
ADDITIONAL REMARKS ON CONCURRENCE

In an equilateral triangle, the centroid, circumcenter, orthocenter and incenter all coincide.
The reason for this is simple: If we are given an equilateral triangle ∆ABC and the midpoints of
[BC], [AC] and [AB] are given by D, E and F respectively, then

(i) the ray [AD is also the angle bisector for 6 BAC, and the line AD is also the altitude from
A to BC and the perpendicular bisector of [BC] (all because d(A,B) = d(A,C)),

(ii) similarly for the rays [BE and [CF as well as the lines BE and CF .

However, in general the centroid, circumcenter, orthocenter and incenter of a triangle are all distinct,
and in fact one can prove that if two of these points coincide then the triangle is equilateral. The
proof splits into six cases corresponding to the following hypotheses:

(1) The centroid and orthocenter coincide.
(2) The centroid and incenter coincide.
(3) The centroid and circumcenter coincide.
(4) The incenter and orthocenter coincide.
(5) The circumcenter and incenter coincide.
(6) The circumcenter and orthocenter coincide.

Preliminaries

Before proving the theorem stated above, we shall establish some auxiliary results that we
shall need.

PROPOSITION. If L is a line, x is a positive real number, and X is a point not on L, then
there are at most two points on L whose distance from X is equal to x.

Proof. Suppose that B, C, D are three points on L such that d(X,B) = d(X,C) = d(X,D) = x.
Relabeling the points if necessary, we may assume that B ∗C ∗D holds. Let E be the midpoint of
[BC] and let F be the midpoint of [CD]. Since X is equidistant from B, C, D it follows that XE

is the perpendicular bisector of [BC] and XF is the perpendicular bisector of [CD]. However, we
know that there is only one perpendicular from X to L, so this is a contradiction. The source of
this contradiction is our assumption that there are three points on L which are equidistant from
X, and therefore we conclude that there are at most two such points.

The second result analyzes pairs of triangles which satisfy SSA; as noted in Section II.4, there
is no general congruence theorem in this case, but the following result shows that there are at most
two possibilities:

THEOREM. (SSA congruence ambiguity). (i) Suppose that we are given ∆ABC. Then there
is at most one point G ∈ (AC such that G 6= C and d(B,C) = d(B,G).

(ii) If G is given as above and ∆DEF is a triangle such that d(A,B) = d(E,F ), d(B,C) =
d(E,F ) and | 6 BAC| = | 6 EDF |, then either ∆ABC ∼= ∆DEF or else ∆ABG ∼= ∆DEF .

Proof. (i) There is at most one other point G ∈ AC such that d(B,G) = d(B,C) by the preceding
proposition, so there is at most one such point on (AC.

1



(ii) Let H ∈ (AC be such that d(A,H) = d(D,F ). Then by SAS we have ∆ABH ∼= ∆DEF ,
and consequently we also have that d(B,H) = d(E,F ) = d(B,C). If H = C, then ∆ABC ∼=
∆DEF ; on the other hand, if H 6= C, then H must be the second point G which satisfies the
conditions in (i), and we have ∆ABG ∼= ∆DEF .

Remark. If BC ⊥ AC, then the only point G ∈ AC such that d(B,G) = d(B,C) is C itself,
and this is why one has a hypotenuse-side congruence theorem for right triangles. On the other
hand, it is also possible that one has a second point G ∈ AC at the prescribed distance but G

does not lie on the open ray (AC; this happens if d(B,C) > d(A,B). On the other hand, if we
are given ∆ABC such that d(A,B) > d(A,C) and AC is not perpendicular to BC, then there is
a point G 6= C on (BC such that d(A,G) and d(A,C), which means that ∆ABC and ∆ABG are
not congruent even though they satisfy SSA.

Proofs in the six individual cases

In all cases it will suffice to prove that d(A,B) = d(A,C), for if we know this we can also
conclude that d(A,C) = d(C,A) = d(C,B) = d(B,C) by switching the roles of C and A in the
appropriate discussion.

One fact which is used repeatedly in our arguments is that the incenter and centroid of a triangle
can never lie on the triangle itself; in contrast, it is possible for the circumcenter or orthocenter to
lie on the triangle, and in fact they always do so for right triangles.

CASE (1): The centroid and orthocenter of ∆ABC coincide. Let D be the midpoint of
[AC]. If the centroid and orthocenter are the same, then AD also contains the orthocenter; but
this means that AD ⊥ BC. Therefore we have d(B,D) = d(C,D), | 6 ADB| = 90◦ = | 6 ADC|, and
d(A,D) = d(A,D), so that ∆ADB ∼= ∆ADC by SAS. By the conclusion of the preceding sentence
it follows that d(A,B) = d(A,C).

CASE (2): The centroid and incenter of ∆ABC coincide. We shall give two proofs; the
first does not require the use of Playfair’s Postulate, but the second does.

First proof. We shall suppose that d(A,B) 6= d(A,C) and derive a contradiction. Without
loss of generality we may assume that d(A,B) < d(A,C) (we can dispose of the other case by
switching the roles of B and C in the argument that follows). Let D be the midpoint of [BC]; since
the centroid and incenter coincide, we know that [BD is the angle bisector of 6 BAC.

Notice that ∆ABD and ∆ADC satisfy the SSA conditions | 6 BAD| = |angleBAC|, d(A,D) =
d(A,D) and d(B,D) = d(C,D). By itself this is not enough to prove that ∆ADB ∼= ∆ADC,
which in our setting would be equivalent to showing that d(A,B) = d(A,C), so we really need to
determine whether d(A,B) < d(A,C) is possible. — Let E ∈ (AB be such that d(A,E) = d(A,C);
the distance inequality implies that A ∗ B ∗ E must hold. We then have ∆DAC ∼= ∆DAE by
SAS. This means that d(D,E) = d(D,C) = d(D,B), where the second inequality holds because
D is the midpoint of [BC]. By the Isosceles Triangle Theorem it follows that | 6 DEB = 6 DEA|
is equal to | 6 DBE = 6 CBE|, and by the previously established congruence relation we know that
| 6 DEA| = | 6 ACB|. If we combine these, we see that | 6 EBC| = | 6 ACB|

On the other hand, the Exterior Angle Theorem implies that | 6 EBC| > | 6 ACB|, so we have
a contradiction. The source of this contradiction is our assumption that d(A,B) and d(A,C) are
unequal, and therefore we must have d(A,B) = d(A,C).
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Second proof. This uses the Angle Bisector Theorem from Section III.5 of the notes (which
depends upon the theory of similar triangles and hence upon Playfair’s Postulate). — Let D be the
midpoint of [AC]. Since the centroid and incenter are the same and neither lies on [AC], it follows
that [AD is the angle bisector for 6 BAC. Therefore the Angle Bisector Theorem implies that

d(A,C)

d(C,B)
=

d(A,D)

d(D,C)

and since D is the midpoint of [AC] the right hand side is equal to 1, which in turn implies that
d(A,C) must be equal to d(B,C).

CASE (3): The centroid and circumcenter of ∆ABC coincide. Let D be the midpoint of
[AC]. If the centroid and circumcenter are the same, then AD also contains the circumcenter, and
since the centroid does not lie on the triangle it follows that the same is true for the circumcenter;
this means that AD is the perpendicular bisector of [BC]. Therefore we must have d(A,B) =
d(A,C).

CASE (4): The incenter and orthocenter of ∆ABC coincide. Let [AX be the bisector
of 6 BAC, and let D ∈ (AX ∩ (BC) be the point whose existence is guaranteed by the Crossbar
Theorem. If the incenter and orthocenter are the same, then AD also contains the orthocenter,
and as in the first case this means that AD ⊥ BC. Therefore we have | 6 ADB| = 90◦ = | 6 ADC|,
d(A,D) = d(A,D), and | 6 BAD| = | 6 CAD|, so that ∆ADB ∼= ∆ADC by ASA. By the conclusion
of the preceding sentence it follows that d(A,B) = d(A,C).

CASE (5): The circumcenter and incenter of ∆ABC coincide. Let D be the midpoint of
[BC], and let E be the point given by the circumcenter and incenter. Let F and G denote the feet
of the perpendiculars from E to AB and AC respectively. Since [AE bisects 6 BAC we know that
F ∈ (AB and G ∈ (AC. Also, since [BE bisects 6 ABC and [CE bisects 6 ACB, we also know that
F ∈ (BA and G ∈ (CA, so that F ∈ (AB) and G ∈ (AC.

By the characterization of angle bisectors in Section III.4, we know that d(E,A) = d(E,B) =
d(E,C), so by AAS we also have ∆EFA ∼= ∆EGA, so that d(A,F ) = d(A,G). On the other hand,
since E is also the circumcenter of ∆ABC we also have d(E,A) = d(E,B), and the Hypotenuse-
Side Congruence Theorem for right triangles then shows that ∆EFB ∼= ∆EGC. The latter implies
that d(F,B) = d(G,C). Combining this with the previous observations we find that

d(A,B) = d(A,F ) + d(F,B) = d(A,G) + d(G,C) = d(A,C)

which is what we needed to prove.

CASE (6): The circumcenter and orthocenter of ∆ABC coincide.

Let D be the midpoint of [BC], and let M be the unique line through A which is perpendicular
to BC. If the circumcenter and orthocenter are the same, then the circumcenter G must lie on M .
But G also lies on the perpendicular bisector of [BC], so either M is this perpendicular bisector or
else G = D.

Suppose that D is not the circumcenter G. Since the line joining D to the circumcenter is
perpendicular to BC and the line joining A to the orthocenter is perpendicular to BC, it follows
that these lines must coincide. But if this happens then A lies on the perpendicular bisector of
[BC], and therefore we must have d(A,B) = d(A,C).

To complete the proof we need to show that D cannot be the circumcenter of the triangle if
the circumcenter and orthocenter coincide. If this happens, then D is also the orthocenter, which
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means that the line BC = BD is perpendicular to both AB and AC. This is impossible because
there is only one perpendicular to BC which contains the external point A.

The role of Playfair’s Postulate

The following discussion assumes material from Unit V of the notes.

In Section III.4 of the notes, Euclidean geometry was the setting for the proofs of the four
triangle concurrence theorems. Two of these results are also true in hyperbolic geometry. The
proof of the incenter theorem carries over with no essential changes, and there is also a centroid
theorem, but its proof is entirely different from the Euclidean argument. A sketch of the proof for
hyperbolic geometry appears in Exercise K–19 on page 226 of the following book:

M. J. Greenberg, Euclidean and Non-Euclidean Geometries — Development and
History (Second Edition). W. H. Freeman, San Francisco, 1980. [Note: The
most recent Fourth Edition appeared in 2007.]

One reason for including the first proof of Case (2) is that it does not require Playfair’s Postulate
and hence is also valid in hyperbolic geometry. In all the remaining cases, the proofs are valid in
neutral geometry provided that the given points exist.

The preceding sentence suggests that the circumcenter theorem and orthocenter theorem do not
extend to hyperbolic geometry; for each statement, one can construct triangles in the hyperplane
for which the given lines are not concurrent. However, even though the circumcenter theorem fails
to hold in hyperbolic geometry, one does have the following result in that setting:

THEOREM. Suppose we are given ∆ABC in a hyperbolic plane P, and let L, M and N be the
perpendicular bisectors of the sides. Then exactly one of the following is true:

(a) The lines L, M and N are concurrent (as is always the case in Euclidean geometry).

(b) The lines L, M and N have a common perpendicular.

(c) The lines L, M and N are triply asymptotic; in other words, the lines are pairwise disjoint,
but there are ruler functions f : L → R, g : M → R and h : N → R for these lines such that

lim
t→∞

d
(

f−1(t), g−1(t)
)

= lim
t→∞

d
(

g−1(t), h−1(t)
)

= 0 .

The concept of asymptotic parallels is discussed at the end of Section V.4 in the notes. Observe
that the two conditions in (c) also imply that

lim
t→∞

d
(

f−1(t), h−1(t)
)

= 0 .

THE EULER LINE AND HYPERBOLIC GEOMETRY. In contrast to Euclidean geometry, even
if a hyperbolic triangle has both a circumcenter and orthocenter, it does not follow that these points
and the centroid are collinear. An example (using the Poincaré disk model for the hyperbolic plane)
is described in the following article:

http://josm.geneseo.edu/1-1/00-03.pdf
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