + d(x)2+δ

for a sufficiently small ε > 0 and δ > 0. Here ε = ε(b1, B1, δ, a, n) only.
In particular if M is a small compact perturbation of Rn, n ≥ 3, then (1.2) holds.
Moreover if M is a small compact perturbation of a n(≥ 3) dimensional manifold with

nonnegative Ricci curvature and maximum volume growth, then (1.2) holds.

Proof.

Since M satisfies the extra conditions in the volume of geodesic balls in the corollary, it
is easy to see that

N(V ) = sup
x∈M

∫ ∞

0

∫
M

e−d(x,y)
2/t

|B(x,
√
t)|
V (y)dydt ≤ c sup

x∈M

∫
M

d(x, y)2

|B(x, d(x, y))|
V (y)dy.

Write

(1.5) K(V ) ≡ sup
x∈M

∫
M

d(x, y)2

|B(x, d(x, y))|
V (y)dy.

By direct calculation, if V (x) ≤ ε
1+d(x)2+δ , then

K(V ) ≤ sup
x∈M

∫
d(x,y)≥d(y)/2

d(x, y)2

|B(x, d(x, y))|
V (y)dy + sup

x∈M

∫
d(x,y)≤d(y)/2

d(x, y)2

|B(x, d(x, y))|
V (y)dy

≤ Cε.
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Next, given φ ∈ C∞
0 (B(x0, r))∫

M

V (x)φ2(x)dx ≤
( ∫

M

V n/2(x)dx
)2/n ( ∫

M

φ2n/(n−2)(x)dx
)(n−2)/n

.

By the Sobolev inequality∫
M

V (x)φ2(x)dx ≤ S0

( ∫
M

V n/2(x)dx
)2/n[ ∫

M

|∇φ|2(x)dx+
k

r2

∫
M

φ2(x)dx
]
.

Simple calculation then shows that∫
M

V (x)φ2(x)dx ≤ CεS0

[ ∫
M

|∇φ|2(x)dx+
k

r2

∫
M

φ2(x)dx
]
.

Hence all the condition of Theorem 1.1 is satisfied when ε is sufficiently small.
There are plenty of examples of such manifolds due the stability of G(x, t; y, 0) under

perturbation of the metric. For instance, let M be Rn equipped with a metric coming from
a small perturbation of the Euclidean metric. Here n ≥ 3. Then by standard results B1 and
b1 can be chosen to be close to 1/(2

√
π)n and 1/4, the Euclidean constants. At the same

time, the nonpositive part of the Ricci curvature can be arbitrarily small. Therefore the
above quantity N(V ) can be arbitrarily small while ε0, depending only on B1, b1 and the
doubling constant, is bounded away from zero. Thus N(V ) < ε0.

The last statement in the corollary is proved in the same manner. �

Remark 1.2. The constant ε0 and C0 in Theorem 1.1 can be estimated explicitly, as
indicated in the proof. The assumption V ∈ L∞(M) is not necessary. But we will not seek
the full generality.

It is not clear whether the current method can show the Li-Yau gradient estimate on
caloric functions [9] is stable.

Acknowledgement. I thank Professor Peter Li for helpful suggestions.

2. Proof of Theorem 1.1

Let u be a positive solution of ∆u = 0.
The proof is carried out in several steps.

Step 1. We follow [Y] and [CY] to derive an equation of log u.
Set f = log u, then ∆f = −|∇f |2. Define

F ≡ |∇f |2.
Following [Y] and [CY], by Bochner’s identity, one knows that F obeys

(2.1) ∆F ≥ −2∇f∇F +
2

n
F 2 − 2V F.

Here V = V (x) is the absolute value of the negative part of the lowest eigenvalue of Ric(x).

Step 2. From here our proof is different from that in [Y] and [CY] where the maximum
principle was used. In contrast, we will use certain integral estimates motivated by the De
gorgi-Nash-Moser theory on linear elliptic and parabolic equations.

The idea is to convert (2.1) into a linear inequality and to prove that the heat kernel of
the corresponding operator satisfies a global Gaussian upper bound, when N(V ) (defined in
(1.4)) is sufficiently small. Then one can use the local representation formula for solutions
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and Hölder inequality to derive a L∞ bound for F . However, it is not clear that the linear
operator

−∆− 2∇f∇+
2

n
F − 2V

associated with (2.1) is positive definite. Hence there is no hope of proving a global Gaussian
upper bound for the corresponding heat kernel.

To overcome the difficulty, we consider the function

(2.2) w = Fm, m = 5n.

By direct calculation, one easily finds, via (2.1), that

(2.3) ∆w + 2∇f∇w − 10Fw + 10nV w ≥ 0.

We define the operators L1 and L2 by

(2.4) L1 = ∆ + 2∇f∇− 10F

and

(2.5) L2 = ∆ + 2∇f∇− 10F + 10nV ;

and their corresponding heat kernel by G1 and G2 respectively. We will eventually prove
that G2 has a global Gaussian upper bound when N(V ) is small. More importantly, the
coefficients in the Gaussian upper bound should be independent of f which is not a fixed
function. This is achieved by exploiting the special structure of the operator L1.

First, we have to show that G1 satisfies a global Gaussian upper bound first.

Step 3. global Gaussian upper bound for G1 = e−L1t.

This step is divided into two sub-steps.
Step 3.1. a L2 mean value inequality for positive solutions of

(2.6) L3w − wt ≡ ∆w + 2∇f∇w − 8Fw − wt ≥ 0.

More precisely, we prove, for any positive solutions of (2.6),

(2.6′) sup
Qr/2(x,t)

w2 ≤ C7

B(x, r)r2
‖w‖2

L2(Qr(x,t)).

Here and later Qr(x, t) or simply Qr, stands for B(x, r)× [t− r2, t].
Notice that the zero order term in L3 is −8Fw instead of −10Fw in L1. This makes L3

a ’bigger’ operator than L1.
Choose ψ = φ(y)η(s) to be a cut-off function satisfying, for σ > 0,

supp η ⊂ (t− (σr)2, t); η(s) = 1, s ∈ [t− r2, t]; |η′| ≤ 2/((σ − 1)r)2; 0 ≤ η ≤ 1;

supp φ ⊂ B(x, σr); φ(y) = 1, y ∈ B(x, r); 0 ≤ φ ≤ 1;

|∇φ| ≤ A

(σ − 1)r
, A > 0.

Using wψ2 as a test function on (2.6), one obtains∫
Qσr

(∆w − 2∇f∇w − 8Fw − ∂sw)wψ2dyds ≥ 0.



6 QI S. ZHANG

Using integration by parts, one deduces

(2.7)

∫
Qσr

∇(wψ2)∇wdyds

≤
∫
Qσr

2∇f∇w(wψ2)dyds−
∫
Qσr

8Fw2dyds−
∫
Qσr

(∂sw)wψ2dyds.

By direct calculation,

∫
Qσr

∇(wψ2)∇wdyds =

∫
Qσr

∇[(wψ)ψ]∇wdyds

=

∫
Qσr

[ ∇(wψ)( ∇(wψ)− (∇ψ)w) + wψ∇ψ∇w]dyds

=

∫
Qσr

[ |∇(wψ)|2 − |∇ψ|2w2 ]dyds.

Substituting this to (2.7), we obtain

(2.8)

∫
Qσr

|∇(wψ)|2dyds

≤
∫
Qσr

2∇f∇w(wψ2)dyds−
∫
Qσr

8Fw2dyds

−
∫
Qσr

(∂sw)wψ2dyds+

∫
Qσr

|∇ψ|2w2dyds.

Next, notice that

∫
Qσr

(∂sw)wψ2dyds =
1

2

∫
Qσr

(∂sw
2)ψ2dyds

= −
∫
Qσr

w2φ2η∂sηdyds+
1

2

∫
B(x,σr)

w2(y, t)φ2(y)dy.

Combining this with (2.8), we see that

(2.9)

∫
Qσr

|∇(wψ)|2dyds+
1

2

∫
B(x,σr)

w2(y, t)φ2(y)dy

≤
∫
Qσr

(|∇ψ|2 + η∂sη) w
2dyds

+

∫
Qσr

2∇f∇w(wψ2)dyds−
∫
Qσr

8Fw2dyds.
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The first term on the righthand side of (2.9) is already in good shape. So let us estimate the
second term as follows.∫

Qσr

2∇f(∇w)(wψ2)dyds

= 2

∫
Qσr

∇f [∇(wψ)− w∇ψ]wψdyds

= 2

∫
Qσr

∇f∇(wψ)wψdyds− 2

∫
Qσr

(wψ∇f)w∇ψdyds

≤ 1

2

∫
Qσr

|∇(wψ)|2dyds+ 4

∫
Qσr

|∇f |2(wψ)2dyds

+

∫
Qσr

|∇f |2(wψ)2dyds+

∫
Qσr

w2|∇ψ|2dyds.

Recall that |∇f |2 = F . Hence the above becomes∫
Qσr

2∇f(∇w)(wψ2)dyds ≤ 1

2

∫
Qσr

|∇(wψ)|2dyds+ 5

∫
Qσr

F (wψ)2dyds+

∫
Qσr

w2|∇ψ|2dyds.

Substituting the above to the right hand side of (2.9), we deduce

(2.10)

∫
Qσr

|∇(wψ)|2dyds+
1

2

∫
B(x,σr)

w2(y, t)φ2(y)dy ≤ 2

∫
Qσr

(2|∇ψ|2 + η∂sη) w
2dyds.

Observe that the terms containing F drop out. For later use let us remark that if w satisfies,
for a function h,

L3w − wt + h ≥ 0,

then follow exactly the same calculation, one has

(2.10′)

∫
Qσr

|∇(wψ)|2dyds+
1

2

∫
B(x,σr)

w2(y, t)φ2(y)dy

≤ 2

∫
Qσr

(2|∇ψ|2 + η∂sη) w
2dyds+

∫
Qσr

hwψ2dyds.

By direct calculation it is easy to see that for any p > 1,

L3w
p ≡ ∆wp + 2∇f∇wp − 8Fwp − (wp)t

≥ p(p− 1)|∇w|2wp−2 + 8F (p− 1)wp ≥ 0.

Hence by repeating the above argument, we obtain, for any p > 1,∫
Qσr

|∇(wpψ)|2dyds+
1

2

∫
B(x,σr)

(wp(y, t))2φ2(y)dy ≤ 2

∫
Qσr

(2|∇ψ|2 + η∂sη) (wp)2dyds.

Therefore

(2.11)

∫
Qσr

|∇(wpψ)|2dyds+
1

2

∫
B(x,σr)

(wp(y, t))2φ2(y)dy ≤ C

r2

∫
Qσr

(wp)2dyds.

It is well known that (2.11) and the Sobolev inequality leads to the following mean value
inequality via Moser’s iteration.

(2.12) sup
Qr

w2 ≤ B

|Qr|

∫
Q2r

w2dyds.
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By keeping track of the constants in the above computation, we know that the constant B
is independent of f or F . For the sake of completeness we give a sketch of the proof.

The rest of the proof is standard. By Hölder’s inequality,∫ ∫
(wpψ)2(1+(2/α))dyds ≤

∫ ( ∫
(wpψ)2α/(α−2)dy

)(α−2)/α( ∫
(wpψ)2

)2/α
ds.

Using the Sobolev inequality (Assumption (B’)), one obtains∫ ∫
(wpψ)2(1+(2/α))dyds

≤ S0|B(x, r)|−2/α sup
s∈[t−σr2,t]

( ∫
(wpψ)2dy

)2/α
∫ ∫ (

r2|∇(wpψ)|2 + (wpψ)2dyds
)
.

The last inequality, together with (2.11) implies

(2.13)

∫
Qσ′r(x,t)

w2pθ ≤
(
C5S0λ(r)−1

∫
Qσr(x,t)

w2p
)θ
,

where θ = 1 + (2/α), τ = σ − σ′ and

λ(r) = |B(x, r)|2/(2+α)(rτ)4/(2+α).

We now set

τi = 2−i−1, σ0 = 1, σi = σi−1 − τi = 1− Σi
1τj, p = θi.

Inequality (2.13) then yields∫
Qσi+1 (x,t)

w2θi+1 ≤ C
(
Ci+1

6 λ(r)−1

∫
Qσir(x,t)

w2θi)θ
.

After iterations the above implies( ∫
Qσi+1 (x,t)

w2θi+1)θ−i−1

≤ CΣθ−j−1

C
−Σ(j+1)θ−j−1

6 (λ(r)−1)Σθ−j

∫
Qr(x,t)

w2.

Here j goes from 0 to i. Letting i→∞ and noticing that Σ∞
j=0θ

−j = (α+ 2)/2 we arrive at

sup
Qr/2(x,t)

w2 ≤ C7

B(x, r)r2
‖w‖2

L2(Qr(x,t)).

This proves the mean value inequality for w satisfying L3w − wt ≥ 0.

Step 3.2. Gaussian upper bound for G1.

The proof of the upper bound is done by modifying the standard method due to E. B.
Davies [4]. In order to prove a bound that is independent of f or F , we have to use the
special structure of the operator L1.

For a fixed λ ∈ R and a fixed bounded function ψ such that |∇ψ| ≤ 1, we write

q(y) = eλψ(y)

∫
G1(y, s; z, 0)e−λψ(z)h(z)dz.
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Here h is a smooth compactly supported function. Then

(2.14)

∂s‖q‖2
2 = 2

∫
M

q(y, s)∂sq(y, s)

= 2

∫
M

eλψ(y)q(y, s)

∫
M

∂sG1(y, s; z, 0)e−λψ(z)h(z)dzdy

= 2

∫
M

eλψ(y)q(y, s)

∫
M

[∆yG1 + 2∇yf∇yG1 − 10FG1]e
−λψ(z)h(z)dzdy

= 2

∫
M

∫
M

eλψ(y)q(y, s)∆yG1e
−λψ(z)h(z)dzdy

+ 2

∫
M

∫
M

eλψ(y)q(y, s)∇yf∇yG1e
−λψ(z)h(z)dzdy

− 10

∫
M

∫
M

eλψ(y)q(y, s)FG1e
−λψ(z)h(z)dzdy

≡ I1 + I2 + I3.

Using integration by parts, one has, by standard arguments,

(2.15) I1 ≤ −2

∫
M

|∇q(y, s)|2dy + 2cλ2

∫
M

q2(y, s)dy.

Next observe that

I2 = 2

∫
M

eλψ(y)q(y, s)∇yf

∫
M

∇yG1e
−λψ(z)h(z)dzdy

= 2

∫
M

eλψ(y)q(y, s)∇yf∇y

∫
M

G1(y, s; z, 0)e−λψ(z)h(z)dzdy

= 2

∫
M

eλψ(y)q(y, s)∇yf∇y(e
−λψ(y)q(y, s))dy

=

∫
M

e2λψ(y)∇yf∇y[(e
−λψ(y)q(y, s))2]dy

= −2λ

∫
M

q2(y, s)∇yψ∇yfdy −
∫

M

q2(y, s)∆yfdy.

Since |∇ψ| ≤ 1 and ∆yf = −|∇f |2 = −F , it follows that

I2 ≤ λ2

∫
M

q2(y, s)dy +

∫
M

q2(y, s)|∇yf |2dy +

∫
M

q2(y, s)|∆yf |dy;

i.e.

(2.16) I2 ≤ λ2

∫
M

q2(y, s)dy + 2

∫
M

q2(y, s)Fdy.

Notice also that

(2.17) I3 = −10

∫
M

∫
M

eλψ(y)q(y, s)FG1e
−λψ(z)h(z)dzdy = −10

∫
M

q2(y, s)Fdy.

Substituting (2.15)-(2.17) to (2.14), we see that the terms containing F are negative. Hence

∂s‖q(·, s)‖2
2 ≤ c0λ

2‖q(·, s)‖2
2,
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which implies

(2.18) ‖q(·, s)‖2
2 ≤ ec0λ

2s||h||22.
Now consider the function

u(y, s) = e−λψ(y)q(y, s)

which is a solution to L1u− us = 0 in M× (0,∞). Hence

L3u− us = L1u− us + 2Fu ≥ 0.

Here L3 is defined in (2.6). By the mean value inequality of (2.12) with Q√
t/2(x, t) =

B(x,
√
t/2)× (3t/4, t), we obtain

u(x, t)2 ≤ C

|Q√
t/2(x, t)|

∫ t

3t/4

∫
B(x,

√
t/2)

u2

It follows that

e2λψ(x)u(x, t)2 ≤ e2λψ(x) C

|Q√
t/2(x, t)|

∫ t

3t/4

∫
B(x,

√
t/2)

u2

=
C

|Q√
t/2(x, t)|

∫ t

3t/4

∫
B(x,

√
t/2)

e2λ[ψ(x)−ψ(z)]q2

≤ e2λ
√
t C

|B(x,
√
t)|
ec0λ

2t‖h‖2
2.

Taking the supremum over all h ∈ L2(B(y,
√
t)) with ‖h‖ = 1, we find that

e2λ[ψ(x)−ψ(y)]

∫
B(y,

√
t/2)

G1(x, t; z, 0)2dz ≤ Ce4λ
√
t+c0λ2t 1

|B(x,
√
t)|
.

Using the mean value inequality on the second entries of the heat kernel G1 in the backward
cubed

B(y,
√
t/2)× [0, t/4],

we have

G1(x, t; y, 0)2 ≤ C

|Q√
t/2(y, t)|

∫ t/4

0

∫
B(y,

√
t/2)

G1(x, t; z, s)
2dzds

≤ C

|B(x,
√
t)| |B(y,

√
t)|
e4λ

√
t+c0λ2t−2λ[ψ(x)−ψ(y)]

Here we remark that the second entries of G1 satisfies the conjugate equation of L1u−us = 0.
That is, if v(z, s) = G1(x, t; z, s) then

∆v − 2∇f∇v − 2∆fv − 10Fv + vs = 0.

Recall that ∆f = −F . Hence v satisfies

L3v + vs = ∆v − 2∇f∇v − 8Fv + vs = 0.

From step 3.1 it is clear that the mean value inequality still holds on the backward parabolic
cube.

Choosing λ = d(x, y)/(c0t) and ψ such that ψ(x)− ψ(y) = d(x, y), we reach

(2.19) G1(x, t; y, 0)2 ≤ C

|B(x,
√
t)| |B(y,

√
t)|
e−d(x,y)

2/(2c0t).
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This proves the Gaussian upper bound for G1.

Step 5. Gaussian upper bound of G2 by perturbation.

Using the bound for G1 and a perturbation argument in [Z], we will prove a Gaussian
upper bound for G2 when N(V ) is small.

By Duhamel’s formula

G2(x, t; y, 0) = G1(x, t; y, 0) + 10n

∫ t

0

∫
M

G1(x, t; z, τ)V (z)G2(z, τ ; y, 0)dzdτ.

By step 3, for some c1, C1 > 0,

G1(x, t; z, τ) ≤
C1

|B(x,
√
t− τ)|

e−c1d(x,z)
2/(t−τ).

Also, by standard perturbation argument (since V is bounded), there is Mτ > 0 such that

G2(z, τ ; y, 0) ≤ Mτ

|B(z,
√
τ)|

e−c1d(z,y)
2/τ ≤ Mτ

|B(z,
√
τ)|

e−c1d(z,y)
2/(2τ).

We need to prove that Mτ can be chosen independent of time.
Therefore

G2(x, t; y, 0)

≤ C1e
−c1d(x,y)2/t

|B(x,
√
t)|

+ C1

∫ t

0

∫
M

e−c1d(x,z)
2/(t−τ)

|B(x,
√
t− τ)|

V (z)
Mτe

−c1d(z,y)2/(2τ)

|B(z,
√
τ)|

dzdτ.

Let mt be the minimum of the constants Mτ such that

G2(z, τ ; y, 0) ≤ mτ

|B(z,
√
τ)|

e−c1d(z,y)
2/(2τ)

holds for all τ ∈ (0, t] and y, z ∈M. Then

G2(x, t; y, 0)

≤ C1e
−c1d(x,y)2/t

|B(x,
√
t)|

+ C1mt

∫ t

0

∫
M

e−c1d(x,z)
2/(t−τ)

|B(x,
√
t− τ)|

V (z)
e−c1d(z,y)

2/(2τ)

|B(z,
√
s)|

dzdτ.

By Lemma 4.1 on p1003 of [Z], there exists a constant c5, depending only on the doubling
constant ν such that

(2.20)

∫ t

0

∫
M

e−c1d(x,z)
2/(t−τ)

|B(x,
√
t− τ)|

V (z)
e−c1d(z,y)

2/(2τ)

|B(z,
√
τ)|

dzdτ ≤ c5M(V )
1

|B(x,
√
t)|
e−c1d(x,y)

2/(2t),

where

M(V ) ≡ sup
x∈M

∫ ∞

0

∫
M

e−c1d(x,z)
2/(2t)

|B(x,
√
t)|

V (z)dzdt.

Let us remark here that in the lemma quoted above, the constant in the exponential term of
M(V ) was not given explicitly. However, by tracking the proof, one immediately concludes
that the coefficient −c1/2 above works. We caution that it is not clear that one can choose
the original constant −c1, except in the Euclidean case. We mention that (2.20) is the
parabolic counter part of the basic inequality, for n ≥ 3,∫

Rn

1

|x− z|n−2
|V (z)| 1

|z − y|n−2
dz ≤ C sup

w

∫
Rn

|V (y)|
|y − w|n−2

dy
1

|x− y|n−2
,
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which can be found in many places, including [10] e.g.
Scaling the time variable suitably and use the volume doubling property, we see that

M(V ) ≤ cN(V ) = c sup
x∈M

∫ ∞

0

∫
M

e−d(x,z)
2/t

|B(x,
√
t)|
V (z)dzdt.

Hence

G2(x, t; y, 0) ≤ C1e
−c1d(x,y)2/t

|B(x,
√
t)|

+ C1c5mtN(V )
1

|B(x,
√
t)|
e−c1d(x,y)

2/(2t).

Now it follows that

G2(x, t; y, 0) ≤ (C1 + C1c5mtN(V ))
1

|B(x,
√
t)|
e−c1d(x,y)

2/(2t).

By the definition of mt we have

mt ≤ C1 + C1c5mtN(V ).

Hence, if N(V ) < 1/(C1c5), then

mt ≤ C1/[1− C1c5N(V )],

for all t > 0. Therefore

G2(x, t; y, 0) ≤ C1

1− C1c5N(V )

1

|B(z,
√
τ)|

e−c1d(x,y)
2/(2t)

This proves the global upper bound for G2(x, t; y, 0).

Step 5. L2 estimate of F = |∇ log u|2.

Let φ = φ(x) be a smooth cut-off function defined in B(x, 2r) such that 0 ≤ φ ≤ 1,
φ(y) = 1 in B(x, r) and φ(y) = 0 in B(x, 2r)c. Then∫

B(x,2r)

Fφ2dy =

∫
B(x,2r)

∇u∇u
u2

φ2dy

= −
∫
B(x,2r)

u div
(∇u
u2
φ2

)
dy

= −
∫
B(x,2r)

u
∆u

u2
φ2dy −

∫
B(x,2r)

u∇u∇
(φ2

u2

)
dy

= 2

∫
B(x,2r)

u∇u∇u
u3

φ2dy − 2

∫
B(x,2r)

u∇uφ∇φ
u2

dy

= 2

∫
B(x,2r)

Fφ2dy − 2

∫
B(x,2r)

u∇uφ∇φ
u2

dy.

Therefore ∫
B(x,2r)

|∇u|2

u2
φ2dy ≤ 2

∫
B(x,2r)

|∇u|
u

φ|∇φ|dy.

Hence ∫
B(x,2r)

|∇u|2

u2
φ2dy ≤ 4

∫
B(x,2r)

|∇φ|2dy.
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This implies that

(2.21)

∫
B(x,r)

F (y)dy =

∫
B(x,r)

|∇u|2

u2
dy ≤ 4

|B(x, 2r)|
r2

.

Step 6. Mean value inequality for solutions of L2w − wt ≥ 0 (see (2.5) for definition of
L2).

Let ψ be the smooth cut-off function defined right below (2.6’) with σ = 2 and take r
there to be r/2. Since ψ is supported in Qr(x, t), we know that

(2.22)
∆(wψ) + 2∇f∇(wψ)− 10F (wψ) + 10nV (wψ)− (wψ)t

≥ 2(∇f∇ψ)w + (∆ψ)w − wψt + 2∇ψ∇w.

Since G2 is the fundamental solution of the left hand side of the (2.22), we have

w(x, t) ≤ −2

∫
Qr(x,t)

G2(x, t; y, s)(∇f∇ψ)wdyds

−
∫
Qr(x,t)

G2(x, t; y, s)[(∆ψ)w − wψt]dyds

−
∫
Qr(x,t)

G2(x, t; y, s)2∇ψ∇wdyds.

After integration by parts, this becomes,

(2.23)

w(x, t) ≤ −2

∫
Qr(x,t)

G2(x, t; y, s)(∇f∇ψ)wdyds

+

∫
Qr(x,t)

G2(x, t; y, s)wψtdyds

+

∫
Qr(x,t)

∇yG2(x, t; y, s)∇ψwdyds

−
∫
Qr(x,t)

G2(x, t; y, s)∇ψ∇wdyds

≡ I1 + I2 + I3 + I4.

Let us estimate Ij terms separately.
Since (x, t) is bounded away from the support of ∇ψ, and ψt by a parabolic distance of r,

we have

(2.24) G2(x, t; y, s) ≤
C

|B(x, r)|

in all the integrals on the righthand side of (2.23). Hence (2.23) implies

|I1 + I2| ≤
C

|B(x, r)|
( ∫

Qr(x,t)

|∇f |2dyds
)1/2( ∫

Qr(x,t)

w2dyds
)1/2

+
C

r2|B(x, r)|

∫
Qr(x,t)

wdyds.
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Using |∇f |2 = F = |∇u|2/u2, by (2.21), we deduce

w(x, t) ≤
( C

r2|B(x, r)|

∫
Qr(x,t)

w2dyds
)1/2

+
C

r2|B(x, r)|

∫
Qr(x,t)

wdyds+ |I3|+ |I4|.

This shows, by Hölder’s inequality,

(2.25) w(x, t) ≤
( C

r2|B(x, r)|

∫
Qr(x,t)

w2dyds
)1/2

+ |I3|+ |I4|.

In the next two steps we will find a bound for the last integrals in (2.25).

step 7. controlling the term

(2.26) I3 =

∫
Qr(x,t)

∇yG2(x, t; y, s)∇ψwdyds.

Using (2.24) and Hölder’s inequality, we reduce (2.26) to

(2.27) |I3| ≤
C

r

( ∫
Qr(x,t)−Qr/2(x,t)

|∇yG2(x, t; y, s)|2dyds
)1/2( ∫

Qr(x,t)

w2dyds
)1/2

.

What is remaining is to estimate the first term on the right hand side of (2.27).
Write

v = v(y, s) = G2(x, t; y, s).

Since G2 is the heat kernel of L2, or, in another word the fundamental solution of the operator

∆ + 2∇f∇− 10F + 10nV − ∂s,

we know that v is a solution of the conjugate of L2 − ∂s, except at (x, t). i.e.

∆v − 2∇f∇v − 2∆fv − 10Fv + 10nV v + vs = 0.

Since ∆f = −F , the above becomes

(2.28) ∆v − 2∇f∇v − 8Fv + 10nV v + vs = 0.

i.e.

L3v + vs + 10nV v = 0.

Take a suitable cut-off function ψ1 and use ψ2
1v as a test function on (2.28) and h = 10nV v

in (2.10’). We can follow the argument between (2.6) and (2.10’) verbatim to obtain∫
Qr(x,t)−Qr/2(x,t)

|∇yv|2dyds

≤ C

r2

∫
Q2r(x,t)−Qr/4(x,t)

v2dyds+ 10n

∫
Q4r(x,t)−Qr/4(x,t)

V v2dyds.

i.e. ∫
Qr(x,t)−Qr/2(x,t)

|∇yG2(x, t; y, s)|2dyds

≤ C

r2

∫
Q2r(x,t)−Qr/4(x,t)

G2(x, t; y, s)
2dyds+ 10n

∫
Q4r(x,t)−Qr/4(x,t)

V G2(x, t; y, s)
2dyds.
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It follows that∫
Qr(x,t)−Qr/2(x,t)

|∇yG2(x, t; y, s)|2dyds

≤ C

r2

∫
Q2r(x,t)−Qr/4(x,t)

G2(x, t; y, s)
2dyds

+ 10n sup
(y,s)∈Q4r(x,t)−Qr/4(x,t)

G2(x, t; y, s)

∫
Q4r(x,t)−Qr/4(x,t)

V G2(x, t; y, s)dyds.

Using the Gaussian bound on G2 and the assumption on V there holds∫
Qr(x,t)−Qr/2(x,t)

|∇yG2(x, t; y, s)|2dyds ≤ C
1 +N(V )

|B(x, r)|
.

Here we just used the inequality∫
Q4r(x,t)−Qr/4(x,t)

V G2(x, t; y, s)dyds ≤ N(V ),

which comes from the Gaussian upper bound of G2 and rescaling in time (see (1.4)). Inserting
the L2 estimate on the gradient of G2 to (2.27) we obtain

(2.29) |I3| ≤
( C

r2|B(x, r)|

∫
Q4r(x,t)

w2dyds
)1/2

.

step 8. controlling the term

|I4| ≡ |
∫
Qr(x,t)

G2(x, t; y, s)∇ψ∇wdyds|.

Using (2.24) and Hölder’s inequality we reach

(2.30)

|I4| ≤
C

r

( ∫
Qr(x,t)−Qr/2(x,t)

G2(x, t; y, s)
2dyds

)1/2( ∫
Qr(x,t)

|∇w|2dyds
)1/2

≤ C
( 1

|B(x, r)|

∫
Qr(x,t)

|∇w|2dyds
)1/2

.

Recall that
L2w − ws ≥ 0,

and hence
L3w − ws + 10nV w ≥ 0.

Here L3 is defined by (2.6).
Take h = 10nV w and σ = 2 in (2.10’), we obtain∫

Q2r(x,t)

|∇(ψ2w)|2dyds ≤ C

r2

∫
Q2r

w2dyds+ 10n

∫
Qσr

V (wψ2)
2dyds.

Here ψ2 is the cut-off function in (2.10’) with σ = 2. By Condition (1.4) for V we have, for
a constant C ′,

(2.31)

∫
Qr(x,t)

|∇w|2dyds ≤
∫
Q2r(x,t)

|∇(ψ2w)|2dyds ≤ C ′

r2

∫
Q2r

w2dyds.
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By (2.31) and (2.30), we have

(2.32) I4 ≤ C
( 1

r2|B(x, r)|

∫
Q2r(x,t)

w2dyds
)1/2

.

Substituting (2.32) and (2.29) to (2.25), we reach

(2.32) w(x, t) ≤
( C

r2|B(x, r)|

∫
Q4r(x,t)

w2dyds
)1/2

.

step 9. completion of the proof.

Recall that w = F 5n and w is independent of time. Hence (2.29) becomes

(2.33) F (x) ≤
( C

|B(x, r)|

∫
B(x,2r)

F 10ndy
)1/(10n)

By the well known trick of Li-Schoen [7], inequality (2.33) implies

(2.34) F (x) ≤ C

|B(x, r)|

∫
B(x,2r)

Fdy

Let us mention that in the paper [7], it was shown that a L2 mean value inequality implies a
L1 mean value inequality. However, applying the same method, one can also deduces (2.34)
from (2.33) without any difficulty.

Combining (2.34) with (2.21), we have

|∇u|2

u2
= F (x) ≤ C

|B(x, r)|

∫
B(x,2r)

Fdy ≤ C

r2
.

This finishes the proof of the global gradient bound. �
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