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Abstract. First we prove certain pointwise bounds for the fundamen-
tal solutions of the perturbed linearized Navier-Stokes equation (The-
orem 1.1). Next, utilizing a new framework with very little Lp theory
or Fourier analysis, we prove existence of global classical solutions for
the full Navier-Stokes equation when the initial value has a small norm
in a new function class of Kato type (Theorem 1.2). The smallness
in this function class does not require smallness in L2 norm. Further-
more we prove that a Leray-Hopf solution is regular if it lies in this
class, which allows much more singular functions then before (Corollary
1). For instance this includes the well-known result in [25]. A further
regularity condition (form boundedness) was given in Section 5. We
also give a different proof about the L2 decay of Leray-Hopf solutions
and prove pointwise decay of solutions for the three-dimensional Navier-
Stokes equations (Corollary 2, Theorem 1.2). Whether such a method
exists was asked in a survey paper [2].

1. Introduction

There are two goals for the paper. The first is to establish certain point-
wise bounds for the fundamental solutions of the perturbed linearized Navier-
Stokes equation

∆u(x, t) − b(x, t)∇u(x, t) −∇P (x, t) − ∂tu(x, t) = 0,

(x, t) ∈ Rn × (0,∞),
div u = 0, n ≥ 3, u(x, 0) = u0(x).

(1.1)

Here ∆ is the standard Laplacian, u(x, t), u0(x), b(x, t) ∈ Rn, P (x, t) ∈ R
and b∇u =

∑n
i=1 bi∂xiu. This linear system is also known as the Oseen flow.

The bounds we will prove were previously known only for the case of Stokes
flow, i.e., when b ≡ 0 in (1.1). See [7], e.g.

Accepted for publication: January 2004.
AMS Subject Classifications: 35K40, 76D05.

587



588 Qi S. Zhang

The second goal is to establish more general conditions which imply reg-
ularity of weak solutions to Navier-Stokes equations (1.2) and to prove exis-
tence of global classical solutions, when the initial value has a small norm in
a certain function class of Kato type. Since smallness in this class does not
require smallness in L2 norm, we have thus proven the existence of global
classical solutions for some initial values with arbitrarily large L2 norms.
Recall that the Cauchy problem for Navier-Stokes equations is

∆u(x, t) − u∇u(x, t) −∇P (x, t) − ∂tu(x, t) = 0,

(x, t) ∈ Rn × (0,∞),
div u = 0, n ≥ 3, u(x, 0) = u0(x).

(1.2)

Here and always u is a vector-valued function, which means a function whose
range is a subset of Rn.

Let us recall some of the recent advances in the problem of finding global
(strong) solutions for (1.2). Due to the large number of pertinent papers, we
may miss some of them. Kiselev and Ladyzhenskaya [12] proved that (1.2)
for n = 3 has a global solution provided that ‖u0‖W 2,2(R3) is sufficiently
small. See also the work of Kato and Ponce [14]. Fabes, Jones, and Riviére
[7] showed that (1.2) has a global solution when ‖u0‖Ln+ε(Rn) +‖u0‖Ln−ε(Rn)

is sufficiently small. Here ε is a small positive constant. Kato [11] proved
that (1.2) has a global strong solution when u0 is small in the Ln(Rn) sense.
Later Giga and Miyakawa [9] and M. Taylor [28] proved the same result for
small u0 in a certain Morrey space. A similar result was obtained by Cannone
[3] and Planchon [21] for initial data in certain Besov spaces. Related results
can also be found in papers by Iftimie [10] and Lions and Masmoudi [18].
Most recently Koch and Tataru [15] proved global existence when u0 is a
small function in the so-called BMO−1 class ([15, page 24]). A function is
in this class if its convolution with the heat kernel is in a type of Morrey
space. The result in [15] recovers all the above-mentioned results on global
existence of strong solutions. In the proofs, many authors have applied quite
involved tools in harmonic analysis.

In this paper we find that the Navier-Stokes equation has certain global
solutions in another natural function class of Kato type. In Remark 1.2
below, we will see that this class is different from the X class in [15] and
hence different from all the spaces preceding [15]. This class has some in-
teresting qualities, which makes it rather promising. The first is that these
functions can be quite singular. For example, they do not have to be in
any Lp

loc class for any p > 1. The singular set could be dimension n − 1,
etc. (see Remark 1.2 below). Yet Leray-Hopf solutions in this class must be
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smooth. The second is that this class gives rise to pointwise bounds for the
global solutions in a natural manner. The third is that within this class, the
proof of global existence is distinct and self-contained, using very little Lp

theory or Fourier analysis, which have been vital components in all previous
arguments. Directness of the proof indicates that it may be useful in future
studies.

As another application we give a different proof about the L2 decay of
Leray-Hopf solutions of three-dimensional Navier-Stokes equations. (See
Corollary 2 below.)

Roughly speaking, a function is in a Kato, or Schechter, or Stummel class
if its convolution with certain kernel functions satisfies suitable boundedness
or smallness assumptions. The kernel functions are usually chosen as the
fundamental solutions of some elliptic or parabolic equations. It is well
known that Kato-class functions are natural choices of function spaces in
the regularity theory of solutions of elliptic and parabolic equations. This
fact has been well documented in the paper [26]. In this paper we show
that a suitable Kato class is also a natural function space in the study of
Navier-Stokes equation.

Now let us introduce the main function class for Theorem 1.1, which will
be called K1. Then we will explain its many nice properties. For instance it
is known that a Leray-Hopf solution (see Remark 1.1 for a definition) of the
Navier-Stokes equations in Lp,q (n

p + 2
q < 1) space is regular ([25]). We will

show that the function class defined below properly contains this Lp,q space.
Moreover Leray-Hopf solutions in this class are also regular (Corollary 1).
Definition 1.1. A vector-valued function b = b(x, t) ∈ L1

loc(R
n+1) is in

class K1 if it satisfies the following condition:

lim
t→l

sup
x∈Rn, l>0

∫ t

l

∫
Rn

[K1(x, t; y, s) + K1(x, s; y, l)]|b(y, s)| dy ds = 0, (1.3)

where

K1(x, t; y, s) =
1

[|x − y| +
√

t − s]n+1
, t ≥ s, x �= y. (1.4)

For convenience, we introduce the notation

B(b, l, t) ≡ sup
x∈Rn

∫ t

l

∫
Rn

[K1(x, t; y, s) + K1(x, s; y, l)]|b(y, s)| dy ds, (1.5)

B(b, l,∞) ≡ sup
x∈Rn,t>l

∫ t

l

∫
Rn

[K1(x, t; y, s) + K1(x, s; y, l)]|b(y, s)| dy ds.

(1.6)
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These quantities will serve as replacements of the Lp and other norms used
by other authors. The reader may wonder whether the appearance of two
K1s (K1 and its conjugate) is necessary in the definition. At this time we
do not know the answer. However, a similar class was defined by the author
for the heat equation [31]. There K1 is replaced by the gradient of the heat
kernel. As pointed out in [8], using one kernel will result in a different class.
Remark 1.0. In case b is independent of time, an easy computation shows

B(b, 0,∞) ≡ 2 sup
x∈Rn

∫ ∞

0

∫
Rn

K1(x, s; y, 0)|b(y)| dy ds

= cn sup
x∈Rn

∫
Rn

|b(y)|
|x − y|n−1

dy.

This last quantity was introduced in [22] and more explicitly in [4]. See also
[31] for the time-dependent case. As in [31], it is also easy to see that for a
time-independent function b, b ∈ K1 if

lim
r→∞

sup
x

∫
|x−y|≤r

|b(y)|
|x − y|n−1

dy = 0

and B(b, 0,∞) < ∞.
The main results of the paper are the next two theorems and corollaries.

Theorem 1.1. Suppose b is in class K1. Then (1.1) has a fundamental
solution (matrix) E = E(x, t; y, s) in the following sense.

(i) Let

u(x, t) =
∫
Rn

E(x, t; y, 0)u0(y)dy,

where u0 ∈ C∞
0 (Rn) is vector valued and divergence free. For any vector-

valued φ ∈ C∞
0 (Rn × (−∞,∞)) with div φ = 0, there holds∫ ∞

0

∫
Rn

〈u, ∂tφ + ∆φ〉dx dt −
∫ ∞

0

∫
Rn

〈b∇u, φ〉dx dt

= −
∫
Rn

〈u0(x), φ(x, 0)〉dx.

Furthermore,
n∑

i=1

∂xiEij(x, t; y, s) = 0 for all j = 1, . . . , n.

(ii) lim
t→0

∫
Rn

E(x, t; y, 0)φ(y)dy = φ(x).
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Here φ is a smooth, vector-valued function in Rn with div φ = 0.
(iii) There exists δ > 0 depending only on b and n such that

|E(x, t; y, s)| ≤ Cδ

( |x − y| +
√

t − s )n
, when 0 < t − s ≤ δ.

Suppose in addition that

lim
T→∞

sup
x,t>T

∫ t

T

∫
Rn

[K1(x, t; y, s) + K1(x, s; y, T )]|b(y, s)| dy ds ≤ µ, (1.7)

where µ is a small, positive constant depending only on n. Then there exists
T0 > 0 depending only on b and n such that

|E(x, t; y, s)| ≤
{

Cδ

( |x−y|+
√

t−s )n , when 0 < t − s ≤ δ or T0 ≤ s ≤ t,
Cδ,ε

( |x−y|+
√

t−s )n−ε , otherwise.

Here ε > 0 is any sufficiently small number and Cδ,ε depends only on b, ε,
and n.

Next we turn to the Navier-Stokes equations (1.2).
Definition 1.2. Following standard practice, we say that u is a (weak)
solution of (1.2) if the following holds:

For any vector-valued φ ∈ C∞
0 (Rn × (−∞,∞)) with div φ = 0, u satisfies

div u = 0 and∫ ∞

0

∫
Rn

〈u, ∂tφ + ∆φ〉dx dt −
∫ ∞

0

∫
Rn

〈u∇u, φ〉dx dt (1.8)

= −
∫
Rn

〈u0(x), φ(x, 0)〉dx.

We will use this definition for solutions of (1.2) throughout the paper,
unless stated otherwise. Note that we need only that the above integrals
make sense and that there are no a priori assumptions about which spaces
u and ∇u lie in.
Remark 1.1. Solutions thus defined are more general than Leray-Hopf
solutions, which in addition require also ‖u(·, t)‖L2(Rn) < ∞ for all t > 0
and ‖∇u‖L2(Rn×(0,∞)) < ∞.

Theorem 1.2. There exists a positive number η depending only on the di-
mension n such that, if supx

∫
Rn

|u0(y)|
|x−y|n−1 dy < η and div u0 = 0, then the

Navier-Stokes equations have a global solution u satisfying B(u, 0,∞) < cη.
Moreover, there exists C > 0 such that

|u(x, t)| ≤ C

∫
Rn

|u0(y)|
(|x − y| +

√
t)n

dy.
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If in addition u0 ∈ L2(Rn), then u is a classical solution when t > 0.

Remark 1.2. Let b = b(x1, x2, x3) be a function from R3 to R3. If b is
compactly supported and |b| ∼ 1

|x1| | ln |x1||δ with δ > 2, it is easy to check
that b satisfies (1.3) and hence is in class K1. The proof is given at the end
of Section 2. The class of functions u satisfying B(u, 0,∞) < ∞ is different
from the function space X in [15], where the solutions of the Navier-Stokes
equations in that paper reside. It is easy to find a function in X but not
in that class. On the other hand, the above function b is in class K1 and
B(b, 0,∞) < ∞ but it is not in X. Functions in X must be locally square
integrable (see p. 24 in [15]). However b is not in Lp

loc for any p > 1. We
should mention that the above function b is in the BMO−1 class, the space
of initial values in [15].

The next two corollaries are direct consequences of a small part of The-
orem 1.1 (part (iii)). Their proofs, depending on Lemma 3.1 below, are
independent of the rest of Theorem 1.1 and Theorem 1.2.

Corollary 1. Let u ∈ K1 be a Leray-Hopf solution of the Navier-Stokes
equations. Then u is classical when t > 0.

By the example in Remark 1.2, we see that the function class K1 permits
solutions which apparently are much more singular then previously known.
In case the spatial dimension is 3, a solution can have an apparent singularity
of certain type that is not Lp

loc for any p > 1 and of dimension 1. One can
also construct time-dependent functions in K1 with quite singular behavior.
Nonetheless the solution is regular. Notice also that there is no smallness
assumption on the solution u as long as it is in K1. By Proposition 2.1
below, Corollary 1 contains the well-known regularity result of [25]. The
result here also differs from the borderline case in [27] since K1 and the
space Lp,q with n/p + 2/q = 1 are different. By a direct computation, one
can also show that it contains the Morrey-type class in [20]. In Section 5,
we will propose a form-bounded condition on u, containing this borderline
case when n = 3, which will imply the regularity of u. As explained there,
this condition seems to be one of the widest possible to date.

Corollary 2. Let u be any Leray-Hopf solution of the three-dimensional
Navier-Stokes equations. Suppose in addition that u0 ∈ L1(Rn); then, for
n = 3 and C = C(u0, n),[ ∫

Rn

|u(x, t)|2dx
]1/2

≤ C

tn/4

[ ∫
Rn

|u0(x)|dx +
∫
Rn

|u0(x)|2dx
]
.
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Remark 1.3. In the interesting papers [23, 24] and [13], the result in
Corollary 2 (and more) was proved for some Leray-Hopf solutions or for all
admissible solutions in the sense of [1] (see also [17]). This extra restric-
tion was removed in [30]. Fourier analysis is the main tool in the proof of
the decay. The corollary provides an alternative proof without using the
Fourier transform. However, in the papers [24], [13], and [30] a similar decay
property has been established for some or all Leray-Hopf solutions under the
weaker assumption that u0 ∈ Lr(Rn) when 1 < r < 2. We are not able to
do it for all solutions for r ≥ 5/4. However the above method provides even
pointwise decay of solutions (Theorem 1.2). Whether such a method exists
was asked in a survey paper [2].
Remark 1.4. Since u0 can be quite singular, at the first glance the solution
u in Theorem 1.2 may be too singular to satisfy (1.8). However we will show
that all terms in the definition are justified. The uniqueness question of the
solution is also interesting. We will not address the problem in this paper.
Some recent development can be found in [5].

Let us outline the proof of Theorem 1.2. The strategy is to use a fixed-
point argument. The novelty is a number of new inequalities involving the
kernel function K1 and its relatives. We will use these inequalities to show
that the Navier-Stokes equations are globally well posed in class under the
norm B(u, 0,∞), provided the initial value u0 satisfies that B(u0, 0,∞) is
smaller than a dimensional constant.

We will use C, c, c1, . . . to denote positive constants which may change
from line to line. The rest of the paper is organized as follows. In Section 2 we
present some elementary properties of the function class K1. Theorems 1.1
and 1.2 will be proven in Sections 3 and 4 respectively. The proofs are
independent, except for the use of Lemma 3.1. The corollaries will be proven
at the end of Section 3.

2. Preliminaries

Proposition 2.1. Suppose b ∈ Lp,q(Rn ×R) with n
p + 2

q < 1. Then b ∈ K1;
i.e.,

lim
h→0

B(b, t − h, t) = 0

uniformly for all t. In particular, if b ∈ Ln+ε(Rn) for ε > 0, then the above
holds.

Proof. For completeness, we recall that

‖b‖Lp,q =
[ ∫

R

( ∫
Rn

|b(y, s)|pdy
)q/p

ds
]1/q

.
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Using Hölder’s inequality twice on (1.5) (taking l = t − h), we obtain

B(b, t − h, t) ≤ 2
[ ∫ t

t−h

( ∫
Rn

|b(y, s)|pdy
)q/p

ds
]1/q

× sup
x

[ ∫ t

t−h

( ∫
Rn

1
(|x − y| +

√
t − s)p′(n+1)

dy
)q′/p′

ds
]1/q′

.

Here p′ = p/(p − 1) and q′ = q/(q − 1). Since∫
Rn

dy

(|x − y| +
√

t − s)p′(n+1)
=

(t − s)n/2

(t − s)p′(n+1)/2

∫
Rn

dy

(1 + |y|)p′(n+1)

=
c

(t − s)(p′(n+1)−n)/2
,

we see that

B(b, t − h, t) ≤ c‖b‖Lp,q

( ∫ t

t−h

ds

(t − s)(p′(n+1)−n)q′/(2p′)

)1/q′

.

By the assumption that n
p + 2

q < 1, one has

(1 − 1
p′

)n + (1 − 1
q′

)2 < 1.

Simple computation then leads to µ ≡ (p′(n + 1) − n)q′/(2p′) < 1. This
implies B(b, t − h, t) ≤ c‖b‖Lp,qh(1−µ)/q′ . �
Remark. One can also define the class K1 for functions in various domains,
as suggested by the referee.

Proposition 2.2. Suppose, for ε > 0, ‖b‖Ln+ε,∞ + ‖b‖Ln−ε,∞ < ∞. Then

B(b, 0,∞) ≤ C(‖b‖Ln+ε,∞ + ‖b‖Ln−ε,∞).

Proof. This is similar to that of Proposition 2.1, so we will be very brief.
We write∫ t

0

∫
Rn

K1(x, t; y, s)|b(y, s)| dy ds

=
∫ t

t−1

∫
Rn

K1(x, t; y, s)|b(y, s)| dy ds +
∫ t−1

0

∫
Rn

K1(x, t; y, s)|b(y, s)| dy ds.

As in the proof of Proposition 2.1, using the assumption that ‖b‖Ln+ε,∞ < ∞
and applying Hölder’s inequality, we see that the first integral on the right-
hand side is finite. Using the assumption that ‖b‖Ln−ε,∞ < ∞ and applying
Hölder’s inequality, we see that the second integral on the right-hand side is
also finite. This finishes the proof. �
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Here we give a proof that the function in Remark 1.2 is in class K1.
Since b is independent of time and b ∈ L1

loc(R
3), by a simple localization

of the integral in (1.3), it is enough to prove that

lim
r→0

sup
x

∫
B(x,r)

|b(y)|
|x − y|2 dy = 0. (2.1)

Here dy = dy1dy2dy3. Since b = b(y) depends only on y1, by direct compu-
tation, one sees that∫

B(x,r)

|b(y)|
|x − y|2 dy

≤ c

∫ x1+r

x1−r
|b(y1)|

∫ x2+r

x2−r

∫ x3+r

x3−r

1
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

dy2dy3dy1

≤ c

∫ x1+r

x1−r

| ln |x1 − y1||
|y1|| ln |y1||δ

dy1.

By the assumption that δ > 2, it is easy to show that (2.1) holds.

3. Proof of Theorem 1.1. Bounds for fundamental solutions

The proof of Theorem 1.1 is divided into several parts. We begin with
some lemmas. At the end of the section, the corollaries will be proven.
The proof of the corollaries depends only on Lemma 3.1. So it can be read
separately from the proof of Theorem 1.1.

Lemma 3.1. The following inequalities hold for all x, y, z ∈ Rn and t >
τ > 0.

K0 ∗ bK1 ≡
∫ t

0

∫
Rn

1
(|x − z| +

√
t − τ)n

|b(z, τ)|
(|z − y| + √

τ)n+1
dz dτ

≤ C
B(b, 0, t)

(|x − y| +
√

t)n
, (3.1)

K1 ∗ bK1 ≡
∫ t

0

∫
Rn

1
(|x − z| +

√
t − τ)n+1

|b(z, τ)|
(|z − y| + √

τ)n+1
dz dτ

≤ C
B(b, 0, t)

(|x − y| +
√

t)n+1
. (3.2)

Here and later K0(x, t; y, s) ≡ 1
(|x−y|+

√
t−s)n .

Proof. Since

|x − z| +
√

t − τ + |y − z| +
√

τ ≥ |x − y| +
√

t,
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we have either

|x − z| +
√

t − τ ≥ 1
2
(|x − y| +

√
t), (3.3)

or

|z − y| +
√

τ ≥ 1
2
(|x − y| +

√
t). (3.4)

Suppose (3.3) holds; then

K0 ∗ bK1 ≤ 2n

(|x − y| +
√

t)n

∫ t

0

∫
Rn

|b(z, τ)|
(|z − y| + √

τ)n+1
dz dτ.

That is,

K0 ∗ bK1 ≤ 2nB(b, 0, t)
(|x − y| +

√
t)n

. (3.5)

Suppose (3.4) holds but (3.3) fails; then

|z − y| +
√

τ ≥ 1
2
(|x − y| +

√
t) ≥ |x − z| +

√
t − τ .

Therefore,

1
(|x − z| +

√
t − τ)n (|z − y| + √

τ)n+1

≤ 1
(|x − z| +

√
t − τ)n+1(|z − y| + √

τ)n
.

This shows
1

(|x − z| +
√

t − τ)n (|z − y| + √
τ)n+1

≤ 2n

(|x − z| +
√

t − τ)n+1(|x − y| +
√

t)n
.

Substituting this into (3.1), we obtain

K0 ∗ bK1 ≤ 2n

(|x − y| +
√

t)n

∫ t

0

∫
Rn

|b(z, τ)|
(|x − z| +

√
t − τ)n+1

dz dτ.

That is,

K0 ∗ bK1 ≤ 2nB(b, 0, t)
(|x − y| +

√
t)n

.

Clearly, the only remaining case to consider is when both (3.3) and (3.4)
hold. However, this case is already covered by (3.5). Thus (3.1) is proven.
Similarly (3.2) is proven. �
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Remark 3.1. By the same argument, one can prove that, for f = f(x, t) ≥ 0,

K0 ∗ fK0(x, t; y, s) ≡
∫ t

s

∫
Rn

K0(x, t; z, τ)f(z, τ)K0(z, τ ; y, s)dz dτ

≤ c sup
x,t

∫ t

s

∫
Rn

[K0(x, t; z, τ) + K0(x, τ ; z, s)]|f(z, τ)|dz dτ K0(x, t; y, s)

for all x and t > 0.

Lemma 3.2. Suppose limh→0 supt B(b, t−h, t) = 0. Define formally a func-
tion

E(x, t; y, s) = E0(x, t; y, s)

−
∫ t

s

∫
Rn

E0(x, t; z, τ)
n∑

i=1

bi(z, τ)∂ziE(z, τ ; y, s)dz dτ, (3.6)

where E0 is the fundamental solution of the Stokes flow, i.e., (1.1) with b ≡ 0.
Then there exists δ > 0 and C = C(δ) such that

|E(x, t; y, s)| ≤ C

(|x − y| +
√

t − s)n
,

|∇xE(x, t; y, s)| + |∇yE(x, t; y, s)| ≤ C

(|x − y| +
√

t − s)n+1

when 0 < t − s ≤ δ.
Furthermore, the above two inequalities hold for all t > s > 0 provided

B(b, 0,∞) is smaller than a suitable positive constant depending only on n.

Proof. We can write (3.6) succinctly as

E(x, t; y, s) = E0(x, t; y, s) − E0 ∗ (b∇E)(x, t; y, s).

Expanding this formally, we obtain

E(x, t; y, s) = E0(x, t; y, s) +
∞∑

j=1

(−1)jE0 ∗ (b∇E0)∗j(x, t; y, s). (3.7)

Here ∗ means convolution and b∇E0 ≡
∑n

i=1 bi(z, τ)∂ziE0(z, τ ; y, s).
It is well known that (see [7] e.g.),

|E0(x, t; y, s)| ≤ c

(|x − y| +
√

t − s)n
,

|∇xE0(x, t; y, s)| ≤ C

(|x − y| +
√

t − s)n+1
.
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Using these bounds on E0 and ∇E0 together with Lemma 3.1, we deduce

|E0 ∗ b∇E0(x, t; y, s)| ≤ c0B(b, s, t)
(|x − y| +

√
t − s)n

.

Here c0(> 0) depends only on n. By induction, it is easy to see that

|E0 ∗ (b∇E0)∗j(x, t; y, s)| ≤ [c0B(b, s, t)]j

(|x − y| +
√

t − s)n
.

It follows from (3.7) that

|E(x, t; y, s)| ≤ c

(|x − y| +
√

t − s)n

∞∑
j=0

[c0B(b, s, t)]j .

Using the condition on b, we can choose δ sufficiently small so that c0B(b, s, t)
< 1. Then (3.7) is uniformly convergent. Moreover, there exists C > 0 such
that

|E(x, t; y, s)| ≤ C

(|x − y| +
√

t − s)n

when 0 < t − s < δ. This proves the first inequality in the lemma.
The inequality on |∇xE| can be derived similarly. The only change is to

use the inequality

|∇E0 ∗ b∇E0(x, t; y, s)| ≤ c0B(b, s, t)
(|x − y| +

√
t − s)n+1

,

which is part of Lemma 3.1.
In order to prove the estimate on |∇yE|, we use the assumption that

div b = 0. This implies, after integration by parts and a standard limiting
argument,

E(x, t; y, s) = E0(x, t; y, s)

+
∫ t

s

∫
Rn

n∑
i=1

∂ziE0(x, t; z, τ)bi(z, τ)E(z, τ ; y, s)n dz dτ.

We remark that the integration by parts is rigorous by the just-proven
bounds on |∇xE|. This shows

∇yE(x, t; y, s) = ∇yE0(x, t; y, s)

+
∫ t

s

∫
Rn

n∑
i=1

∂ziE0(x, t; z, τ)bi(z, τ)∇yE(z, τ ; y, s)dz dτ.

From here the bound on ∇yE can be obtained just like that for ∇xE.
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If B(b, 0,∞) is sufficiently small, then all the above arguments hold for
all t > s > 0. This proves the last statement in the lemma. �

Lemma 3.3. Suppose

lim
T→∞

sup
t

B(b, T, t) = lim
T→∞

sup
x,t>T

∫ t

T

∫
Rn

K1(x, t; y, s)|b(y, s)| dy ds

is sufficiently small. Then there exists T0 > 0 and C = C(T0) such that

|E(x, t; y, s)| ≤ C

(|x − y| +
√

t − s)n
,

|∇xE(x, t; y, s)| + |∇yE(x, t; y, s)| ≤ C

(|x − y| +
√

t − s)n+1

when t > s > T0. Here E is defined in (3.6).

Proof. The proof is almost identical to that of Lemma 3.2. The only dif-
ference is that all integration takes place in the region Rn × (T0,∞). �

Now we are ready to give a
Proof of Theorem 1.1. Let us assume that b is a smooth function with
compact support. This does not reduce any generality since all constants
below depend on b only in terms of the quantity in Definition 1.1. The
smoothness or the size of the support of b is irrelevant. In the sequel we can
apply the limiting argument at the end of Section 4 when b is not smooth.
We mention that the limiting argument, designed for the full Navier-Stokes
equations, is more than enough to cover the linear case.

We are going to prove that the function E = E(x, t; y, s) defined in (3.6)
and extended by using a reproducing formula is the right choice for the
fundamental solution of (1.1).

The order of the proof is (iii), then (ii), then (i).
Proof of (iii). By Lemmas 3.2 and 3.3, all we need to consider is the case
t − s ≥ δ and s ≤ T0. Here δ and T0 are the control constants in the above
lemmas. For clarity we divide the case into two separate parts.
Part 1. We assume that 0 ≤ s < t ≤ 2T0 and t − s ≥ δ, s ≤ T0. Since δ is
fixed, we can use the semigroup property of E to write

E(x, t; y, s) =
∫ ∫

· · ·
∫

E(x, t; z1, t − δ)E(z1, t − δ; z2, t − 2δ)

· · ·E(zk, t − kδ; y, s)dz1dz2 · · · dzk. (3.8)

Here all integration takes place in Rn and k is an integer such that 0 < t −
kδ−s ≤ δ. We are going to show that the integrals in the above reproducing
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formula are actually absolutely convergent. Here is how. Considering the
integral

J ≡
∫
Rn

1
(|x − z| +

√
δ)n

1
(|z − y| +

√
δ)n

dz,

clearly,

J ≤
∫
|x−z|≥|x−y|/2

· · · dz +
∫
|z−y|≥|x−y|/2

· · · dz ≡ J1 + J2.

When |x − z| ≥ |x − y|/2, we have

|z − y| ≤ |x − y| + |x − z| ≤ 3|x − z|.
Hence |x − z| ≥ |z − y|/3. This shows

J1 ≤ c

(|x − y| +
√

δ)n−ε

∫
Rn

dz

(|z − y| +
√

δ)n+ε
.

Here ε(> 0) is an arbitrary small constant. This shows, by direct computa-
tion,

J1 ≤ cδ−ε/2

(|x − y| +
√

δ)n−ε
.

Similarly,

J2 ≤ cδ−ε/2

(|x − y| +
√

δ)n−ε
.

These imply that

J ≤ cδ−ε/2

(|x − y| +
√

δ)n−ε
. (3.9)

Applying (3.9) to (3.8) k − 1 times, we obtain

|E(x, t; y, s)| ≤ ckδ
−(k−1)ε/2

×
∫
Rn

1
(|x − zk| +

√
δ)n−(k−1)ε

dzk

(|zk − y| +
√

t − kδ − s)n
.

Without loss of generality we can reduce δ suitably so that δ/2 ≤ t−kδ−s ≤
δ. So applying the same technique as in the proof of (3.9), we know that

|E(x, t; y, s)| ≤ ckδ
−kε/2 1

(|x − y| +
√

δ)n−kε
.

Since k is finite, we can choose ε sufficiently small so that n − εk is as close
to n as possible. Note also that t − s ≤ 2T0. So, in case 0 ≤ s < t ≤ 2T0
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and s ≤ T0, one has

|E(x, t; y, s)| ≤ ckδ
−kε/2 1

(|x − y| +
√

t − s)n−ε
. (3.10)

Here we have renamed kε as ε. This finishes Part 1.
Part 2. We assume that t ≥ 2T0, s ≤ T0, and t − s ≥ δ.
By the semigroup property again

E(x, t; y, s) =
∫

E(x, t; z, 1.5T0) E(z, 1.5T0; y, t − s)dz. (3.11)

By Lemma 3.3 and Part 1 just above, we have

|E(x, t; z, 1.5T0)| ≤
c

(|x − z| +
√

t − 1.5T0)n
,

|E(z, 1.5T0; y, s)| ≤ c

(|z − y| +
√

1.5T0 − s)n−ε
.

Substituting the above into (3.11), we see that

E(x, t; y, s) = c

∫
1

(|x − z| +
√

t − 1.5T0)n

1
(|z − y| +

√
1.5T0 − s)n−ε

dz.

(3.12)
As before we split (3.12) as follows

E(x, t; y, s) ≤ c

∫
|x−z|≥|x−y|/2

· · · dz+c

∫
|z−y|≥|x−y|/2

· · · dz ≡ E1+E2. (3.13)

When |x− z| ≥ |x− y|/2, we have |x− z| ≥ |z − y|/3. Note also t− 1.5T0 ≥
(1.5T0 − s)/3. Hence,

E1 ≤ c

(|x − y| +
√

t − 1.5T0)n−2ε

∫
Rn

dz

(|z − y| +
√

1.5T0 − s)n+ε
,

which implies

E1 ≤ c

(|x − y| +
√

t − 1.5T0)n−2ε

1
(T0 − s)ε/2

. (3.14)

Finally, we estimate E2. When |z−y| ≥ |x−y|/2, we have |z−y| ≥ |x−z|/3.
Since t ≥ 2T0 and s ≤ T0, it is clear that

(|x−z|+
√

t − 1.5T0)(|z−y|+
√

1.5T0 − s) ≥ 1
8
(|x−z|+

√
t)(|z−y|+

√
T0).

By elementary computation, using the current assumptions on x, y, z, t, and
T0,

(|x − z| +
√

t)(|z − y| +
√

T0) ≥ c(|x − z| +
√

T0)(|z − y| +
√

t)
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for some c ∈ (0, 1). Combining the last two inequalities we know that

|E2(x, t; y, s)|

≤ c

∫
|z−y|≥|x−y|/2

1
(|x − z| +

√
t − 1.5T0)n

1
(|z − y| +

√
1.5T0 − s)n−ε

dz

≤ c

∫
|z−y|≥|x−y|/2

1
(|x − z| +

√
t)n(|z − y| +

√
T0)n−ε

dz

= c

∫
|z−y|≥|x−y|/2

1
(|x − z| +

√
t)ε

dz

[(|x − z| +
√

t) (|z − y| +
√

T0)]n−ε

≤ c

∫
|z−y|≥|x−y|/2

1
(|x − z| +

√
t)ε

dz

[(|x − z| +
√

T0) (|z − y| +
√

t)]n−ε

≤ c

(|x − y| +
√

t)n−2ε

∫
|z−y|≥|x−y|/2

1
(|x − z| +

√
t)ε

dz

(|x − z| +
√

T0)n
.

Therefore,

|E2(x, t; y, s)| ≤ c

(|x − y| +
√

t)n−2ε

∫
Rn

dz

(|x − z| +
√

T0)n+ε
,

which shows

|E2(x, t; y, s)| ≤ cT
−ε/2
0

(|x − y| +
√

t − s)n−2ε
. (3.15)

Combining (3.14) and (3.15), we have

|E(x, t; y, s)| ≤ C

(|x − y| +
√

t − s)n−2ε
(3.16)

when t ≥ 2T0, s ≤ T0, and t − s ≥ δ. This proves (iii).
Proof of (ii). Since, for small t,

E(x, t; y, 0) =

E0(x, t; y, 0) −
∫ t

0

∫
Rn

E0(x, t; z, τ)
n∑

i=1

bi(z, τ)∂ziE(z, τ ; y, 0)dz dτ.

From part (iii) of the theorem and Lemma 3.2, there exists c > 0 such that

|E(x, t; y, 0)−E0(x, t; y, 0)| ≤ c

∫ t

0

∫
Rn

K0(x, t; z, τ)|b(z, τ)|K1(z, τ ; y, 0)dz dτ

when t is sufficiently small. By Lemma 3.1,

|E(x, t; y, 0) − E0(x, t; y, 0)| ≤ cB(b, 0, t)K0(x, t; y, 0).
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Let φ = φ(x) be a divergence-free, smooth, vector-valued function. Using
the above inequality, we know∣∣∣ ∫

Rn

E(x, t; y, 0)φ(y)dy −
∫
Rn

E0(x, t; y, 0)φ(y)dy
∣∣∣

≤ cB(b, 0, t)
∫
Rn

K0(x, t; y, 0)|φ(y)|dy.

Since φ is divergence-free, the above shows∣∣∣ ∫
Rn

E(x, t; y, 0)φ(y)dy −
∫
Rn

G(x, t; y, 0)φ(y)dy
∣∣∣

≤ cB(b, 0, t)
∫
Rn

K0(x, t; y, 0)|φ(y)|dy.

Here G is the fundamental solution of the heat equation. Using our main
assumption that B(b, 0, t) → 0 when t → 0 and the property of G, we obtain

lim
t→0

∫
Rn

E(x, t; y, 0)φ(y)dy = φ(x).

This proves part (ii).

Proof of (i). Let u0 = u0(x) be an initial value such that div u0 = 0 in the
weak sense. We need to prove that

u(x, t) ≡
∫
Rn

E(x, t; y, 0)u0(y)dy (3.17)

is a solution to (1.1). Using a partition of unity, we can assume that the sup-
port of the test function is sufficiently narrow in the time direction. Hence,
by the semigroup property, it is enough to prove (i) when t is sufficiently
small. From formula (3.6) for E its clear that

u(x, t) =
∫
Rn

E0(x, t; y, 0)u0(y)dy

−
∫ t

0

∫
Rn

E0(x, t; z, τ)
n∑

l=1

bl(z, τ)∂zl
u(z, τ)dz dτ.

The proof, following an argument in [7], goes as follows.
For simplicity we write

f = f(z, τ) = b(z, τ)∇zu(z, τ) ≡
n∑

l=1

bl(z, τ)∂zl
u(z, τ).
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By Lemma 3.2

|f(z, τ)| ≤ c|b(z, τ)|
∫
Rn

1
(|z − w| + √

τ)n+1
|u0(w)|dw.

Using Young’s inequality and the extra assumption that b is smooth and
compactly supported, f(·, t) is in Lp(Rn) for some p > 1 and almost all t.

Let R = (RiRj)n×n, where Ri is the Riesz transform. It is known that
(see [7] e.g.)

F (x, t) ≡
∫ t

0

∫
Rn

E0(x, t; z, τ)
n∑

l=1

bl(z, τ)∂zl
u(z, τ)dz dτ (3.18)

=
∫ t

0

∫
Rn

E0(x, t; z, τ)f(z, τ)dz dτ

=
∫ t

0

∫
Rn

G(x, t; z, τ)f(z, τ)dz dτ −
∫ t

0

∫
Rn

G(x, t; z, τ)(Rf)(z, τ)dz dτ,

where G is the fundamental solution of the heat equation. We mention that
the last term in (3.18) is valid since, by the extra assumption that b is smooth
and compactly supported, f(·, t) is in Lp(Rn) for some p > 1 and almost
all t. However, as shown below, this term will be integrated out. Therefore
the argument will be independent of the extra assumption on b eventually.
Hence,

(∆ − ∂t)F (x, t) = −f(x, t) + (Rf)(x, t). (3.19)

Let φ be any suitable vector-valued test function; i.e., φ ∈ C∞
0 (Rn ×R) and

div φ = 0. By (3.19) and elementary properties of the heat equation, we
have, for any T > 0,∫ T

0

∫
Rn

〈F, ∂tφ + ∆φ〉(x, t)dx dy

= −
∫ T

0

∫
Rn

〈f, φ〉(x, t)dx dt +
∫ T

0

∫
Rn

〈Rf, φ〉(x, t)dx dt.

(3.20)

Here 〈· , ·〉 means the inner product in Rn. Since div φ = 0, quoting [7], we
know that∫ T

0

∫
Rn

〈Rf, φ〉(x, t)dx dt =
∫ T

0

∫
Rn

〈f, Rφ〉(x, t)dx dt = 0.

From (3.20), the above shows, since f = b∇u,∫ T

0

∫
Rn

〈F, ∂tφ + ∆φ〉(x, t)dx dy = −
∫ T

0

∫
Rn

〈b∇u, φ〉(x, t)dx dt. (3.21)
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According to (3.17), (3.6), and (3.18),

u(x, t) =
∫
Rn

E0(x, t; y, 0)u0(y)dy−F (x, t) =
∫
Rn

G(x, t; y, 0)u0(y)dy−F (x, t).

Using this, we can compute as follows:∫ T

0

∫
Rn

〈u, ∂tφ + ∆φ〉(x, t)dx dy

=
∫ T

0

∫
Rn

〈 ∫
Gu0, ∂tφ + ∆φ

〉
(x, t)dx dy

−
∫ T

0

∫
Rn

〈F, ∂tφ + ∆φ〉(x, t)dx dt

= −
∫
Rn

〈u0(x), φ(x, 0)〉dx +
∫ T

0

∫
Rn

〈b∇u, φ〉(x, t)dx dt.

Here we just used (3.21)and an obvious property for
∫

Gu0. Therefore,∫ T

0

∫
Rn

〈u, ∂tφ + ∆φ〉(x, t)dx dy −
∫ T

0

∫
Rn

〈b∇u, φ〉(x, t)dx dt

= −
∫
Rn

〈u0(x), φ(x, 0)〉dx.

In addition, since
∑n

i=1 ∂xi(E0)ij(x, t; y, s) = 0, we know from (3.6) that
n∑

i=1

∂xiEij(x, t; y, s) = 0.

This shows that div u = 0. Hence u is a solution of (1.1). This proves part
(i). The proof of Theorem 1.1 is complete. �

Next we prove the two corollaries. The proof is in fact independent of
that of Theorem 1.1. It relies only on Lemma 3.1 in the section.
Proof of Corollary 1. It is well known that a Leray-Hopf solution is
classical at least in a finite time interval. Let T0 be the time such that
‖u(·, t)‖∞ is finite when t ∈ (0, T0) but limt→T−

0
‖u(·, t)‖∞ = ∞.

Let E0 be the fundamental solution of the Stokes flow. Given t0 ∈ (0, T0),
by [7] (Theorem 2.1), we have, for t > t0,

u(x, t) =
∫
Rn

E0(x, t; y, t0)u(y, t0)dy

+
∫ t

t0

∫
Rn

b(y, s)∇yE0(x, t; y, s)u(y, s) dy ds, (3.22)
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where b(y, s) = u(y, s). Here we remark that the class of solutions in The-
orem 2.1 of [7] contains Leray-Hopf solutions. Hence (3.22) is valid for all
Leray-Hopf solutions.

The second integral in the last equality is absolutely convergent when
t ∈ (t0, T0 − ε) for ε > 0. This is so because u ∈ L∞(Rn × (t0, T0 − ε)) and
b = u ∈ K1. Iterating (3.22), we obtain, as in the proof of Lemma 3.2,

|u(x, t)| ≤ C

∫
Rn

∞∑
k=0

(cK1|b|)∗k ∗ K0(x, t; y, t0) |u0(y)|dy.

Here

(K1|b|) ∗ K0(x, t; y, 0) ≡
∫ t

t0

∫
Rn

|b(z, τ)|K1(x, t; z, τ)K0(z, τ ; y, t0)dz dτ.

By Lemma 3.1,

(K1|b|) ∗ K0(x, t; y, t0) ≤ c1B(b, t0, t)K0(x, t; y, t0).

Using induction, there holds

|u(x, t)| ≤ C

∫
Rn

|u(y, t0)|
(|x − y| + √

t − t0)n
dy

∞∑
j=0

[c0B(b, t0, t)]j . (3.23)

Here c0 depends only on n. The above series is convergent if

c0B(b, t0, t) < 1. (3.24)

Since b = u ∈ K1, there exists a δ > 0 depending only on the rate of
convergence of (1.3) such that (3.24) holds when 0 < t− t0 < δ. In this case
we have

|u(x, t)| ≤ C1(δ)
∫
Rn

|u(y, t0)|
(|x − y| + √

t − t0)n
dy. (3.25)

Next, we choose, for the above δ, t0 = T0−(δ/2). Then for t ∈ (t0, T ), (3.25)
implies

|u(x, t)| ≤ C1(δ)
[ ∫

Rn

dy

(|x − y| + √
t − t0)2n

]1/2[ ∫
Rn

|u(y, t0)|2dy
]1/2

.

Hence

|u(x, t)| ≤ C1(δ)
(t − t0)n/4

‖u0‖L2 .

Letting t → T0, we see that

‖u(·, T0)‖L∞ ≤ C1(δ)
(T0 − t0)n/4

‖u0‖L2 < ∞.
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This contradiction shows that u is a bounded and hence a classical solution
when t > 0. �
Proof of Corollary 2. It suffices to prove the corollary when t is sufficiently
large. Let u be a Leray-Hopf solution to (1.2) with n = 3. It is well known
that u becomes a bounded, classical solution when t is sufficiently large.
Moreover, the L2 norm of u(·, t) tends to zero as t → ∞ ([11]). Hence
for large t, the norm ‖u(·, t)‖Ln+ε(Rn) + ‖u(·, t)‖Ln−ε(Rn) is sufficiently small
by interpolation between L2 and L∞ norms. By Propositions 2.1 and 2.2,
this implies that B(u, t0,∞) is small when t0 is large. Hence, by the same
arguments from (3.22) to (3.23), we have

|u(x, t)| ≤ C

∫
Rn

|u(y, t0)|
(|x − y| + √

t − t0)n
dy

∞∑
j=0

[c0B(b, t0, t)]j (3.26)

for all t > t0. Since B(b, t0, t) ≤ B(b, t0,∞) and the latter is sufficiently
small, (3.26) shows

|u(x, t)| ≤ C

∫
Rn

|u(y, t0)|
(|x − y| + √

t − t0)n
dy (3.27)

for all t > t0. Applying Young’s inequality on (3.27), we obtain

‖u(·, t)‖L2 ≤ c sup
x

[ ∫
Rn

dy

(|x − y| + √
t − t0)2n

]1/2
∫
Rn

|u(y, t0)|dy.

Hence, for t > t0,

‖u(·, t)‖L2 ≤ c

(t − t0)n/4

∫
Rn

|u(y, t0)|dy. (3.28)

From (3.22), since div u = 0, one has, from [7],

u(x, t) =
∫
Rn

G(x, t; y, 0)u0(y)dy+
∫ t

0

∫
Rn

u(y, s)∇yE0(x, t; y, s)u(y, s)dy ds,

where G is the heat kernel. Therefore,∫
Rn

|u(x, t)|dx ≤
∫
Rn

|u0(y)|dy

+
∫ t

0

∫
Rn

|u(y, s)|2
∫
Rn

dy

(|x − y| +
√

t − s)(n+1)
dx dy ds.

This implies∫
Rn

|u(x, t0)|dx ≤
∫
Rn

|u0(y)|dy +
∫
Rn

|u0(y)|2dy

∫ t0

0

1√
t0 − s

ds.
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Substituting this into (3.28), we obtain

‖u(·, t)‖L2 ≤ c

(t − t0)n/4

[ ∫
Rn

|u0(y)|dy +
√

t0

∫
Rn

|u0(y)|2dy
]
. �

4. Proof of Theorem 1.2. Existence of global solutions

Throughout the section and for a function u = u(x, t), we will use the
global norm

‖u‖K ≡ sup
x∈Rn,t>0

∫ t

0

∫
Rn

[K1(x, t; y, s) + K1(x, s; y, 0)]|u(y, s)|dy ds. (4.1)

If it is finite. Here, as before,

K1(x, t; y, s) =
1

(|x − y| +
√

t − s)n+1
.

We will also use the related kernel function

K0(x, t; y, s) =
1

(|x − y| +
√

t − s)n
.

If u is independent of time, then by a simple computation, we see that

‖u‖K = c sup
x∈Rn

∫
Rn

|u(y)|
|x − y|n−1

dy. (4.2)

We also use the following convention in the use of convolutions ∗, #, and •.
If f is a function depending both on x and t, then, for i = 1, 2,

Ki ∗ f(x, t) ≡
∫ t

0

∫
Rn

Ki(x, t; y, s)f(y, s) dy ds;

Ki#f(x, t) ≡
∫ t

0

∫
Rn

Ki(x, s; y, 0)f(y, s) dy ds.

If f is an initial value depending only on x, then

Ki • f(x, t) ≡
∫
Rn

Ki(x, t; y, 0)f(y)dy.

The proof of Theorem 1.2 is divided into three steps. The only prerequisite
in the previous section is Lemma 3.1.
Step 1. Four basic inequalities. In this step we prove the following four
inequalities.∫ t

0

∫
Rn

K1(x, t; y, s)
∫
Rn

K0(y, s; z, 0)|u0(z)|dz dy ds

≤ c

∫
Rn

|u0(z)|
|x − z|n−1

dz ≤ c‖u0‖K . (4.3)
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0

∫
Rn

K0(x, t; y, s)
∫
Rn

K1(y, s; z, 0)|u0(z)|dz dy ds

≤ c

∫
Rn

|u0(z)|
|x − z|n−1

dz ≤ c‖u0‖K . (4.4)∫ t

0

∫
Rn

K1(x, s; y, 0)
∫
Rn

K0(y, s; z, 0)|u0(z)|dz dy ds ≤ c‖u0‖K . (4.3’)∫ t

0

∫
Rn

K0(x, s; y, 0)
∫
Rn

K1(y, s; z, 0)|u0(z)|dz dy ds ≤ c‖u0‖K . (4.4’)

Sometimes, for simplicity, we also write (4.3)–(4.4’) as

K1 ∗ K0 • |u0|(x, t) ≤ c‖u0‖K , K0 ∗ K1 • |u0|(x, t) ≤ c‖u0‖K

K1#K0 • |u0|(x, t) ≤ c‖u0‖K , K0#K1 • |u0|(x, t) ≤ c‖u0‖K

respectively.
Here is a proof of (4.3). Denote the left-hand side of (4.3) by I = I(x, t).

It is clear that

I(x, t) =
∫
Rn

∫ t

0
J ds |u0(z)|dz, (4.5)

where

J ≡
∫
Rn

1
(|x − y| +

√
t − s)n+1(|y − z| + √

s)n
dy.

Obviously

J ≤
∫
|x−y|≥|x−z|/2

· · · dy +
∫
|y−z|≥|x−z|/2

· · · dy ≡ J1 + J2. (4.6)

When |x − y| ≥ |x − z|/2, we have |x − y| ≥ |y − z|/3. Hence

J1 ≤ c

(|x − z| +
√

t − s)n

∫
|x−y|≥|x−z|/2

1
(|x − y| +

√
t − s)(|y − z| + √

s)n
dy

≤ c

(|x − z| +
√

t − s)n

∫
|x−y|≥|x−z|/2

1
(|y − z| +

√
t − s)(|y − z| + √

s)n
dy.

This implies

J1 ≤
{

c
(|x−z|+

√
t−s)n

∫
|x−y|≥|x−z|/2

1
(|y−z|+√

s)n+1 dy, s ∈ (0, t/2)
c

(|x−z|+
√

t−s)n

∫
|x−y|≥|x−z|/2

1
(|y−z|+

√
t−s)n+1 dy, s ∈ [t/2, t].

Therefore,

J1 ≤
{

c
(|x−z|+

√
t−s)n

√
s
, s ∈ (0, t/2)

c
(|x−z|+

√
t−s)n

√
t−s

, s ∈ [t/2, t].
(4.7)
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Integrating (4.7) from 0 to t, we obtain∫ t

0
J1 ds ≤ c

∫ t/2

0

ds

(|x − z| + √
s)n

√
s

+ c

∫ t

t/2

ds

(|x − z| +
√

t − s)n
√

t − s
.

By direct computation ∫ t

0
J1 ds ≤ c

|x − z|n−1
. (4.8)

Next we estimate
∫ t
0 J2 ds. When |y − z| ≥ |x − z|/2, from (4.6), we have

J2 ≤ c

(|x − z| + √
s)n

∫
|y−z|≥|x−z|/2

1
(|y − z| +

√
t − s)n+1

dy.

Hence
J2 ≤ c

(|x − z| + √
s)n

√
t − s

.

By a simple computation, we see that∫ t

0
J2 ds ≤

∫ t

0

c

(|x − z| + √
s)n

√
t − s

ds ≤ c

|x − z|n−1
. (4.9)

Substituting (4.8) and (4.9) into (4.5), we deduce

I(x, t) ≤ c

∫
Rn

|u0(z)|
|x − z|n−1

dz ≤ c‖u0‖K .

This is (4.3). The proof for (4.4), (4.3’) and (4.4’) is similar.
Step 2. Solving an integral equation. The space of divergence-free,
vector-valued functions equipped with the norm ‖ · ‖K (defined in (4.1)) is
denoted by S.

Given vector-valued functions b = b(x, t) and u0 = u(x), let us consider
the integral equation in S

u(x, t) =
∫
Rn

E0(x, t; y, 0)u0(y)dy−
∫ t

0

∫
Rn

E0(x, t; y, s)b(y, s)∇u(y, s)dy ds.

(4.10)
We will prove that (4.10) has a solution in S provided that ‖b‖K < η and
u0 ∈ K1. Here η is a sufficiently small number depending only on dimension.

It suffices to prove that the following series, obtained by iterating (4.10),
is norm convergent in S.

u(x, t) =
∫
Rn

E0(x, t; y, 0)u0(y)dy

−
∫ t

0

∫
Rn

E0(x, t; y, s)b(y, s)
∫
Rn

∇yE0(y, s; z, 0)u0(z)dz dy ds + · · ·
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By induction after exchanging the order of integration, we obtain

u(x, t) =
∫

E0(x, t; z, 0)u0(z)dz

+
∫
Rn

[ ∞∑
j=1

(−1)jE0 ∗ (b∇E0)∗j
]
(x, t; z, 0)u0(z)dz. (4.11)

Here

[E0 ∗ b∇E0](x, t; z, 0) ≡
∫ t

0

∫
Rn

E0(x, t; y, s)b(y, s)∇yE0(y, s; z, 0)dy ds.

By Lemma 3.1, we have

K0 ∗ |b|K1 ≤ C0B(b, 0,∞)K0.

This shows, by induction, that

|E0 ∗ (b∇E0)∗j
]
(x, t; z, 0) ≤ [C0B(b, 0, t)]jK0(x, t; z, 0).

Substituting this into (4.11), we deduce

|u(x, t)| ≤
∞∑

j=0

[C0B(b, 0, t)]j
∫
Rn

K0(x, t; z, 0)|u0(z)|dz. (4.12)

Note that B(b, 0,∞) = ‖b‖K . Hence, by (4.12),

(K1 ∗ |u|)(x, t) ≤ c

∞∑
j=0

[C0‖b‖K ]j
∫ t

0

∫
Rn

K1(x, t; y, s)

×
∫
Rn

K0(y, s; z, 0)|u0(z)|dz dy ds. (4.13)

This and (4.3) imply

(K1 ∗ |u|)(x, t) ≤ c‖u0‖K

∞∑
j=0

[C0‖b‖K ]j .

By (4.12) and (4.3’),

(K1#|u|)(x, t) ≤ c
∞∑

j=0

[C0‖b‖K ]j
∫ t

0

∫
Rn

K1(x, s; y, 0)

×
∫
Rn

K0(y, s; z, 0)|u0(z)|dz dy ds

≤ cK1#K0 • |u0|(x, t)
∞∑

j=0

[C0‖b‖K ]j ≤ c‖u0‖K

∞∑
j=0

[C0‖b‖K ]j .
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Hence, by (4.1),

‖u‖K ≤ c sup(K1 ∗ |u| + K1#|u|) ≤ c‖u0‖K

∞∑
j=0

[C0‖b‖K ]j .

Therefore, (4.11) is norm convergent in S when C0‖b‖K < 1. In this case

‖u‖K ≤ c

1 − C0‖b‖K
‖u0‖K .

Let η = 1
2C0

and SK,η ≡ {u ∈ S : ‖u‖K < η}. Given b ∈ SK,η, by the above,
u defined by (4.4) also belongs to SK,η provided that ‖u0‖K < η/(2c). The
mapping T defined by Tb = u maps SK,η to itself.

Next we prove that T is contraction if η is sufficiently small. Given b1, b2 ∈
SK,η, let Tb1 = u1 and Tb2 = u2. Then it is easy to see that

u1 − u2 =
∫ t

0

∫
E0(b1 − b2)∇u1 +

∫ t

0

∫
E0b2∇(u1 − u2). (4.14)

We denote

A =
∫ t

0

∫
E0(b1 − b2)∇u1

and let E1 be the fundamental solution of (1.1) with b replaced by b1. Then

|∇u1|(x, t) ≤
∫
Rn

|∇xE1(x, t; z, 0)||u0,1(z)|dz,

where u0,1(z) = u1(z, 0). Using the gradient estimate on E1 (Lemma 3.2),
we have, since ‖b1‖k is sufficiently small,

|∇u1|(x, t) ≤ c

∫
Rn

K1(x, t; z, 0)|u0,1(z)|dz.

Hence,

|A(x, t)|≤c

∫
Rn

∫ t

0

∫
Rn

K0(x, t; y, s)|b1−b2|(y, s)K1(y, s; z, 0)dy ds|u0,1(z)|dz.

By Lemma 3.1,

|A(x, t)| ≤ cB(b1 − b2, 0, t)
∫
Rn

K0(x, t; z, 0)|u0,1(z)|dz. (4.15)

Similarly,

|∇xA(x, t)| ≤ cB(b1 − b2, 0, t)
∫
Rn

K1(x, t; z, 0)|u0,1(z)|dz. (4.16)
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Substituting (4.15) and (4.16) into (4.14) and using induction, we find

|u1−u2|(x, t) ≤ cB(b1−b2, 0, t)
∞∑

j=0

[c0B(b2, 0, t)]j
∫
Rn

K0(x, t; z, 0)|u0,1(z)|dz.

It follows that

(K ∗ |u1 − u2|)(x, t) ≤ c‖b1 − b2‖K

∞∑
j=0

[c0‖b2‖K ]j(K1 ∗ K0 • u0,1)(x, t),

(K#|u1 − u2|)(x, t) ≤ c‖b1 − b2‖K

∞∑
j=0

[c0‖b2‖K ]j(K1#K0 • u0,1)(x, t).

Using (4.3) and (4.3’), we have

‖u1 − u2‖K ≤ c‖b1 − b2‖K‖u0,1‖K ≤ c‖b1 − b2‖kη.

This implies that T is a contraction when η is sufficiently small.
Therefore T has a fixed point SK,η, which satisfies

u(x, t) =
∫
Rn

E0(x, t; y, 0)u0(y)dy −
∫ t

0

∫
Rn

E0(x, t; y, s)u(y, s)∇yu(y, s)dy.

(4.17)
Step 3. Proving the solution of the integral equation is a solution of
the Navier-Stokes equations. If we knew that the function u(·, t)∇u(·, t)
is in Lp(Rn) for some p > 1, then by the argument of [7], reproduced in
the proof of Theorem 1.1 (i) in Section 3, we would know that a solution to
(4.17) is a solution to the Navier-Stokes equations. The Lp bound is needed
since one needs to apply the Riesz transform on u∇u. However, we do not
have this information at the moment. In fact we do not even know whether
u∇u is integrable for the moment. To overcome this difficulty, we carry out
an approximation process.

In order to proceed, let us summarize the main properties obtained in the
last step for the solution of (4.17).

(a) When u0 ∈ SK,η and η is sufficiently small, the equation (4.17) has a
solution in SK,η.

(b) There exists c = c(η) > 0 such that

|u(x, t)| ≤ c

∫
Rn

K0(x, t; y, 0)|u0(y)|dy, (4.18)

|∇u(x, t)| ≤ c

∫
Rn

K1(x, t; y, 0)|u0(y)|dy. (4.19)
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The first estimate is just (4.12), and the second can be obtained similarly by
iterating the derivative of (4.10). Here we emphasize that all iterations are
valid under the assumption of the smallness of the ‖ ·‖K norm of all relevant
functions. The rest of the proof is divided into three parts.
Part 1. Stability. Let ui (∈ SK,η), i = 1, 2, be the solutions to (4.17) with
the initial values of u0,i. We want to prove that the ‖u1−u2‖K is dominated
by ‖u0,1 − u0,2‖K .

From the construction of ui by (4.17) (replacing u0 by u0,i), we see that

u1(x, t) − u2(x, t)

≡ J(x, t) +
∫ t

0

∫
Rn

E0(x, t; y, s)u2∇y(u1 − u2)(y, s) dy ds,
(4.20)

where

J(x, t) ≡
∫
Rn

E0(x, t; y, 0)(u0,1(y) − u0,2(y))dy

+
∫ t

0

∫
Rn

E0(x, t; y, s)(u1 − u2)∇yu1(y, s)dy ds.

Applying (4.19), which obviously holds for u1, we have

|J(x, t)| ≤ c

∫
Rn

K0(x, t; y, 0)|u0,1(y) − u0,2(y)|dy

+ c

∫ t

0

∫
Rn

K0(x, t; y, s)|u1 − u2|
∫
Rn

K1(y, s; z, 0)u0,1(y, s)dy ds.

Using Lemma 3.1, we deduce

|J(x, t)| ≤ c

∫
Rn

K0(x, t; y, 0)|u0,1(y) − u0,2(y)|dy

+ cB(u1 − u2, 0,∞)
∫
Rn

K0(x, t; y, 0)|u0,1(y)|dy.

For simplicity we write the above as

|J(x, t)| ≤ cK0 • |u0,1 − u0,2|(x, t) + c‖u1 − u2‖K K0 • |u0,1|(x, t). (4.21)

Similarly,

|∇J(x, t)| ≤ cK1 • |u0,1 − u0,2|(x, t) + c‖u1 − u2‖K K1 • |u0,1|(x, t). (4.22)

Substituting (4.21) and (4.22) into (4.20) and iterating, we obtain

|u1 − u2|(x, t) ≤ c

∞∑
j=0

K0 ∗ (|u2|K1)∗j • |u0,1 − u0,2|(x, t)
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+ c‖u1 − u2‖K

∞∑
j=0

K0 ∗ (|u2|K1)∗j • |u0,1|(x, t)

≤c

∞∑
j=1

[c0B(u2, 0,∞)]j
(
K0•|u0,1 − u0,2|(x, t) + c‖u1 − u2‖KK0•|u0,1|(x, t)

)
.

Here we just used Lemma 3.1 again.
Similarly, taking the gradient on both sides of (4.20) and integrating, there

holds

|∇(u1 − u2)|(x, t) ≤

c
∞∑

j=1

[c0B(u2, 0,∞)]j
(
K1 • |u0,1 − u0,2|(x, t) + c‖u1 − u2‖K K1 • |u0,1|(x, t)

)
.

Since u1 and u2 are sufficiently small in the K norm, the above imply

|u1−u2|(x, t) ≤ c
(
K0•|u0,1−u0,2|(x, t)+c‖u1−u2‖K K0•|u0,1|(x, t)

)
, (4.23)

|∇(u1 − u2)|(x, t) ≤ c
(
K1 • |u0,1 − u0,2|(x, t) + c‖u1 − u2‖K K1 • |u0,1|(x, t)

)
.

(4.24)
These show that

K1 ∗ |u1 − u2|(x, t) ≤(
K1 ∗ K0 • |u0,1 − u0,2|(x, t) + c‖u1 − u2‖K K1 ∗ K0 • |u0,1|(x, t)

)
, (4.25)

|K0 ∗ ∇(u1 − u2)|(x, t) ≤
c
(
K0 ∗ K1 • |u0,1 − u0,2|(x, t) + c‖u1 − u2‖K K0 ∗ K1 • |u0,1|(x, t)

)
, (4.26)

K1#|u1 − u2|(x, t) ≤(
K1#K0 • |u0,1 − u0,2|(x, t) + c‖u1 − u2‖K K1#K0 • |u0,1|(x, t)

)
, (4.25’)

|K0#∇(u1 − u2)|(x, t) ≤
c
(
K0#K1 • |u0,1 − u0,2|(x, t) + c‖u1 − u2‖K K0#K1 • |u0,1|(x, t)

)
. (4.26’)

Applying (4.3) and (4.4) to (4.25) and (4.26) respectively, we reach

K1 ∗ |u1 − u2|(x, t) ≤ c(‖u0,1 − u0,2‖K + c‖u1 − u2‖K‖u0,1‖K), (4.27)

|K0 ∗ ∇(u1 − u2)|(x, t) ≤ c(‖u0,1 − u0,2‖K + c‖u1 − u2‖K‖u0,1‖K). (4.28)
Similarly, applying (4.3’) and (4.4’) to (4.25’) and (4.26’) respectively, we
get

K1#|u1 − u2|(x, t) ≤ c(‖u0,1 − u0,2‖K + c‖u1 − u2‖K‖u0,1‖K), (4.27′)

|K0#∇(u1 − u2)|(x, t) ≤ c(‖u0,1 − u0,2‖K + c‖u1 − u2‖K‖u0,1‖K). (4.28′)
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Since ‖u0,1‖K is small, (4.27) and (4.27’) imply

‖u1 − u2‖K = sup(K1 ∗ |u1 − u2| + K1#|u1 − u2|)(x, t) ≤ c‖u0,1 − u0,2‖K .
(4.29)

Substituting (4.29) into (4.28), we see that

|K0 ∗ ∇(u1 − u2)|(x, t) ≤ c‖u0,1 − u0,2‖K . (4.30)

Part 2. Approximation. Given u0 ∈ SK,η, let {u0,k} ⊂ SK,η ∩ C∞
0 (Rn)

be a sequence such that |u0,k(x)| ≤ |u0(x)| and

lim
k→∞

‖u0,k − u0‖K = 0. (4.31)

Let u be a solution to the integral equation (4.17) and uk be a solution to

uk(x, t) =
∫
Rn

E0(x, t; y, 0)u0,k(y)dy

−
∫ t

0

∫
Rn

E0(x, t; y, s)uk(y, s)∇yuk(y, s)dy. (4.32)

According to (4.29) and (4.30) (replacing u1 by uk and u2 by u),

‖uk − u‖K ≤ c‖u0,k − u0‖K (4.33)

|K0 ∗ ∇(uk − u)|(x, t) ≤ c‖u0,k − u0‖K (4.34)

|K0#∇(uk − u)|(x, t) ≤ c‖u0,k − u0‖K . (4.34′)

Since u0,k is smooth and compactly supported, by (4.18) and (4.19), uk∇uk ∈
Lp(Rn × [0, l)) for some p > 1. Here l > 0. Hence by the argument in the
proof of Theorem 1.1 (i), which is borrowed from [7], we know that uk is a
solution to the Navier-Stokes equations with initial value u0,k, i.e., for any
vector-valued φ ∈ C∞

0 (Rn × (−∞,∞)) with div φ = 0,∫ ∞

0

∫
Rn

〈uk, ∂tφ + ∆φ〉dx dt −
∫ ∞

0

∫
Rn

〈uk∇uk, φ〉dx dt

= −
∫
Rn

〈u0,k(x), φ(x, 0)〉dx. (4.35)

Part 3. Taking the limit. We are going to show that each term in (4.35)
converges as k → ∞.

Since K1(x, t; y, s) is bounded away from 0 when t and x, y are finite, by
(4.33), we see that

‖uk − u‖L1(Ω) ≤ CΩ‖u − uk‖K → 0, (4.36)

when k → ∞. Here Ω is any bounded domain of Rn × [0,∞).
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Next, notice that, by (4.19),

(K1 ∗ |uk − u||∇uk|)(x, t) =
∫ t

0

∫
Rn

K1(x, t; y, s)|uk − u||∇uk|(y, s)dy ds

≤ c

∫ t

0

∫
Rn

K1(x, t; y, s)|uk − u|(y, s)
∫
Rn

K1(y, s; z, 0)|u0,k(z)|dz dy ds

≤ c

∫
Rn

∫ t

0

∫
Rn

K1(x, t; y, s)|uk − u|(y, s)K1(y, s; z, 0) dy ds|u0,k(z)|dz

≤ c‖uk − u‖K

∫
Rn

K1(x, t; z, 0)|u0(z)|dz. (4.37)

Here we just used Lemma 3.1 and the fact that |u0,k(x)| ≤ |u0(x)|.
By (4.4), we know that for almost every (x, t),∫

Rn

K1(x, t; z, 0)|u0(z)|dz < ∞.

Let Ω be any bounded domain of Rn × [0,∞); we fix (x, t) ∈ Ωc so that the
above integral is finite. Since K1(x, t; y, s) is strictly positive when (y, s) ∈ Ω,
we have, by (4.37) and (4.33),

lim
k→∞

∫
Ω
|uk − u||∇uk|(y, s) dy ds ≤ CΩ lim

k→∞
(K1 ∗ |uk − u||∇uk|)(x, t) = 0.

(4.38)
Similarly, by (4.18),

K0 ∗ |u||∇(u − uk)| ≤ cK0 ∗ (|∇(u − uk)|K0 • |u0|).

Using (4.34), (4.34’), and Remark 3.1 after Lemma 3.1, one has

K0 ∗ |u||∇(u − uk)|(x, t)

≤ c sup(K0 ∗ |∇(uk − u)| + K0#|∇(uk − u)|)
∫
Rn

K0(x, t; z, 0)|u0(z)|dz.

≤ C‖uk − u‖K

∫
Rn

K0(x, t; z, 0)|u0(z)|dz.

By (4.4), the last integral in the above is finite for almost all (x, t). Therefore,
as before

lim
k→∞

∫
Ω
|u||∇(u − uk)|(y, s) dy ds = 0. (4.39)
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Note that∫
Ω
|〈uk∇uk, φ〉 − 〈u∇u, φ〉| dx dt

≤
∫ ∞

0

∫
Ω
|〈(uk − u)∇uk, φ〉|dx dt +

∫
Ω
| < u∇(uk − u), φ〉|dx dt.

Choosing an Ω that contains the support of φ we have, by (4.38), (4.39), and
(4.35), ∫ ∞

0

∫
Rn

〈u, ∂tφ + ∆φ〉dx dt −
∫ ∞

0

∫
Rn

〈u∇u, φ〉dx dt

= −
∫
Rn

〈u0(x), φ(x, 0)〉dx.

This shows that u is a solution to the Navier-Stokes equations.
Finally, let us prove the last statement in Theorem 1.2. This is easy, now

that we also assume u0 ∈ L2(Rn). By (4.18) and Hölder’s inequality

|u(x, t)|2 ≤ c

∫
Rn

1
(|x − y| +

√
t)2n

dy ‖u0‖2
L2 =

c

tn/2
‖u0‖2

L2 .

Therefore u(x, t) is finite for all x and t > 0. Hence u is classical when t > 0.
Note that no smallness of ‖u0‖2

L2 is required here. �

5. Improved sufficient condition for regularity

In this section we prove that a certain form-boundedness condition on
the velocity is sufficient to imply regularity. Throughout the years, various
conditions on u that imply regularity have been proposed. One of them is
the Prodi-Serrin condition, which requires that u ∈ Lp,q with 3

p + 2
q ≤ 1 for

some 3 < p ≤ ∞ and q ≥ 2. See ([25, 27] e.g.) Recently the authors in
[6] showed that the condition p = 3 and q = ∞ also implies regularity. In
another development the author of [19] improved the Prodi-Serrin condition
by a log factor, i.e., by requiring∫ T

0

‖u(·, t)‖q
p

1 + log+ ‖u(·, t)‖p
dt < ∞,

where 3/p + 2/q = 1 and 3 < p < ∞, 2 < q < ∞.
The form-boundedness condition, with its root in the perturbation theory

of elliptic operators and mathematical physics, seems to be different from all
the previous conditions. It seems to be one of the most general conditions
under the available tools. This fact has been well documented in the theory
of linear elliptic equations. See [26] e.g. Here, first of all it allows singularity
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of the form c(t)/|x|, which does not belong to any of the previous regularity
classes. Here c(t) is bounded. It also has the advantage of just requiring L2

integrability of the velocity. Moreover, it contains the Prodi-Serrin condition
except when p or q are infinite. It also contains suitable Morrey-Compamato-
type spaces. However, we are not sure this condition contains the one in [19].

More precisely we have

Theorem 5.1. Let u be a Leray-Hopf solution to the three-dimensional
Navier-Stokes equation (1.2) in R3 × (0,∞). Suppose for every (x0, t0) ∈
R3 × (0,∞), there exists a cube Qr = B(x0, r) × [t0 − r2, t0] such that u
satisfies the form-bounded condition∫

Qr

|u|2φ2 dy ds (5.0)

≤ 1
24

( ∫
Qr

|∇φ|2 dy ds + sup
s∈[t0−r2,t0]

∫
B(x0,r)

φ2(y, s)dy
)

+ B(‖φ‖L2(Qr)).

Here φ is any smooth function vanishing on the parabolic side of Qr and
B = B(t) is any given function which is bounded when t is bounded. Then
u is a classical solution when t > 0.

The next corollary shows that the form-boundedness condition contains
the famous Prodi-Serrin condition in the whole space, except for p = ∞ and
q = ∞.

Corollary 3. Suppose u ∈ Lp,q(Qr) with 3/p + 2/q = 1 and neither p nor q
is infinity. Then u satisfies (5.0) in Qr′ where r′(< r) is sufficiently small.

Proof. Let φ be as in Theorem 5.1. Then, by Hölder’s inequality∫
Qr′

|u|2φ2 dy ds ≤
(( ∫

Qr′
|φ|2a′

dy
)b′/a′

ds
)1/b′(( ∫

Qr′
|u|2ady

)b/a
ds

)1/b
.

Here 2a = p, 2b = q, and a′ and b′ are the conjugates of a and b respectively.
Hence ∫

Qr′
|u|2φ2 dy ds ≤ ‖u‖2

Lp,q(Qr′ )
‖φ‖2

L2a′,2b′ (Qr′ )
.

Note that
3

2a′
+

2
2b′

=
3
2
(1 − 1

a
) + 1 − 1

b
=

5
2
− (

3
2a

+
2
2b

) =
5
2
− (

3
p

+
2
q
) =

3
2
.

By [16, p. 152, Example 6.2], we have

‖φ‖2
L2a′,2b′ (Qr′ )

≤ C
( ∫

Qr′
|∇φ|2 dy ds + sup

s∈[t0−(r′)2,t0]

∫
B(x0,r′)

φ2(y, s)dy
)
.
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Choosing r′ sufficiently small, we see that u satisfies (5.0). �
Proof of Theorem 5.1. Let t0 be the first moment of singularity formation.
We will reach a contradiction. It is clear that we need only to prove that u
is bounded in Qr/8 = Qr/8(x0, t0) for some r > 0. In fact the number 8 is
not essential. Any number greater than 1 would work.

We will follow the idea in [27]. Consider the the equation for vorticity
w = ∇ × u. It is well known that, in the interior of Qr, w is a classical
solution to the parabolic system with singular coefficients

∆w − u∇w + w∇u − wt = 0. (5.1)

Let ψ = ψ(y, s) be a standard cut-off function such that ψ = 1 in Qr/2,
ψ = 0 in Qc

r, and such that 0 ≤ ψ ≤ 1, |∇ψ| ≤ C/r, and |ψt| ≤ C/r2. We
can use wψ2 as a test function on (5.1) to obtain∫

Qr

|∇(wψ)|2 dy ds +
1
2

∫
B(x0,r)

|wψ|2(y, t0)dy

≤ C

r2

∫
Qr

|w|2 dy ds + |
∫

Qr

u∇w · wψ2 dy ds| + |
∫

Qr

w∇u · wψ2 dy ds|

≡ I1 + I2 + I3. (5.2)

The term I1 is already in good shape. Next, using integration by parts and
the divergence-free condition on u, we have

I2 = |1
2

∫
Qr

u · ∇ψψ|w|2 dy ds|.

Hence

I2 ≤ ε

∫
Qr

|u|2|wψ|2 dy ds + Cε

∫
Qr

|∇ψ|2|w|2 dy ds. (5.3)

Here ε > 0 is arbitrary. Next

I3 = |
∫

Qr

Σiwiψ∂iu · wψ dy ds|

= |
∫

Qr

Σi∂i(wiψ)u · wψ dy ds| + |
∫

Qr

Σiwiψu · ∂i(wψ) dy ds|

≤ 1
2

∫
Qr

|∇(wψ)|2 dy ds +
3
2

∫
Qr

|u|2|wψ|2 dy ds

+
1
4

∫
Qr

|∇(wψ)|2 dy ds +
∫

Qr

|u|2|wψ|2 dy ds.
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Substituting this and (5.3) into (5.2) and simplifying we obtain

1
4

∫
Qr

|∇(wψ)|2 dy ds +
1
2

∫
B(x0,r)

|wψ|2(y, t0)dy

≤ C + Cε

r2

∫
Qr

|w|2 dy ds +
5 + ε

2

∫
Qr

|u|2|(wψ)|2 dy ds.

After repeating the above in Qr ∩ {(y, s) : s < t} for all t ∈ (t0 − r2, t0), one
has

1
4

∫
Qr

|∇(wψ)|2 dy ds +
1
2

sup
t0−r2≤s≤t0

∫
B(x0,r)

|wψ|2(y, s)dy

≤ C

r2

∫
Qr

|w|2 dy ds + (5 + ε)
∫

Qr

|u|2|(wψ)|2 dy ds.

By the form-boundedness assumption on u, we have∫
Qr

|∇(wψ)|2 dy ds + sup
t0−r2≤s≤t0

∫
B(x0,r)

|wψ|2(y, s)dy

≤ Cε

r2

∫
Qr

|w|2 dy ds + 4(5 + ε)
1
24

( ∫
Qr

|∇(wψ)|2 dy ds

+ sup
t0−r2≤s≤t0

∫
B(x0,r)

|wψ|2(y, s)dy
)

+ CB(‖w‖L2(Qr)). (5.4)

Hence, we can choose ε so small that∫
Qr

|∇(wψ)|2 dy ds + sup
t0−r2≤s≤t0

∫
B(x0,r)

|wψ|2(y, s)dy

≤ Cε

r2
‖w‖L2(Qr) + CB(‖w‖L2(Qr)). (5.5)

Using standard results, we know that (5.5) implies that u is regular. Here is
the proof.

From (5.5), it is clear that
∫
Qr

|curl (wψ)|2 dy ds ≤ C. Hence, since ψ = 1
in Qr/2, ∫

Qr/2

|∆u|2 dy ds ≤ C. (5.6)

Let η = η(y) be a cut-off function such that η = 1 in B(x0, r/4) and η = 0 in
B(x0, r/2)c. Then for each s ∈ [t0 − (r/4)2, t0], we have, in the weak sense,

∆(uη) = η∆u + 2∇u∇η + u∆η ≡ f
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in Qr/2. By standard elliptic estimates, using the fact that uη = 0 on the
boundary,

‖D2u(·, s)‖L2(B(x0,r/4)) ≤ C‖f(·, s)‖L2(B(x0,r/2)).

This shows that

‖D2u‖L2(Qr/4) ≤ C‖∆u‖L2(Qr/2) + C‖u‖L2(Qr/2).

By Sobolev imbedding,
∇u ∈ L6,2(Qr/4). (5.7)

Next, from (1.22) on p. 316 of [29],

‖u(·, s)η‖W 1,2 ≤ C
(
‖u(·, s)η‖L2 + ‖div(uη)(·, s)‖L2 + ‖curl(u(·, s)η)‖L2

)
.

Here all norms are over the ball B(x0, r/2). Therefore,

‖uη(·, s)‖W 1,2 ≤

C
(
‖u(·, s)η‖L2 + ‖u∇η(·, s)‖L2 + ‖wη(·, s)‖L2 + ‖|u(·, s)| |∇η|‖L2

)
.

It follows that
‖u(·, s)‖W 1,2(B(x0,r/4)) ≤ C.

From Sobolev imbedding we know that

u ∈ L6,∞(Qr/4). (5.8)

We treat u and ∇u as coefficients in equation (5.1). By (5.6) and (5.7),
standard parabolic theory (see [16] e.g.) shows that w is bounded and Hölder
continuous in Qr/8. Here the bound depends only on the L2 norm of w in
Qr and r. This is so because of the relation 3/6 + 2/∞ < 1 for the norm
of u and 3/6 + 2/2 < 2 for the norm of ∇u. Now a standard bootstrapping
argument shows that u is smooth.

Note that one can also use the Prodi-Serrin condition, which is implied
by (5.8), to conclude that u is bounded and hence regular. �
Remark. Currently we are not able to prove a local version of Theorem 5.1
due to a difficulty in obtaining an approximation argument for weak solutions
under the form-boundedness condition. Under the Prodi-Serrin condition,
this is done in [27].
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